
Self Healing Codes
5 November 2020

Michael Rule

1



The brain is plastic.

The brain is stable.
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Image neural population codes over time
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Neural population code is unstable*

*In Posterior Parietal Cortex (PPC)
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Representational Drift
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Rule, O'Leary, Harvey,(2019) Causes and consequences of representational drift.
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Stable Task Information

Rule ME, Loback AR, Raman DV, Driscoll L, Harvey CD, O'Leary T. 2020. Stable task information from an

unstable neural population. eLife.
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How is the brain is robust to changing (∆) neural codes?

Invariance:

• ∆ in null-space of readout

Coordination:

• Slow ∆, readout adapts

Analyse Driscoll et al. '17

• ∆ preserves invariant readout
• Slow plasticity can track ∆
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Single-day decoders generalize poorly
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Long-term ≈ stable subspace exists, drift is constrained

Fixed decoder trained over data from

7-10 days nearly as good as single-day

Unconstrained drift rapidly degrades

performance

Results consistent with low-rank drift
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Long-term ≈ stable subspace exists, drift is constrained

Fixed decoder trained over data from

7-10 days nearly as good as single-day

Unconstrained drift rapidly degrades

performance

Results consistent with low-rank drift

Shaded = 95% confidence

Data

Null model (random drift)
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Drift resembles trial-to-trial variability

Trial-to-trial
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≈ Stable subspace can be identi�ed, tracked with modest plasticity

Distributed representations could detect tuning changes, adjust decoding weights

P
P
C

 p
o
p
u
la

ti
o
n

-ReferencePrediction

Δw (Learning)

Decoding
weights

Error Signal

Readout
neuron

Sensory/motor
areas

(∼10-15% weight change per session for ∼100 cells, more cells → less plasticity)
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Drift (∆) is structured

• Long-term ∆ less than expected
• Consistent with low-rank
• More ∆ in null directions

Track ≈ stable subspace

• Non-null ∆: slow and easy to track
• Weak error feedback su�cient

This talk: Could neurons use what is stable to track what is volatile?

• Learning and correlated activation is su�cient to track drift
• How to stabilize readout without external feedback
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Ongoing learning addresses drift
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• Low-D latent variable

• Di�erent areas, correlated variability

• Restricted Boltzmann Machine

• Stochastic, binary
• Non-negative activity

• Drift: noise to synaptic weights

• Train continuously
• Maintain mean rates
• Normalize population responses

(units compete)
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Ongoing learning addresses drift

Looks like drift

• Code in "association" area changes
• Population low-D task structure stable

Consistent readout via unsupervised learning

• Correlated activation → error feedback
• Plasticity: readouts to learn as quickly as

the representation changes

Problem: Forgets easily

How could stable internal codes coexist with

such untsable representations?
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Q: How to achieve stable interpretations of unstable codes?

A: Homeostatic mechanisms create stability without error feedback.
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Model Drift
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Model encoding drift
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Neurons extract maxima of activation function over θ
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Neurons extract maxima of activation function over θ
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Hard to change preferred tuning

x(θ) = Us(θ), θ0 = argmax
θ

[x(θ)]

∆θ0 = −
[
∇θ∇>θ x(θ)

]−1
[U∇θ∆s(θ)]

∆s(θ) must resemble ∆θ near the peak θ0, only ∇θ∆s(θ) matters

Any ∆s(θ) in null space of u irrelevant[
∇θ∇>θ x(θ)

]−1
: sharper peaks are harder to move
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Model encoding drift
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Model encoding drift
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Drift is gradual
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Drift causes loss of excitability, not tuning

29



Drift causes loss of excitability, not tuning

29



Drift causes loss of excitability, not tuning

29



Drift causes loss of excitability, not tuning
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Sensitivity Homeostasis
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Sensitivity Homeostasis
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Sensitivity Homeostasis Hebbian Homeostasis
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Why does this work?
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Binary Threshold Analogy
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Error-Correcting Code
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Error-Correcting Code
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Error-Correcting Code
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Error-Correcting Code
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Self-Healing Code
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Linear Analogy
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Redundant linear encoder
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Low-D structure in High-D space
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Many null-dimensions, weights align with signal dimensions
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Small change in encoding...
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Loss of drive to readout
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New embedding of low-D structure
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Weights no longer match signal variability
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Detect loss of readout sensitivity
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Hebbian homeostasis: realign weights to low-D structure

38



Fi
xe

d
Un

it 
#

T=0 T=114 T=228 T=342 T=457 T=571 T=685 T=799

Se
lf-

He
al

in
g

Un
it 

#

39



(a) Fixed weights
1 14 27 40 53 66 79 92 105

(40 inputs total)
119

(b) Homeostasis

(c) Hebbian homeostasis
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Linear-nonlinear readout

y(θ) = φ[Wx(θ)]

Sensitivity y ′(θ) = φ′[Wx(θ)]

Drift ∆x; Average squared tuning change:〈
∆2
y

〉
=W

〈
∆x∆xᵀ · y ′(θ)2

〉
Wᵀ

Average sensitivity: ‖y ′‖2 =
∫
dθ y

′(θ)2

Normalized sensitivity: ρ(θ) = y ′(θ)2/‖y ′‖2

〈
∆2
y

〉
= ‖y ′‖2 ·W〈∆x∆xᵀ · ρ(θ)〉Wᵀ = ‖y ′‖2 ·WΣ

ρ(θ)
∆x W

ᵀ

∼ Binary: saturating responses make ‖y ′‖2 small

∼ Linear: Locally-re-weighted input drift Σ
ρ(θ)
∆x is low rank
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(remember)

Representational drift is gradual (or null). It can be tracked via error feedback.

Ongoing practice could provide this feedback, via prediction errors. However,

this does not lead to stable internal representations.

Model drift as shifting encoding weights

• Activity has low-D structure

• Sensitivity homeostasis leads to punctuated stability: occassional large shifts

• Hebbian homeostasis uses redundancy to re-learn weights as drift occurs

• Binary: hard to change saturated responses

• Linear: track low-D subspace

• Leads to stable readouts of unstable codes

Next: Stabilizing population codes
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Population Interactions
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(remember)

Drift is gradual/null:

• Track with error feedback
• Ongoing practice provides this

Model drift: Inputs have low-D structure

• Hard to change tuning; punctuated stability

Hebbian homeostasis:

• Re-learn tuning as inputs change
• Binary: hard to change saturated responses
• Linear: track low-D subspace

Population interactions

• Normalize: competition ensures coverage
• Recurrent connections → stable readout
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End of Content
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