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This will be quick
No formal derivation

No proofs
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• Non-GLM conditional intensity model
• KS test and time rescaling
• Residual analysis
• Model selection
• Decoding
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• Maximum likelihood estimation
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If there is time:
• Closed form approximation, double crossvalidation,
regularization, and regularization paths
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Linear model / multiple linear regression

y = βo + β1 · x1 + β2 · x2 + ... = βo +

N∑
i=1

xiβi = XB + βo

• y: response/dependent variable being modeled (when
multivariate, often a column vector by convention)

• X: “design matrix” matrix of observations. Conventionally,
each row is a realization and each column is a feature/variable

• B: Coefficient or parameter vector
• βo: Constant term.
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Nonlinear features OK

• Features (x1, x2, ...) can be any function of recorded data.
E.g. the following model is common for phase/direction tuning
(used in eqn. 10 in Truccolo et al. 2005)

y = βo +A · cos(ϕ− ϕo)

• A: amplitude parameter
• ϕ: the observed phase or direction
• ϕo: preferred phase parameter
• Can be written in a form that is linear in parameters
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Nonlinear features OK

• Features (x1, x2, ...) can be any function of recorded data.
E.g. the following model is common for phase/direction tuning
(used in eqn. 10 in Truccolo et al. 2005)

y = βo +A · cos(ϕ− ϕo)
• A: amplitude parameter
• ϕ: the observed phase or direction
• ϕo: preferred phase parameter
• Can be written in a form that is linear in parameters

y = βo + β1cos(ϕ) + β2sin(ϕ)
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Point process model:

• Truccolo et al. 2005:
• “neural spike trains form a sequence of discrete events or point
process time series”

• “standard linear or nonlinear regression methods are designed
for analysis of continuous-valued data and not point process
observations”

• Smoothing or binning can alter the structure
• GLM Point-process models directly model spike trains without
these drawbacks
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GLM point process models

• Consider a homogeneous Poisson process with rate λ.
• expected # observations in time window ∆ is λ∆

• For inhomogeneous Poisson process rate varies time λ(t)

• # observations from t to t+ ∆ is
∫ t+∆

t
λ(t)dt

• λ(t) is called the "intensity function"
• In a point process model we predict conditional intensity
based on measured covariates λ(t|X(t))

• The Poisson GLM point process framework models conditional
intensity functions of the form
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GLM point process models

• Consider a homogeneous Poisson process with rate λ.
• expected # observations in time window ∆ is λ∆

• For inhomogeneous Poisson process rate varies time λ(t)

• # observations from t to t+ ∆ is
∫ t+∆

t
λ(t)dt

• λ(t) is called the "intensity function"
• In a point process model we predict conditional intensity
based on measured covariates λ(t|X(t))

• The Poisson GLM point process framework models conditional
intensity functions of the form

λ(t|X(t)) = exp {µ+XB}
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Fitting GLM point-process models
• In practice spiking time series are discretized at some
resolution ∆

• Predict sequence of spike counts yt = (y1, y2, ...)
• With a discrete approximation of the conditional intensity
λt = (λ1, λ2, ...)

• Based on discretely sampled covariates Xt = (x1, x2, ...)

• Typically ∆ chosen such that yt ∈ {0, 1}, (larger bins can be
used, making it a count process)

• Model estimated by finding parameters B that maximize the
likelihood of the observed spikes y and covariates X

• Can be fit with iteratively reweighted least squares
• MATLAB glmfit

mathworks.com/help/stats/glmfit.htmlt

• Python scikits.statsmodels.GLM
statsmodels.sourceforge.net/stable/glm.html

• I typically use gradient descent

http://www.mathworks.com/help/stats/glmfit.html
http://statsmodels.sourceforge.net/stable/glm.html
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GLM point process model for single unit spiking with
ensemble history

log[λ(t|X(t))∆] = µ
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GLM point process model for single unit spiking with
ensemble history

log[λ(t|X(t))∆] = µ

+ intrinsic history
+ ensemble history
+ extrinsic covariates
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Intrinsic history filter
• Theoretically, model the whole history

λt(t|θ, yt−1, yt−2, ..., y1) ∝ exp

{
t∑

τ=1

γτyt−τ

}

• In practice: use finite history duration with basis functions (a
form of regularization: enforce smoothness and reduce
parameters)

λt(t|θ, yt−τ :t−1) ∝ exp {B · yt−τ :t−1}
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Ensemble history filter

• Ensemble history filters are treated similarly to intrinsic history

• Typically use fewer basis functions than for the intrinsic history,
otherwise the number of parameters becomes prohibitive

• If using regularization, typically each neuron’s parameters are
penalized as a group (sparse connectivity prior)

• More on intrinsic history and network connectivity next week
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Extrinsic covariates: kinematics

• Truccolo et al. 2005 explore a 2D velocity tuning model based
on the x and y components of hand velocity.

