
Self-Healing Neural Codes
Changing to stay the same

M. Rule

A job talk for lecturer in machine learning at the University of Edinburgh School of Informatics
20th June, 2022



Flicker-phosphene
hallucinations

Collective dynamics
in motor cortex

m
m

Waves in cortex

Mechanistic
Gaussian-process

Point-process models

Parameter
sensitivity

Statistcs of and
representations in

Boltzmann machines

Drift, homeostasis, 
and learning

Retinal waves

Past

University of Edinburgh (I)
Statistical methods

Future

University of 
Edinburgh (II)

Brown University
Ph.D. Neuroscience
Statistical Modelling

Carnegie-Mellon University
B.S. Computer Science
Neural field theory

Present

Control Group
University of Cambridge
Homeostasis, Learning: Closed-loop

Point-process
methods

Biological
Learning

ΔW

yf
τA

×
εσ y

Learning in 
closed-loop

Decoder

VR



Flicker-phosphene
hallucinations

Collective dynamics
in motor cortex

m
m

Waves in cortex

Mechanistic
Gaussian-process

Point-process models

Parameter
sensitivity

Statistcs of and
representations in

Boltzmann machines

Drift, homeostasis, 
and learning

Retinal waves

Past

University of Edinburgh (I)
Statistical methods

Future

University of 
Edinburgh (II)

Brown University
Ph.D. Neuroscience
Statistical Modelling

Carnegie-Mellon University
B.S. Computer Science
Neural field theory

Present

Control Group
University of Cambridge
Homeostasis, Learning: Closed-loop

Point-process
methods

Biological
Learning

ΔW

yf
τA

×
εσ y

Learning in 
closed-loop

Decoder

VR



How do real neurons learn?



The brain is plastic.
The brain remembers.



How is the brain changing?

Driscoll & al. 2017 experiments:
▶ Image neural population activity over time in a fixed virtual-reality task
▶ Posterior Parietal Cortex (PPC): Association area required for task
▶ Long-term recording at steady state: task performed at expert level
▶ No change in performance or behavior
▶ Neural population code “drifts”

Virtual T-maze

Left Right

Cue: 
Wall Pattern

no cues
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… Neurons’ roles change over time, even in representations supporting fixed, habitual tasks.
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Underlying geometry is stable Tim O’Leary & Chris Harvey

Rule, M. E., O’Leary, T., and Harvey, C. D. (2019). Causes and consequences of
representational drift. Current opinion in neurobiology, 58:141–147
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Underlying geometry is stable Tim O’Leary & Chris Harvey

Ubiquitous, not uniform:
▶ Hippocampus:1,2 Fast turnover; Episodic memory?
▶ Olfactory:3 Experience-dependent: A code for novelty?
▶ Visual4, Prefrontal:5: More stable near periphery?

1Ziv & al. (2013); 2Levy & al. (2021); 3Schoonover, Fink & al. (2020);
4Deitch & al. (2020); 5Singh & al. (2019);

What can drift tell us about learning?
▶ Learning in over-parameterized networks?
▶ Strategies for rapid learning?
▶ Representations in large generative models?
▶ Avoiding catastrophic forgetting in continual learning?

Rule, M. E., O’Leary, T., and Harvey, C. D. (2019). Causes and consequences of
representational drift. Current opinion in neurobiology, 58:141–147
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How does the brain achieve stable behavior despite internal change?

Could other neurons read a code like this?



How does the brain achieve stable behavior despite internal change?

Could other neurons read a code like this?

Proposition:
▶ Homeostasis stabilizes single neuron properties and learned associations
▶ Hebbian plasticity maintains learned representation by re-enforcing existing correlation structure

Supported by

early-career fellowship



Unstable code, stable latent structure: A problem for long-term stability?

Model drift: Random features + drifting weights + homeostatic normalization

θ θ

Weight

Drift

θ

Latent
State

Input
Features

Unstable
Activation

Drifting
Code

θ

μ, σ

TargetSensitivity & threshold homeostasis 

preserve localized tuning†

†Homeostasis: Cannon & Miller (2017, 19),
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Simulated drift: which is
data, which is model?
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Is a stable readout possible?

