Self-Healing Neural Codes Changing to stay the same

M. Rule

A job talk for lecturer in machine learning at the University of Edinburgh School of Informatics 20th June, 2022

How do real neurons learn?

The brain is plastic. The brain remembers.

Driscoll & al. 2017 experiments:

▶ Image neural population activity over time in a fixed virtual-reality task

Driscoll & al. 2017 experiments:

- ▶ Image neural population activity over time in a fixed virtual-reality task
- ▶ Posterior Parietal Cortex (PPC): Association area required for task

Driscoll & al. 2017 experiments:

- ▶ Image neural population activity over time in a fixed virtual-reality task
- ▶ Posterior Parietal Cortex (PPC): Association area required for task
- ▶ Long-term recording at steady state: task performed at expert level

Driscoll & al. 2017 experiments:

- ▶ Image neural population activity over time in a fixed virtual-reality task
- ▶ Posterior Parietal Cortex (PPC): Association area required for task
- ▶ Long-term recording at steady state: task performed at expert level
- ▶ No change in performance or behavior

Driscoll & al. 2017 experiments:

- ▶ Image neural population activity over time in a fixed virtual-reality task
- ▶ Posterior Parietal Cortex (PPC): Association area required for task
- \blacktriangleright Long-term recording at steady state: task performed at expert level
- \blacktriangleright No change in performance or behavior
- ▶ Neural population code "drifts"

… Neurons' roles change over time, even in representations supporting fixed, habitual tasks.

Rule, M. E., O'Leary, T., and Harvey, C. D. (2019). Causes and consequences of representational drift. Current opinion in neurobiology, 58:141–147

Ubiquitous, not uniform:

- ▶ **Hippocampus:**^{1,2} Fast turnover; Episodic memory?
- ▶ **Olfactory**:³ Experience-dependent: A code for novelty?
- ▶ Visual⁴, Prefrontal:⁵: More stable near periphery?

¹Ziv & al. (2013); ²Levy & al. (2021); ³Schoonover, Fink & al. (2020); ⁴Deitch & al. (2020); ⁵Singh & al. (2019);

- Ubiquitous, not uniform:
	- ▶ **Hippocampus:**^{1,2} Fast turnover; Episodic memory?
	- ▶ **Olfactory**:³ Experience-dependent: A code for novelty?
	- ▶ Visual⁴, Prefrontal:⁵: More stable near periphery?

¹Ziv & al. (2013); ²Levy & al. (2021); ³Schoonover, Fink & al. (2020); 4 Deitch & al. (2020); 5 Singh & al. (2019);

What can drift tell us about learning?

- \blacktriangleright Learning in over-parameterized networks?
- \blacktriangleright Strategies for rapid learning?
- ▶ Representations in large generative models?
- ▶ Avoiding catastrophic forgetting in continual learning?

Rule, M. E., O'Leary, T., and Harvey, C. D. (2019). Causes and consequences of representational drift. Current opinion in neurobiology, 58:141–147

- Ubiquitous, not uniform:
	- ▶ **Hippocampus:**^{1,2} Fast turnover; Episodic memory?
	- ▶ **Olfactory**:³ Experience-dependent: A code for novelty?
	- ▶ Visual⁴, Prefrontal:⁵: More stable near periphery?

¹Ziv & al. (2013); ²Levy & al. (2021); ³Schoonover, Fink & al. (2020); 4 Deitch & al. (2020); 5 Singh & al. (2019);

What can drift tell us about learning?

- \blacktriangleright Learning in over-parameterized networks?
- \blacktriangleright Strategies for rapid learning?
- ▶ Representations in large generative models?
- ▶ Avoiding catastrophic forgetting in continual learning?

Rule, M. E., O'Leary, T., and Harvey, C. D. (2019). Causes and consequences of representational drift. Current opinion in neurobiology, 58:141–147

How does the brain achieve stable behavior despite internal change? Could other neurons read a code like this?

How does the brain achieve stable behavior despite internal change?

Could other neurons read a code like this?

Proposition:

- ▶ Homeostasis stabilizes single neuron properties **and learned associations**
- ▶ Hebbian plasticity maintains learned representation **by re-enforcing existing correlation** structure

Supported by LEVERHULME early-career fellowship

Unstable code, stable latent structure: A problem for long-term stability?

Model drift: Random features + drifting weights + homeostatic normalization

†**Homeostasis:** Cannon & Miller (2017, 19),

Simulated drift: which is data, which is model?

Simulated drift: which is data, which is model?

Simulated drift: which is data, which is model?

This one is model

Is a stable readout possible?

A readout population learns to decode location from an encoding population that drifts. Can it preserve this readout as the encoding changes?

