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Latent variable models are statistical models where some random quantities are not directly measured.

Learning goals:
1 What are some uses of latent-variable models?

2 General ideas used to design inference algorithms:
▶ What is expectation maximization?
▶ What is variational Bayes?

3 What is a variational autoencoder?
▶ What is amortized inference?
▶ How can we train them via backpropagation?



Statistical models with latent variables

Fully-observed model
▶ Observe (𝒙,𝒚) and learn 𝒙 → 𝒚

Latent-variable model
▶ Explain variation in observed 𝒙 using latent causes 𝒛

𝒙 P𝒚 |𝒙 𝒚

Independent
Variables

Dependent
Variables

P𝒛 𝑧 P𝒙 |𝒛 𝒙

Prior Latent
Variables

Observation
Model

Observed
Variables

Use a latent variable model:
Measurements are indirect observations (of an underlying simpler structure)
▶ Capture complicated interactions using a few latent variables and explore high-dimensional data

Generative: ≈ probability of 𝒙 in training data P𝒙
▶ Draw new samples similar to the training data
▶ Get probability of a scenario given the model and detect outliers or surprising inputs
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Latent variable models are statistical models where some random quantities are not directly measured.

They can be used, for example, to infer missing data, explain complicated relationships with simpler ones,
learn the distribution of the training data.



Some types of latent-variable models

Hidden Markov model

𝒛1 𝒛2 𝒛3

𝒙1 𝒙2 𝒙3

… …

Factor Analysis

𝑥2𝑥1 𝑥3

𝑧1 𝑧2

Deep Belief Network

𝑥2𝑥1 𝑥3

ℎ1,1 ℎ1,2

ℎ2,1 ℎ2,2 ℎ2,3

ℎ3,1 ℎ3,2

Deep generative model

𝑥2𝑥1 𝑥3

𝑧1 𝑧2

Observations

Nonlinear
perceptron

Latent
representation

Part of Generative Adversarial Networks
and Variational Autoencoders (and others)
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Latent variable models are statistical models where some random quantities are not directly measured.

They can be used, for example, to infer missing data, explain complicated relationships with simpler ones,
learn the distribution of the training data.

They encompass a wide variety of problems: filtering, state inference, generative models, unsupervised
learning, to name a few examples.



Concrete Example: A generative model with a Gaussian latent space

. . .𝑥1 𝑥𝑀

𝜇1 𝜇𝑀. . .

𝜎2

𝑧1 𝑧𝑁. . .

𝝁𝒙 = 𝑓𝜽 (𝒛)

𝝁𝑧, 𝚺𝑧

Observed

Predicted
means

Latent

Prior P𝒛

Noise

“Decoder”

Gaussian prior on latents P𝒛 = N(𝝁𝑧 , 𝚺𝑧).
▶ Keep it simple: 𝝁𝑧=0, 𝚺𝑧=𝑰𝑁

“Decoder” generates mean 𝜇𝑖 = [𝑓𝜽 (𝒛)]𝑖 for each 𝑥𝑖

Model 𝒙 as conditionally Gaussian given 𝒛:
▶ P𝒙 |𝒛

𝜽 = N[𝑓𝜽 (𝒛), 𝜎2𝑰𝑀 ]

Recall
▶ Marginal probability: P𝒙 =

∫
𝑑𝒛 P𝒙,𝒛

▶ Conditional probability chain rule: P𝒙,𝒛 = P𝒙 |𝒛P𝒛

P𝒙
𝜽 =

∫
𝑑𝒛 P𝒙,𝒛

𝜽 =
∫
𝑑𝒛 P𝒙 |𝒛

𝜽 P𝒛

Excellent: We now have a generative model P𝒙 ≈ P𝒙𝜽
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How do I train a latent variable model?

Given a set of (independent) observations 𝒳 = {𝒙1, .., 𝒙𝐿}, maximize average log-likelihood

𝜽 ← argmax
𝜽

⟨lnP𝒙
𝜽 ⟩𝒙∈X

Easier said than done: We need to integrate P𝒙
𝜽 =

∫
𝑑𝒛 P𝒙 |𝒛

𝜽 P𝒛
▶ This may lack a closed-form solution and be impractical to sample

Many methods for estimating latent states and parameters
▶ Sample from the latent states (and/or unknown parameters)
▶ Message-passing: update parts of a larger model based on dependencies between variables
▶ More: Bayesian and assumed-density filtering, contrastive learning, Viterbi and dynamic programming

