neurotools.obsolete.gpu.cu.matrix module
- neurotools.obsolete.gpu.cu.matrix.gputranspose(rows, cols)
Prepares a map kernel that transposed a row-major packed float matrix Eg: gputranspose(rows,cols)(data) will transpose data. Creates a new, memoized, kernel for each array dimension
- neurotools.obsolete.gpu.cu.matrix.transpose(m)
This is a list datatype wrapper to gputranspose. It accepts a matrix as a list of lists, and returns the same form
- class neurotools.obsolete.gpu.cu.matrix.GPUMatrix(data, rows, cols)[source]
Bases:
object
This is a shallow wrapper of GPUArray. A GPUMatrix is simply a GPUArray containing the matrix in row major order, as well as the dimensions of the matrix. GPUArray might even already have this functionality
- neurotools.obsolete.gpu.cu.matrix.matkern(source)[source]
This is a higher order function to simplify row-parallelized matrix kernel creation. We assume that we have a kernel that accepts data, cols. We create a function that accepts data,cols, as either two arguments or a single tuple. We execute the kernel, assuming that the return data is placed in the argument array. We return a tuple of the now modified data and the row length
- neurotools.obsolete.gpu.cu.matrix.matscalar(source)[source]
For creation of matrix kernels that compute scalar results. Accepts source. Returns a function from (data,cols)->(scalars).
- neurotools.obsolete.gpu.cu.matrix.convertToZScores(data, cols=None)
Equivalent to mean centering then normalization. This function does not return a value, but replaces the contents of the given data.
- neurotools.obsolete.gpu.cu.matrix.meanCenter(data, cols=None)
This will subtract the mean from each row. This function modifies its arguments, replacing them with return values
- neurotools.obsolete.gpu.cu.matrix.normalize(data, cols=None)
This will normalize each row of a matrix on parallel on the GPU
- neurotools.obsolete.gpu.cu.matrix.magnitudes(data, cols=None)
This will return the magnitude of each row
- neurotools.obsolete.gpu.cu.matrix.sums(data, cols=None)
This will return the sum of each row
- neurotools.obsolete.gpu.cu.matrix.means(data, cols=None)
This will return the population mean for each row
- neurotools.obsolete.gpu.cu.matrix.variances(data, cols=None)
This will return the population variance for each row
- neurotools.obsolete.gpu.cu.matrix.samplevariances(data, cols=None)
This will return the sample variance for each row
- neurotools.obsolete.gpu.cu.matrix.stds(x)
This will return the sample standard deviation for each row
- neurotools.obsolete.gpu.cu.matrix.dotproducts(data, cols=None)
Also known as : a matrix times its transpose. Input data is not altered
- neurotools.obsolete.gpu.cu.matrix.correlation(x)
Computes mean centered correlation matrix from a list of vectors
- neurotools.obsolete.gpu.cu.matrix.correlation2(x)
Computes the uncentered correlation matrix from a list of vectors