Rule, M. E., Loback, A. R., Raman, D. V., Driscoll, L. N., Harvey, C. D., and O'Leary, T. (2020). Stable task information from an unstable neural population. Elife, 9:e51121

Rule, M. E., Loback, A. R., Raman, D. V., Driscoll, L. N., Harvey, C. D., and O'Leary, T. (2020). Stable task information from an unstable neural population. Elife, 9:e51121

 \blacktriangleright Most drift looks like trial-to-trial variability on slow time-scales

Yes, with some ongoing learning

Rule, M. E., Loback, A. R., Raman, D. V., Driscoll, L. N., Harvey, C. D., and O'Leary, T. (2020). Stable task information from an unstable neural population. Elife, 9:e51121

- ▶ Most drift looks like trial-to-trial variability on slow time-scales
- \blacktriangleright Change in the underlying representation is gradual
	- Only small weight changes needed to stabilize decoding

Can we track a drifting code for continuous variables without an external reference?

Fixed weights: Drift attenuates excitatory drive

Readout neurons require a specific conjunction of inputs to fire. Random drift destroys this excitatory drift, but doesn't change tuning.

Sensitivity homeostasis: Tuning is robust to modest change

Homeostatically scaling up weights stabilizes activity against small amounts of drift, since the input is somewhat redundant.

Hebbian homeostasis: Use the neuron's own output as a training signal

Using the neuron's own output to adjust weights stabilizes localized, bump-like tuning. This uses unsupervised Hebbian learning to homeostatically restore activity as drift destroys excitatory drive.

Use recurrent predictions as a learning signal

Hebbian Homeostasis provides stability, but tuning decays toward high-variance components†

Use recurrent predictions as a learning signal

Hebbian Homeostasis provides stability, but tuning decays toward high-variance components† **Competition** between readout cells stabilizes further‡

Use recurrent predictions as a learning signal

Hebbian Homeostasis provides stability, but tuning decays toward high-variance components† **Competition** between readout cells stabilizes further‡

Recurrent predictions improve error-correction → long-term stability

Generative model of spikes $y = \{y_1, ..., y_n\}$

- ▶ Latent variables $z = \{z_1, ..., z_n\} \sim P_z$
- \blacktriangleright Observation model P $_{\bm{y} | \bm{z}}$
- \blacktriangleright P_y = \int_{dz} P_{y|z}P_z

Generative model of spikes $\mathbf{y} = \{y_1, ..., y_n\}$

- ▶ Latent variables $z = \{z_1, ..., z_n\} \sim P_z$
- \blacktriangleright Observation model P $_{\bm{y} | \bm{z}}$
- \blacktriangleright P_y = \int_{dz} P_{y|z}P_z

Learn a prior on likely states in latent variables z , and how to map $z \leftrightarrow y$. Save this prior, and use it to repair readouts in the face of drift.

Generative model of spikes $\mathbf{y} = \{y_1, ..., y_n\}$

- ▶ Latent variables $z = \{z_1, ..., z_n\} \sim P_z$
- \blacktriangleright Observation model P $_{\bm{y} | \bm{z}}$
- \blacktriangleright P_y = \int_{dz} P_{y|z}P_z

Learn a prior on likely states in latent variables z , and how to map $z \leftrightarrow y$. Save this prior, and use it to repair readouts in the face of drift.

Specifically, a Log-Gaussian-Poisson model:

$$
P_z = N[0, \Sigma] \propto \exp(-\frac{1}{2}z^{\top} \Sigma^{-1} z)
$$

\n
$$
P_{y_i|z_i} = \text{Poisson}[\lambda_i = e^{z_i}] \propto \lambda_i^{y_i} e^{-\lambda_i}
$$

\n
$$
\ln P_z|_{\mathbf{y}} = \mathbf{y}^{\top} z - \mathbb{1}^{\top} \lambda(z) - \frac{1}{2}z^{\top} \Sigma^{-1} z
$$

Generative model of spikes $\mathbf{y} = \{y_1, ..., y_n\}$

- ▶ Latent variables $z = \{z_1, ..., z_n\} \sim P_z$
- \blacktriangleright Observation model P $_{\bm{y} | \bm{z}}$
- \blacktriangleright P_y = \int_{dz} P_{y|z}P_z

Learn a prior on likely states in latent variables z , and how to map $z \leftrightarrow y$. Save this prior, and use it to repair readouts in the face of drift.