Latent State

θ

Drifting Code Stable Readout?
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A readout population learns to decode location from an encoding population that drifts.
Can it preserve this readout as the encoding changes?
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Yes, with some ongoing learning

Weakly-constrained

Small Δw
trajectory

Constrained decoderDrift in coding vs. noise subspaces

Chance level Coding directions Noise directions

ρ

Mouse 1

Rule, M. E., Loback, A. R., Raman, D. V., Driscoll, L. N., Harvey, C. D., and O’Leary, T. (2020). Stable task information from an unstable
neural population. Elife, 9:e51121

▶ Most drift looks like trial-to-trial variability on slow time-scales
▶ Change in the underlying representation is gradual

Only small weight changes needed to stabilize decoding

T. O'Leary A. Loback D. Raman L. Driscoll C. D. Harvey
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Can we track a drifting code for continuous variables
without an external reference?



Fixed weights: Drift attenuates excitatory drive
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Readout neurons require a specific conjunction of inputs to fire.
Random drift destroys this excitatory drift, but doesn’t change tuning.
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Sensitivity homeostasis: Tuning is robust to modest change

Rate
y(θ)=ϕ[γ⋅W⊤x(θ

Target Variability

Drifting
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Homeostatically scaling up weights stabilizes activity against small amounts of drift,
since the input is somewhat redundant.
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Hebbian homeostasis: Use the neuron’s own output as a training signal

Rate y(θ)=ϕ[W⊤x(θ
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Drifting

Using the neuron’s own output to adjust weights stabilizes localized, bump-like tuning. This uses
unsupervised Hebbian learning to homeostatically restore activity as drift destroys excitatory drive.
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Use recurrent predictions as a learning signal

Hebbian Homeostasis Schematic
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Hebbian Homeostasis provides stability, but tuning decays toward high-variance components†

Competition between readout cells stabilizes further‡

Recurrent predictions improve error-correction → long-term stability

†c.f. Oja (1982)
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Use recurrent predictions as a learning signal

Population Competition Schematic
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Hebbian Homeostasis provides stability, but tuning decays toward high-variance components†

Competition between readout cells stabilizes further‡

Recurrent predictions improve error-correction → long-term stability

†c.f. Oja (1982) ‡e.g. Földiák & Fdilr, Barlow & Földiák (1989); Pehlevan & al. (2015, 17, 19, 20)
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Use recurrent predictions as a learning signal

Recurrent Dynamics Schematic
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Repair readout using a predictive model stored in recurrent weights

x W y
f

τA

×
εσ y

Generative model of spikes 𝒚 = {𝑦1, .., 𝑦𝑛}
▶ Latent variables 𝒛 = {𝑧1, .., 𝑧𝑛} ∼ P𝒛
▶ Observation model P𝒚 |𝒛
▶ P𝒚 =

∫
𝑑𝒛 P𝒚 |𝒛P𝒛

Learn a prior on likely states in latent variables 𝒛, and
how to map 𝒛 ↔ 𝒚. Save this prior, and use it to
repair readouts in the face of drift.

Specifically, a Log-Gaussian-Poisson model:

P𝒛 = N[0, 𝚺] ∝ exp(− 1
2𝒛
>𝚺−1𝒛)

P𝑦𝑖 |𝑧𝑖 = Poisson[𝜆𝑖 = 𝑒𝑧𝑖 ] ∝ 𝜆
𝑦𝑖
𝑖 𝑒−𝜆𝑖

lnP𝒛 |𝒚 = 𝒚>𝒛 − 1>𝝀(𝒛) − 1
2𝒛
>𝚺−1𝒛

Error correct: get 𝒛 most likely to explain 𝒚

¤𝒛 ∝ ∇𝒛 lnP𝒛 |𝒚 = 𝒚 − 𝝀(𝒛) − 𝚺−1𝒛

Equivalent: ¤𝒛 ∝ −𝒛 + 𝚺[𝒚 − 𝝀(𝒛)]

Predictions 𝝀(𝒛) cancel inputs 𝒚 via inhibition,
through recurrent weights 𝚺: A rate network, but not
quite physiological1.

These questions remain open: Future work.

1compare to Masset & al. (2022), which shares some assumptions;
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Specifically, a Log-Gaussian-Poisson model:

P𝒛 = N[0, 𝚺] ∝ exp(− 1
2𝒛
>𝚺−1𝒛)

P𝑦𝑖 |𝑧𝑖 = Poisson[𝜆𝑖 = 𝑒𝑧𝑖 ] ∝ 𝜆
𝑦𝑖
𝑖 𝑒−𝜆𝑖

lnP𝒛 |𝒚 = 𝒚>𝒛 − 1>𝝀(𝒛) − 1
2𝒛
>𝚺−1𝒛

Error correct: get 𝒛 most likely to explain 𝒚

¤𝒛 ∝ ∇𝒛 lnP𝒛 |𝒚 = 𝒚 − 𝝀(𝒛) − 𝚺−1𝒛

Equivalent: ¤𝒛 ∝ −𝒛 + 𝚺[𝒚 − 𝝀(𝒛)]

Predictions 𝝀(𝒛) cancel inputs 𝒚 via inhibition,
through recurrent weights 𝚺: A rate network, but not
quite physiological1.

