neurotools.obsolete.gpu.cu.statistics module

Contains statistical routines. All routines assume float32 arrays as the underlying datatype.

neurotools.obsolete.gpu.cu.statistics.ElementwiseKernel(*args, **kwargs)[source]
neurotools.obsolete.gpu.cu.statistics.gpusdv(a, b)

Computes elementwise squared deviation from a constant value. For example, gpusdev(data,c) will return the squared distance of all elements in data from c. This is a slightly better way of writing (data-c)**2 as it avoids an intermediate array creation and copy

neurotools.obsolete.gpu.cu.statistics.gpumean(v)

Computes the population mean of a float vector on the GPU

neurotools.obsolete.gpu.cu.statistics.gpucenter(v)

Mean-centers a vector on the GPU

neurotools.obsolete.gpu.cu.statistics.gpusqmag(v)

Computes the squared magnitude of a vector

neurotools.obsolete.gpu.cu.statistics.gpumag(x)

Computes the magnitude of a vector

neurotools.obsolete.gpu.cu.statistics.gpusqdev(v)

Computes the sum of squared deviation from mean for a vector

neurotools.obsolete.gpu.cu.statistics.gpuvar(v)

Computes the population variance of a vector

neurotools.obsolete.gpu.cu.statistics.gpusvar(v)

Computes the sample variance of a vector

neurotools.obsolete.gpu.cu.statistics.gpustd(x)

Computes the population standard deviation of a vector

neurotools.obsolete.gpu.cu.statistics.gpusstd(x)

Computes the sample standard deviation of a vector

neurotools.obsolete.gpu.cu.statistics.gpucov(a, b)

Computes the covariance of two vectors.

neurotools.obsolete.gpu.cu.statistics.gpucorr(a, b)

Computes the correlation coefficient between two vectors

neurotools.obsolete.gpu.cu.statistics.gpuscov(a, b)

Computes the sample covariance of two vectors

neurotools.obsolete.gpu.cu.statistics.gpuscorr(a, b)

Computes the sample correlation of two vectors

neurotools.obsolete.gpu.cu.statistics.gpusem(v)

Computes the standard error of mean for a vector

neurotools.obsolete.gpu.cu.statistics.gpuzscore(v)

Computes the z-scores for a vector using sample statistics

neurotools.obsolete.gpu.cu.statistics.gpubarlinedata(xdata, ydata, bins, minval=None, maxval=None)[source]
neurotools.obsolete.gpu.cu.statistics.sebarline(datasets, bins, min=None, max=None, lx='', ly='', title='')[source]
neurotools.obsolete.gpu.cu.statistics.sebarline2(datasets, lx='', ly='', title='')[source]
neurotools.obsolete.gpu.cu.statistics.gpuhistogram(xdata, ydata, bins, minval=None, maxval=None)[source]
neurotools.obsolete.gpu.cu.statistics.sdgpubarlinedata(xdata, ydata, bins, minval=None, maxval=None)[source]
neurotools.obsolete.gpu.cu.statistics.sdbarline(datasets, bins, min=None, max=None, lx='', ly='', title='')[source]
neurotools.obsolete.gpu.cu.statistics.sdbarline2(datasets, lx='', ly='', title='')[source]
neurotools.obsolete.gpu.cu.statistics.gpubin_core(data, size)[source]
neurotools.obsolete.gpu.cu.statistics.gpubin(size)
neurotools.obsolete.gpu.cu.statistics.gpu_histogram(data, min, max, bins)[source]
neurotools.obsolete.gpu.cu.statistics.sprinkle(spikes, DT)[source]