Specifically, a Log-Gaussian-Poisson model:

$$
P_z = N[0, \Sigma] \propto \exp(-\frac{1}{2}z^{\top} \Sigma^{-1} z)
$$

\n
$$
P_{y_i|z_i} = \text{Poisson}[\lambda_i = e^{z_i}] \propto \lambda_i^{y_i} e^{-\lambda_i}
$$

\n
$$
\ln P_z|_{\mathbf{y}} = \mathbf{y}^{\top} z - \mathbb{1}^{\top} \lambda(z) - \frac{1}{2}z^{\top} \Sigma^{-1} z
$$

Error correct: get z most likely to explain \boldsymbol{y}

$$
\dot{z} \propto \nabla_z \ln \mathrm{P}_{z|y} = y - \lambda(z) - \Sigma^{-1} z
$$

Generative model of spikes $\mathbf{y} = \{y_1, ..., y_n\}$

- ▶ Latent variables $z = \{z_1, ..., z_n\} \sim P_z$
- \blacktriangleright Observation model P $_{\bm{y} | \bm{z}}$
- \blacktriangleright P_y = \int_{dz} P_{y|z}P_z

Learn a prior on likely states in latent variables z , and how to map $z \leftrightarrow y$. Save this prior, and use it to repair readouts in the face of drift.

Specifically, a Log-Gaussian-Poisson model:

$$
P_z = N[0, \Sigma] \propto \exp(-\frac{1}{2}z^{\top} \Sigma^{-1} z)
$$

\n
$$
P_{y_i|z_i} = \text{Poisson}[\lambda_i = e^{z_i}] \propto \lambda_i^{y_i} e^{-\lambda_i}
$$

\n
$$
\ln P_z|_{\mathbf{y}} = \mathbf{y}^{\top} z - \mathbb{1}^{\top} \lambda(z) - \frac{1}{2}z^{\top} \Sigma^{-1} z
$$

Error correct: get \boldsymbol{z} most likely to explain \boldsymbol{y}

$$
\dot{z} \propto \nabla_z \ln \mathrm{P}_{z|y} = \boldsymbol{y} - \boldsymbol{\lambda}(z) - \boldsymbol{\Sigma}^{-1} z
$$

Equivalent: $\dot{z} \propto -z + \Sigma [y - \lambda(z)]$

Generative model of spikes $y = \{y_1, ..., y_n\}$

- **►** Latent variables $z = \{z_1, ..., z_n\} \sim P_z$
- \triangleright Observation model $P_{y|z}$
- \blacktriangleright P_y = \int_{dz} P_{y|z}P_z

Learn a prior on likely states in latent variables z , and how to map $z \leftrightarrow y$. Save this prior, and use it to repair readouts in the face of drift.

Specifically, a Log-Gaussian-Poisson model:

$$
P_z = N[0, \Sigma] \propto \exp(-\frac{1}{2}z^{\top} \Sigma^{-1} z)
$$

\n
$$
P_{y_i|z_i} = \text{Poisson}[\lambda_i = e^{z_i}] \propto \lambda_i^{y_i} e^{-\lambda_i}
$$

\n
$$
\ln P_z|_{\mathbf{y}} = \mathbf{y}^{\top} z - \mathbb{1}^{\top} \lambda(z) - \frac{1}{2}z^{\top} \Sigma^{-1} z
$$

Error correct: get z most likely to explain \boldsymbol{y}

$$
\dot{z} \propto \nabla_z \ln \mathsf{P}_{z|y} = y - \lambda(z) - \Sigma^{-1} z
$$

Equivalent: $\dot{z} \propto -z + \Sigma [y - \lambda(z)]$

Predictions $\lambda(z)$ cancel inputs \boldsymbol{y} via inhibition, through recurrent weights Σ : A rate network, but not quite physiological¹.

Generative model of spikes $y = \{y_1, ..., y_n\}$

- **►** Latent variables $z = \{z_1, ..., z_n\} \sim P_z$
- \triangleright Observation model $P_{y|z}$
- \blacktriangleright P_y = \int_{dz} P_{y|z}P_z

Learn a prior on likely states in latent variables z , and how to map $z \leftrightarrow y$. Save this prior, and use it to repair readouts in the face of drift.

Specifically, a Log-Gaussian-Poisson model:

$$
P_z = N[0, \Sigma] \propto \exp(-\frac{1}{2}z^{\top} \Sigma^{-1} z)
$$

\n
$$
P_{y_i|z_i} = \text{Poisson}[\lambda_i = e^{z_i}] \propto \lambda_i^{y_i} e^{-\lambda_i}
$$

\n
$$
\ln P_{z|y} = y^{\top} z - \mathbb{1}^{\top} \lambda(z) - \frac{1}{2}z^{\top} \Sigma^{-1} z
$$

Error correct: get z most likely to explain \boldsymbol{y}

$$
\dot{z} \propto \nabla_z \ln \mathsf{P}_{z|y} = y - \lambda(z) - \Sigma^{-1} z
$$

Equivalent: $\dot{z} \propto -z + \Sigma [y - \lambda(z)]$

Predictions $\lambda(z)$ cancel inputs \boldsymbol{y} via inhibition, through recurrent weights Σ : A rate network, but not quite physiological¹.