Today, briefly: Expectation maximization; Variational Bayes;
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Expectation Maximization
Know 𝒛 and 𝒙? Get 𝜽 via supervised learning

Know 𝜽 , 𝒙 , P𝒛? Get P𝒛 |𝒙
𝜽 via Bayes’ rule

Choose initial 𝜽 and iterate:
▶ Expectation:

Given 𝜽 , get P𝒛 |𝒙
𝜽

Loss L𝜽 (𝜽 ): average lnP𝒙 |𝒛
𝜽 over P𝒛 |𝒙

𝜽

▶ Maximization:
Adjust 𝜽 to maximize L𝜽 (𝜽 )

Converges to local optimum

Variational Bayes
Calculating P𝒛 |𝒙

𝜽 may be intractable

Approximate P𝒛 |𝒙
𝜽 with simpler Q𝒛 |𝒙

𝝓 (parameters 𝝓)

Adjust 𝝓 to maximize Evidence Lower Bound (ELBO)

L(𝜽 , 𝝓) := ⟨lnP𝒙 |𝒛
𝜽 ⟩Q𝒛 |𝒙

𝝓 + ⟨lnP𝒛⟩Q𝒛 |𝒙
𝝓 + H[Q𝒛 |𝒙

𝝓 ]

▶ ⟨lnP𝒙 |𝒛𝜽 ⟩Q : Choose 𝒛 consistent with 𝒙

▶ ⟨lnP𝒛⟩Q : Keep Q𝒛 |𝒙
𝝓 close to prior

▶ H[Q𝒛 |𝒙
𝝓 ]: Maximize entropy

In the Homework:
▶ Show: L(𝜽 , 𝝓) ≤ lnP𝒙

𝜽

▶ Show: maximizing L(𝜽 , 𝝓) in 𝝓 → tighter bound



Latent variable models are statistical models where some random quantities are not directly measured.

They can be used, for example, to infer missing data, explain complicated relationships with simpler ones,
learn the distribution of the training data.

They encompass a wide variety of problems: filtering, state inference, generative models, unsupervised
learning, to name a few examples.

It can be hard to directly optimize the likelihood of a latent variable model. There are many inference
approaches and approximations.

Expectation maximization and variational Bayes try to approximate the maximum-likelihood parameters
while learning distributions over latent states.



The “variational” in variational autoencoders comes from the fact that we use variational Bayes to train
them. Where does the “autoencoder” come from?



Variational Autoencoders: Amortized inference

Optimizing Q𝒛 |𝒙
𝝓 for each 𝒙 is slow

Amortized inference:
▶ Predict 𝝓𝒛 |𝒙 = {𝝁𝒛 |𝒙 ,𝝈𝒛 |𝒙 } from 𝒙

Train neural network to map 𝑔 : 𝒙 → 𝝓

▶ Evaluate lnP𝒙 |𝒛
𝜽

Sample 𝑧 ← 𝝃𝝈𝒛 |𝒙 + 𝝁𝒛 |𝒙 where 𝝃 ∼ N[0, 𝑰𝑁 ]
Compute lnP𝒙 |𝒛

𝜽

▶ How can I train this⁈ It is stochastic?

Reparameterization trick:
▶ Freeze 𝝃 : no more random quantities
▶ Backpropagation:

Tune 𝑓𝜽 to increase log-likelihood
Tune 𝑔𝜽 to improve 𝝓𝒛 |𝒙

Use stochastic gradient descent (and many tricks)

. . .𝜇1 𝜇𝑀

𝑥1 𝑥𝑀. . .𝜎2

𝑧1 𝑧𝑁. . .

𝝁𝒙 = 𝑓𝜽 (𝒛)
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Latent variable models are statistical models where some random quantities are not directly measured.

They can be used, for example, to infer missing data, explain complicated relationships with simpler ones,
learn the distribution of the training data.

They encompass a wide variety of problems: filtering, state inference, generative models, unsupervised
learning, to name a few examples.

It can be hard to directly optimize the likelihood of a latent variable model. There are many inference
approaches and approximations.

Expectation maximization and variational Bayes learn and approximate maximum-likelihood parameters
while learning distributions over latent states

Variational autoencoders are a type of deep latent-variable model that maps latent states to observations
using a decoding network, and computes approximate distributions over latent states using an encoding
network





Appendix



“Zero-Shot Text-to-Image Generation”
Ramesh et al. (2021)

openai.com/blog/dall-e



Example: Gaussian mixture model
▶ E: Get Pr that 𝒙 comes from each cluster
▶ M: Use as weights to update 𝜇, Σ for all clusters
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