• Hatsopoulos et al. 2007 use normalized, extended velocity
trajectories "pathlets"
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Maximum likelihood approach to model fitting

• Let yt be an inhomogeneous Poisson with time varying rate λt

• The probability of observing k spikes in a time interval ∆ is
Poisson distributed

Pr(yt = k) ≈ (∆λt)
yt e

−∆λt

yt!

• Assuming conditional independence, the probability of
observing an entire sequence yt is

Pr(y|λ) =

T∏
t=1

(∆λt)
yte−∆λt/yt!
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Minimize the negative log-likelihood

• Fit the model by finding the parameters µ, B that maximize
the likelihood L(µ,B|y) = Pr(y|µ,B) of the observations1

Pr(y|µ,B) =

T∏
t=1

λytt e
−λt/yt!

λt = exp(µ+XtB)

• In practice, minimize the negative log-likelihood, which, if
∆ is small s.t. yt is always 0 or 1

− lnL(µ,B|y) =

T∑
t=1

[λt − yt ln(λt)]

1Note: writing λt here instead of ∆λt, i.e. let ∆ = 1. In this case, parameters µ and B will take units of ∆
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Gradient of the negative log-likelihood
• Let f(µ,B) be the negative log likelihood

f(µ,B) = − lnL(µ,B|y) =

T∑
t=1

[λt − yt ln(λt)]

• Substitute our model λt = eµ+XtB

f(µ,B) =

T∑
t=1

[eµ+XtB − yt(µ+XtB)]

• The partial derivatives, w.r.t µ and (β1, β2, ...) = B are:

∂f

∂µ
=

T∑
t=1

[eµ+XtB − yt]

∂f

∂βi
=

T∑
t=1

[Xt,ie
µ+XtB − ytXt,i]
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• Substitute our model λt = eµ+XtB

f(µ,B) =

T∑
t=1

[eµ+XtB − yt(µ+XtB)]

• The partial derivatives, w.r.t µ and (β1, β2, ...) = B are:

∂f

∂µ
=

T∑
t=1

[eµ+XtB − yt]

∂f

∂βi
=

T∑
t=1

[Xt,ie
µ+XtB − ytXt,i]
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Regularized GLM

• Cross-validation is necessary to assess over-fitting:
• data should be separated into training and testing sets

• For larger number of parameters, the model will overfit:
• regularization is necessary.

• Regularization can be incorporated by adding a penalty term
to the negative log-likelihood function

argmin
µ,B

{Penalty(B)− lnL(µ,B|y)}

• Conjugate gradient solvers are useful here
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Regularized GLM: L1 and L2
• L2 penalty: Parameters penalized by their squared magnitudes

α

N∑
i=1

β2
i

• Equivalent to a Gaussian prior on parameters
• Can be solved with gradient descent

• L1 penalty: Parameters penalized by their absolute magnitude

α

N∑
i=1

|βi|

• Promotes βi = 0, useful for finding sparse solutions
• Discontinuous gradient at βi = 0 percludes gradient descent.
• Can use coordinate descent (although we ran into convergence
issues?)
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Regularized GLM: L1 approximation and L0
•
√
x2 + ε : Smooth approximation of L1 penalty that is

suitable for gradient descent2

α

N∑
i=1

√
β2
i + ε

• ε is chosen to be small, but strictly positive
• L0 penalty: Constant penalty if a parameter is nonzero

α

N∑
i=1

δ(βi 6= 0)

• Computationally infeasible
• Greedy algorithms are a good (the best polynomial time?)
approximation

2Called "Charbonnier penalty" in the computer vision literature (Charbonnier et al. 1994)



Introduction GLM point process for spike trains Truccolo et al. 2005 figures and equations