These questions remain open: Future work.

1compare to Masset & al. (2022), which shares some assumptions;
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Drift in low-dimensional representations is benign

Homeostasis and internal predictions confer long-term
stability to drift

Drift: Unstable code, stable low-D structure
▶ Redundant codes have robust readout
▶ Monitor drift rate as deviation from homeostatic target

Hebbian homeostasis:
▶ Correct errors using an internal training signal
▶ Re-learn tuning as inputs change

Recurrent population interactions
▶ Predictions correct errors, provide a stable readout

Rule, M. E. and O’Leary, T. (2022). Self-healing codes: How stable neural
populations can track continually reconfiguring neural representations.
Proceedings of the National Academy of Sciences, 119(7):e2106692119

Spectral
embedding

Time step 
(100 = one reconfiguration)
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Background: models of the brain, dynamical and statistical

Undergraduate (Bard Ermentrout): Neural-field theory

(Rule et al., 2011) What do neural networks see?
▶ 5–40 Hz flickering light: “phosphene” hallucinations1

▶ To detects edges, visual cortex inhibits nearby inputs.
▶ Inverting input when inhibition arrives excites edges.
▶ Rate network with recurrent convolutions

(Heitmann, Rule et al. 2017) Optogenetic stimulation switches
cortex from travelling waves to oscillations.
1Purkinje 1819

Ph.D. (Wilson Truccolo): Point-process models

Collective Dynamics in Primate Motor Cortex
▶ (Rule at al., 2017; 2018) Before moving, rhythmic

spiking encodes movement plans; Phase (re)alignments
cause waves across cortex.

▶ (Rule et al., 2015) When moving, local electric fields
relate to past/future movement; Past spiking predicts
future variability.

Neural-field theory simplifies collective
activity for mathematical tractability.

Point-process models infer why
neurons spike

Can we combine these? Simplify point-process models, infer neural fields from spikes?

B. Ermentrout W. Truccolo
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Autoregressive point processes as state-space models

Autoregressive models predict the future from the past.

Coarse graining (“zoom out”):
▶ Reduce the dimension of a large model
▶ Linear models with Gaussian noise are simpler to analyze

The probability of a neuron spiking can be predicted as a linear
function of past variables, followed by a pointwise nonlinearity.
▶ Not Gaussian, but a Gaussian approximation is ok because

predictions average over many spikes.

Process history ∼ Gaussian process; Propagate in time using
▶ Moment-matching (“moment closure”), or
▶ Locally-quadratic approximation (improved stability)

Rule, M. and Sanguinetti, G. (2018). Autoregressive point processes as latent
state-space models: A moment-closure approach to fluctuations and
autocorrelations. Neural computation, 30(10):2757–2780

G. Sanguinetti
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Neural field models for latent state inference

Neural field models are simple descriptions of
spatiotemporal neural population dynamics.
▶ Partial Differential Equations (PDEs) over space and time.
▶ # neurons often→∞ so that noise averages away.

Model noise in finite populations → stochastic PDE.
▶ Use as a latent-variable model of waves in the retina.
▶ 3 states: Quiescent, Active, Refractory

(compare to Susceptible, Infected, Recovered)
▶ Approximate latent distribution as a Gaussian process
▶ Estimate from spiking observations via Bayesian filtering

Rule, M. E., Schnoerr, D., Hennig, M. H., and Sanguinetti, G. (2019). Neural field
models for latent state inference: Application to large-scale neuronal recordings.
PLoS computational biology, 15(11):e1007442

G. Sanguinetti D. Schnoerr E. SernagorM. H. Hennig G. Hilgen
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Are binary latent-variable models like the early sensory system?

Restricted Boltzmann Machines (RBMs) are latent-variable models where the
observed/latent variables are Bernoulli-distributed conditioned on each other.

Martino Sorbaro was training RBMs to model population spiking activity,
kept finding models close to “critical”.

