neurotools.stats.tests module
Additional hypothesis-testing routines to supplement
scipy.stats
and statsmodels
.
- neurotools.stats.tests.two_tailed_sampled_test(delta)[source]
Directly test whether a population
delta
is above or below zero more than chance. This is for use with bootstrap/shuffle tests when stronger assumptions may be inaccurate or risk false-positives.
- class neurotools.stats.tests.ZTestResult(z, pvalue)[source]
Bases:
NamedTuple
- z: float
Alias for field number 0
- pvalue: float
Alias for field number 1
- neurotools.stats.tests.ztest_from_moments(μ1, s1, μ2, s2)[source]
Calculate z-test given moments from two samples.
- class neurotools.stats.tests.WeightedTtestResult(t, pvalue, dof, alternative, sem, mu, s)[source]
Bases:
NamedTuple
- t: float
Alias for field number 0
- pvalue: float
Alias for field number 1
- dof: float
Alias for field number 2
- alternative: str
Alias for field number 3
- sem: float
Alias for field number 4
- mu: float
Alias for field number 5
- s: float
Alias for field number 6
- neurotools.stats.tests.weighted_ttest_1samp(x, w, alternative='two-sided')[source]
Test if mean of independent samples
x
with weightsw
is different from zero using a to-tailed one-sample t-test.
- neurotools.stats.tests.beta_propotion_test(a1, b1, a2, b2, npts=1000, eps=0.5)[source]
(experimental)
Use a Beta distribution model to determine whether two propotions are significantly different.
- Parameters:
a1 (positive int) – Number of items in category 0, group 1
b1 (positive int) – Number of items in category 1, group 1
a2 (positive int) – Number of items in category 0, group 2
b2 (positive int) – Number of items in category 1, group 2
- Returns:
mudelta (float) – When positive: The probability of being in the second category is larger for the second group, compared to the first.
p (float) – Two-tailed p-value for significant diffierence in rates between the groups.