These questions remain open: Future work.

Homeostasis and internal predictions confer long-term stability to drift

Homeostasis and internal predictions confer long-term stability to drift

Drift: Unstable code, stable low-D structure

- ▶ Redundant codes have robust readout
- ▶ Monitor drift rate as deviation from homeostatic target

Homeostasis and internal predictions confer long-term stability to drift

Drift: Unstable code, stable low-D structure

- ▶ Redundant codes have robust readout
- ▶ Monitor drift rate as deviation from homeostatic target

Hebbian homeostasis:

- \blacktriangleright Correct errors using an internal training signal
- \blacktriangleright Re-learn tuning as inputs change

Homeostasis and internal predictions confer long-term stability to drift

Drift: Unstable code, stable low-D structure

- ▶ Redundant codes have robust readout
- ▶ Monitor drift rate as deviation from homeostatic target

Hebbian homeostasis:

- \blacktriangleright Correct errors using an internal training signal
- \blacktriangleright Re-learn tuning as inputs change

Recurrent population interactions

▶ Predictions correct errors, provide a stable readout

Background: models of the brain, dynamical and statistical

Undergraduate (*Bard Ermentrout***):** *Neural-field theory*

(Rule et al., 2011) What do neural networks see?

- \blacktriangleright 5-40 Hz flickering light: "phosphene" hallucinations¹
- ▶ To detects edges, visual cortex inhibits nearby inputs.
- \blacktriangleright Inverting input when inhibition arrives excites edges.
- ▶ Rate network with recurrent convolutions

(Heitmann, Rule et al. 2017) Optogenetic stimulation switches cortex from travelling waves to oscillations. ¹Purkinje 1819

Neural-field theory simplifies collective activity for mathematical tractability.

Ph.D. (*Wilson Truccolo***):** *Point-process models*

Collective Dynamics in Primate Motor Cortex

- ▶ **(Rule at al., 2017; 2018)** Before moving, rhythmic spiking encodes movement plans; Phase (re)alignments cause waves across cortex.
- ▶ **(Rule et al., 2015)** When moving, local electric fields relate to past/future movement; Past spiking predicts future variability.

Point-process models infer why neurons spike

Can we combine these? Simplify point-process models, infer neural fields from spikes?

Radians

Phase delay $7¹$

Autoregressive point processes as state-space models

Autoregressive models predict the future from the past.

Coarse graining ("zoom out"):

- \blacktriangleright Reduce the dimension of a large model
- ▶ Linear models with Gaussian noise are simpler to analyze

The probability of a neuron spiking can be predicted as a linear function of past variables, followed by a pointwise nonlinearity.

▶ Not Gaussian, but a Gaussian approximation is ok because predictions average over many spikes.

Process history ∼ Gaussian process; Propagate in time using

- ▶ Moment-matching ("moment closure"), or
- ▶ Locally-quadratic approximation (improved stability)

Rule, M. and Sanguinetti, G. (2018). Autoregressive point processes as latent state-space models: A moment-closure approach to fluctuations and autocorrelations. Neural computation, $30(10)$: $2757\text{--}2780$

Neural field models for latent state inference

Neural field models are simple descriptions of spatiotemporal neural population dynamics.

- ▶ Partial Differential Equations (PDEs) over space and time.
- ▶ # neurons often $\rightarrow \infty$ so that noise averages away.

Model noise in finite populations \rightarrow stochastic PDE.

- \blacktriangleright Use as a latent-variable model of waves in the retina.
- ▶ 3 states: Quiescent, Active, Refractory (compare to Susceptible, Infected, Recovered)
- ▶ Approximate latent distribution as a Gaussian process
- ▶ Estimate from spiking observations via Bayesian filtering

Rule, M. E., Schnoerr, D., Hennig, M. H., and Sanguinetti, G. (2019). Neural field models for latent state inference: Application to large-scale neuronal recordings. PLoS computational biology, 15(11):e1007442

Are binary latent-variable models like the early sensory system?

Restricted Boltzmann Machines (RBMs) are latent-variable models where the observed/latent variables are Bernoulli-distributed conditioned on each other.

Martino Sorbaro was training RBMs to model population spiking activity, kept finding models close to "critical".