Rare stimuli suppressed variability
▶ Noise limits bandwidth; Rare stimuli need more bits to encode
▶ Incoming stimuli reduce neural variability1

▶ Suppression of firing can be informative2

∞-large models: 1/f statistics and rank ≈ 1 Fisher information matrix3

▶ Implicit prior on model’s statistics
▶ Finite models also approximate this, given sufficient capacity.
▶ ⇒ Easy to measure a weight’s importance from local activity

Rule, M. E., Sorbaro, M., and Hennig, M. H. (2020). Optimal encoding in stochastic latent-variable
models. Entropy, 22(7):714
1Churchland & al. (2010), Echeveste & al. (2020), 2Schneidman (2011), 3Schwab (2014)
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Can we understand developmental pruning via information theory?

The brain removes neurons during maturation. How does it
choose which ones?

Fisher Information Matrix (FIM): amount a model changes when we
change its parameters ≈ Importance
▶ Only the diagonal can be detected locally. But, if FIM ≈ rank-1,

the diagonal is ok.

In Boltzmann machines, weight FI depends on pre/post activity
▶ More pre-post correlations ⇒ more important
▶ Prune small weights: reduced error, didn’t shrink network
▶ FI pruning: good performance, shrinks network

Must re-train post-pruning1

▶ Use homeostasis for “internal” transfer learning during pruning?

Scholl, C., Rule, M. E., and Hennig, M. H. (2021). The information theory of
developmental pruning: Optimizing global network architectures using local synaptic
rules. PLoS computational biology, 17(10):e1009458
1Not the best approach for industrial ML: Crowley & al. (2018, 2019)
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Gaussian processes for grid cells

“Grid cells” in hippocampal formation fire as a periodic
(hexagonal) function of animal’s location “𝒙”.

Can we model distribution of firing-rate maps Pspike (𝒙)
from limited data?
▶ (Latent) log-rate function 𝒛 (𝒙) with Gaussian-process prior

P𝒛 (𝒙) = GP(𝝁0, 𝚺)
▶ Point process observations:

P𝒚 (𝒙) |𝒛 (𝒙) = Poisson[𝝀(𝒙) = 𝑒𝒛 (𝒙) 𝑑𝒙]

Covariance kernel for periodic grids
▶ Bessel function; 0th order, 1st kind
▶ Multiply by a local window

M. Rule, P. Chaudhuri-Vayalambrone, J. Krupic, T. O’Leary (2023). Variational
log-Gaussian point-process modelling: Application to hippocampal grid cells. In
Preparation.

Spikes/Visit
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T. O'LearyJ. Krupic P. C. Vayalambrone
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Gaussian processes for grid cells: Make it faster

Pandemic lockdown: run everything on an old laptop,
216 dimensions, large datasets, how?

Variational Bayes:
▶ P𝒛 (𝒙) |𝒚 (𝒙) ≈ Q𝒛 (𝒙) = GP(𝝁, 𝚺)
▶ 𝚺−1 = prior + diagonal update

Fit iteratively
▶ 𝝁 ← argmax

𝝁
〈log-prior + log-likelihood〉Q*

▶ 𝚺← 𝚺0 + diag[〈𝝀(𝒙)〉]

Evaluate on grid
▶ Bin data with interpolation to ‘pseudopoints’
▶ 𝚺0 becomes a convolution

Low-rank spatial frequency subspace
▶ Discard frequencies ≈ 0 in the prior
▶ (Fast) Hartley transform gives real-valued

components compatible w. Krylov subspace solvers

*Very fast with Newton-Raphson + Krylov subspace

T. O'LearyJ. Krupic P. C. Vayalambrone
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Calcium-imaging brain–machine interface

Closed-loop control in an adaptive system
▶ How does the brain adapt motor control to new circumstances?

Brain–Machine interface
▶ Force parietal cortex to act as a motor output
▶ We control the motor response to neuronal firing

Decode directly from images
▶ Calibrate during behavior using stochastic gradient descent
▶ Test in closed loop

It works
▶ No substantial tuning drift over five days
▶ Mean-rates of neurons become sensitive to BMI/control context

Sorrell, E., Rule, M. E., and O’Leary, T. (2021). Brain–machine interfaces: Closed-loop
control in an adaptive system. Annual Review of Control, Robotics, and Autonomous
Systems, 4

Sorrell, E, Wilson, D, Rule, M, Yang, H, Forni, F, Harvey, C, O’Leary, T. (2022) A Calcium
Imaging Based Brain-Machine Interface for Virtual Navigation. In preparation.
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