Regularized GLM: L1 approximation and L0
•
√
x2 + ε : Smooth approximation of L1 penalty that is

suitable for gradient descent2

α

N∑
i=1

√
β2
i + ε

• ε is chosen to be small, but strictly positive

• L0 penalty: Constant penalty if a parameter is nonzero

α

N∑
i=1

δ(βi 6= 0)

• Computationally infeasible
• Greedy algorithms are a good (the best polynomial time?)
approximation

2Called "Charbonnier penalty" in the computer vision literature (Charbonnier et al. 1994)



Introduction GLM point process for spike trains Truccolo et al. 2005 figures and equations

Regularized GLM: L1 approximation and L0
•
√
x2 + ε : Smooth approximation of L1 penalty that is

suitable for gradient descent2

α

N∑
i=1

√
β2
i + ε

• ε is chosen to be small, but strictly positive
• L0 penalty: Constant penalty if a parameter is nonzero

α

N∑
i=1

δ(βi 6= 0)

• Computationally infeasible
• Greedy algorithms are a good (the best polynomial time?)
approximation

2Called "Charbonnier penalty" in the computer vision literature (Charbonnier et al. 1994)



Introduction GLM point process for spike trains Truccolo et al. 2005 figures and equations

Regularized GLM: L1 approximation and L0
•
√
x2 + ε : Smooth approximation of L1 penalty that is

suitable for gradient descent2

α

N∑
i=1

√
β2
i + ε

• ε is chosen to be small, but strictly positive
• L0 penalty: Constant penalty if a parameter is nonzero

α

N∑
i=1

δ(βi 6= 0)

• Computationally infeasible

• Greedy algorithms are a good (the best polynomial time?)
approximation

2Called "Charbonnier penalty" in the computer vision literature (Charbonnier et al. 1994)



Introduction GLM point process for spike trains Truccolo et al. 2005 figures and equations

Regularized GLM: L1 approximation and L0
•
√
x2 + ε : Smooth approximation of L1 penalty that is

suitable for gradient descent2

α

N∑
i=1

√
β2
i + ε

• ε is chosen to be small, but strictly positive
• L0 penalty: Constant penalty if a parameter is nonzero

α

N∑
i=1

δ(βi 6= 0)

• Computationally infeasible
• Greedy algorithms are a good (the best polynomial time?)
approximation

2Called "Charbonnier penalty" in the computer vision literature (Charbonnier et al. 1994)



Introduction GLM point process for spike trains Truccolo et al. 2005 figures and equations

Regularized GLM: Group lasso

• Concept: penalize groups of parameters with the L1 norm

α

N∑
i=1

√√√√ K∑
j=1

β2
i,j

• Useful for penalizing ensemble filters as a group for each
neuron

• Derivative is undefined at
√∑K

j=1 β
2
i,j = 0

• Roth & Fischer 20083 discuss an efficient fitting procedure

3Roth, Volker, and Bernd Fischer. "The group-lasso for generalized linear models: uniqueness of solutions and
efficient algorithms." Proceedings of the 25th international conference on Machine learning. ACM, 2008.
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Two-layer crossvalidation

• The strength of regularization α is another free parameter
• Can be fixed in advance or...

• Two-level crossvalidation can be used to estimate α from the
data

• K-fold two-layer crossvalidation results in K2 parameter fitting
steps

• This can get slow on large datasets
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Regularization paths

• Regularization paths:
• When evaluating a range of regularization parameters e.g.
α = (0, 0.1, 1, 20),

• Carry over the model weights µ and β.
• That is, for example, start the parameter tuning for α = 1 with
the µ,B returned from α = 0.1
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Initialization with closed form solution

• Fitting many models using a large amount of data can take a
very long time

• Using an approximation to estimate a good starting location
can give some speedup

• Ramirez, A. D., & Paninski, L. (2014). Fast inference in
generalized linear models via expected log-likelihoods. Journal
of computational neuroscience, 36(2), 215-234.
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Truccolo et al. 2005
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END



Generalized linear model: nonlinearity on the response
variable

F (y) = XB



Regularized GLM: Elastic net

• Concept: dynamic trade-off between L1 and L2

• Code crashed pretty hard.



Regularized GLM: Elastic net

• Concept: dynamic trade-off between L1 and L2
• Code crashed pretty hard.


	Introduction
	GLM point process for spike trains
	 
	Regularization

	Truccolo et al. 2005 figures and equations
	 Eqn
	 FIG
	 APPENDIX

	Appendix