Rare stimuli suppressed variability

- ▶ Noise limits bandwidth; Rare stimuli need more bits to encode
- \blacktriangleright Incoming stimuli reduce neural variability¹
- \blacktriangleright Suppression of firing can be informative²

∞-large models: 1/f statistics and rank \approx 1 Fisher information matrix³

- ▶ Implicit prior on model's statistics
- ▶ Finite models also approximate this, given sufficient capacity.
- ▶ ⇒ Easy to measure a weight's importance from local activity

Rule, M. E., Sorbaro, M., and Hennig, M. H. (2020). Optimal encoding in stochastic latent-variable models. Entropy, 22(7):714

¹Churchland & al. (2010), Echeveste & al. (2020), ²Schneidman (2011), ³Schwab (2014)

Can we understand developmental pruning via information theory?

The brain removes neurons during maturation. How does it choose which ones?

Fisher Information Matrix (FIM): amount a model changes when we change its parameters ≈ Importance

▶ Only the diagonal can be detected locally. But, if FIM ≈ rank-1, the diagonal is ok.

In Boltzmann machines, weight FI depends on pre/post activity

- ▶ More pre-post correlations ⇒ more important
- ▶ Prune small weights: **reduced** error, didn't shrink network
- ▶ FI pruning: good performance, shrinks network

Must re-train post-pruning¹

▶ Use homeostasis for "internal" transfer learning during pruning?

Scholl, C., Rule, M. E., and Hennig, M. H. (2021). The information theory of developmental pruning: Optimizing global network architectures using local synaptic rules. PLoS computational biology, 17(10):e1009458

¹Not the best approach for industrial ML: Crowley & al. (2018, 2019)

Gaussian processes for grid cells

"Grid cells" in hippocampal formation fire as a periodic (hexagonal) function of animal's location " x ".

Can we model distribution of firing-rate maps $P_{spike}(x)$ **from limited data?**

- \blacktriangleright (Latent) log-rate function $z(x)$ with Gaussian-process prior $P_{z(x)} = \mathcal{GP}(\mu_0, \Sigma)$
- ▶ Point process observations: $P_{y(x)|z(x)}$ = Poisson $[\lambda(x) = e^{z(x)} dx]$

Covariance kernel for periodic grids

- \blacktriangleright Bessel function; 0th order, 1st kind
- ▶ Multiply by a local window

Gaussian processes for grid cells: Make it faster

Heading-Dependent Weights

 $w = \cos(\phi - \phi_0)^2$

Pandemic lockdown: run everything on an old laptop, 2^{16} dimensions, large datasets, how?

Variational Bayes:

- \blacktriangleright P_{z(x)}| $y(x) \approx Q_{z}(x) = \mathcal{GP}(\mu, \Sigma)$
- \triangleright Σ^{-1} = prior + diagonal update

Fit iteratively

- ► $\hat{\mu} \leftarrow \operatorname*{argmax}_{\mu} \langle \log\text{-prior} + \log\text{-likelihood} \rangle_{Q}^*$
- $\triangleright \Sigma \leftarrow \Sigma_0 + \text{diag}[\langle \lambda(x) \rangle]$

Evaluate on grid

- \blacktriangleright Bin data with interpolation to 'pseudopoints'
- \triangleright Σ_0 becomes a convolution

Low-rank spatial frequency subspace

- ▶ Discard frequencies ≈ 0 in the prior
- ▶ (Fast) Hartley transform gives real-valued components compatible w. Krylov subspace solvers

Probability of Grid Field

Eastward (green) vs
Westward (red)

Northward (blue) vs
Southward (orange)

E

Calcium-imaging brain–machine interface

Closed-loop control in an adaptive system

▶ How does the brain adapt motor control to new circumstances?

Brain–Machine interface

- ▶ Force parietal cortex to act as a motor output
- ▶ **We** control the motor response to neuronal firing

Decode directly from images

- ▶ Calibrate during behavior using stochastic gradient descent
- $\blacktriangleright\,$ Test in closed loop

It works

- \blacktriangleright No substantial tuning drift over five days
- \blacktriangleright Mean-rates of neurons become sensitive to BMI/control context

Sorrell, E., Rule, M. E., and O'Leary, T. (2021). Brain–machine interfaces: Closed-loop control in an adaptive system. Annual Review of Control, Robotics, and Autonomous Systems, 4

Sorrell, E, Wilson, D, Rule, M, Yang, H, Forni, F, Harvey, C, O'Leary, T. (2022) A Calcium Imaging Based Brain-Machine Interface for Virtual Navigation. In preparation.

Normalized weights (forward velocity)

