neurotools.util.functions module
Commonly used mathematical functions and high-precision (np.longdouble) versions of common constants.
- neurotools.util.functions.slog(x, eps=3.7433921782255195601e-23, returntype=<class 'numpy.float64'>)[source]
“safe” natural logarithm function, clips values avoiding NaN and inf
- neurotools.util.functions.sexp(x, limit=26.641747557046326023, returntype=<class 'numpy.float64'>)[source]
“safe” exponential function, clips values avoiding NaN and inf
- neurotools.util.functions.sigmoid(x, limit=26.641747557046326023, returntype=<class 'numpy.float64'>)[source]
sigmoid function 1/(1+exp(-x))
- neurotools.util.functions.inversesigmoid(x, returntype=<class 'numpy.float64'>)[source]
Inverse of sigmoid function 1/(1+exp(-x)), -[log(1-x)+log(x)]
- neurotools.util.functions.dsigmoid(x, returntype=<class 'numpy.float64'>)[source]
Fist derivative of sigmoid
- neurotools.util.functions.g(x, returntype=<class 'numpy.float64'>)[source]
Evaluates g(x)=log(1+exp(x)) as accurately as possible.
- neurotools.util.functions.f(x, returntype=<class 'numpy.float64'>)[source]
evaluates f(x)=1/(1+exp(-x)) as accurately as possible
- neurotools.util.functions.f1(x, returntype=<class 'numpy.float64'>)[source]
Fist derivative of sigmoid
- neurotools.util.functions.f2(x, returntype=<class 'numpy.float64'>)[source]
Second derivative of sigmoid
(q - p) p q
- neurotools.util.functions.npdf(mu, sigma, x)[source]
Univariate Gaussian probability density
- Parameters:
mu (float, scalar or array-like) – Mean(s) of distribution(s)
sigma (float, scalar or array-like) – Standard deviation(s) of distribution(s)
x (float, scalar or array-like) – Points at which to evaluate distribution(s)