neurotools.obsolete.models.izh module

Izhikevich model

neurotools.obsolete.models.izh.dv_izh(u, v, I)[source]

Time derivative for $v$ variable in Izhikevich model

Parameters:
  • u (float) – current state of u variable

  • v (float) – current state of v variable

  • I (float) – applied current

Returns:

dv – dv/dt

Return type:

float

neurotools.obsolete.models.izh.du_izh(u, v, a, b)[source]

Time derivative for $u$ variable in Izhikevich model

Parameters:
  • u (float) – current state of u variable

  • v (float) – current state of v variable

  • a (float) – a parameter from Izhikevich model

  • b (float) – b parameter from Izhikevich model

Returns:

du – du/dt

Return type:

float

neurotools.obsolete.models.izh.update_izh(u, v, a, b, c, d, I, dt=1)[source]

Izhikevich neuron state update

Parameters:
  • u (float) – current state of u variable

  • v (float) – current state of v variable

  • a (float) – a parameter from Izhikevich model

  • b (float) – b parameter from Izhikevich model

  • c (float) – c parameter from Izhikevich model

  • d (float) – d parameter from Izhikevich model

  • I (float) – applied current

  • dt (float, default 1.0) – Time step

Returns:

  • u (float) – Updated u variable

  • v (float) – Updated v variable

  • y (float) – If a spike occurs, y will be a unit-volume probability mass i.e. 1.0/dt

neurotools.obsolete.models.izh.sim_izh(a, b, c, d, signal, dt=1)[source]

Simulate response of Izhikevich neuron model to signal

Parameters:
  • a (float) – a parameter from Izhikevich model

  • b (float) – b parameter from Izhikevich model

  • c (float) – c parameter from Izhikevich model

  • d (float) – d parameter from Izhikevich model

  • signal (np.array) – applied current over time

  • dt (float, default 1.0) – Time step

Returns:

state – Ntimes x 3 array of model state. First column is u variable Second column is v variable Third column is spiking density

Return type:

array