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The brain is plastic.
The brain is stable.



Image neural population codes over time

Virtual T-maze task
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Neural population code is unstable*
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Representational Drift
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Rule, O'Leary, Harvey,(2019) Causes and consequences of representational drift.
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Rule, O'Leary, Harvey,(2019) Causes and consequences of representational drift.



Many degrees of freedom
in internal representations
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Rule, O'Leary, Harvey,(2019) Causes and consequences of representational drift.



Many degrees of freedom
in internal representations
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Many degrees of freedom
in internal representations

External covariates
(T-maze)

day 1 o

day 2 o O
/

daz?o O

Rule, O'Leary, Harvey,(2019) Causes and consequences of representational drift.



Stable Task Information

Rule ME, Loback AR, Raman DV, Driscoll L, Harvey CD, O’Leary T. 2020. Stable task information from an
unstable neural population. eLife.



How is the brain is robust to changing (A) neural codes?
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How is the brain is robust to changing (A) neural codes?
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® Slow A, readout adapts

information




How is the brain is robust to changing (A) neural codes?
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Coordination: Neural activity

® Slow A, readout adapts direction y;

Analyse Driscoll et al. "17
® A preserves invariant readout
® Slow plasticity can track A

information




Single-day decoders generalize poorly
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Single-day decoders generalize poorly
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but hint at long-term stable structure



Long-term = stable subspace exists, drift is constrained

Fixed decoder trained over data from
7-10 days nearly as good as single-day
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Long-term = stable subspace exists, drift is constrained

Fixed decoder trained over data from
7-10 days nearly as good as single-day

Unconstrained drift rapidly degrades
performance
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Long-term = stable subspace exists, drift is constrained

Fixed decoder trained over data from S
7-10 days nearly as good as single-day E
©
Unconstrained drift rapidly degrades %
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Drift resembles trial-to-trial variability

Drift in
trial-averaged
Al population
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But some drift occurs in directions that encode task information
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PPC population

Stable subspace can be identified, tracked with modest plasticity

Distributed representations could detect tuning changes, adjust decoding weights

Decoding Day: 2 3 4 5 6 7 10 11 12 13
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(~10-15% weight change per session for ~100 cells, more cells — less plasticity)
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Drift (A) is structured

® | ong-term A less than expected
® Consistent with low-rank
® More A in null directions

Track = stable subspace

® Non-null A: slow and easy to track
® \Weak error feedback sufficient

This talk: Could neurons use what is stable to track what is volatile?

® |earning and correlated activation is sufficient to track drift
® How to stabilize readout without external feedback
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Ongoing learning addresses drift
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® | ow-D latent variable
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Modality 1 Modality 2
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Latent State

® | ow-D latent variable
® Different areas, correlated variability

® Restricted Boltzmann Machine

® Stochastic, binary
® Non-negative activity
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Latent State

Low-D latent variable
Different areas, correlated variability

Restricted Boltzmann Machine

® Stochastic, binary
® Non-negative activity

Drift: noise to synaptic weights
® Train continuously
® Maintain mean rates
® Normalize population responses
(units compete)
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(a) Mean hidden (decoding) unit activity on: (b) Low-dimensional manifold
(from spiking activity)
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RMSE (%)

bits/sample/neuron

Ongoing learning addresses drift

Position decoding error

o Time (simulated 'days') 2|0

Excess feature-prediction loss
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Looks like drift

® Code in "association" area changes
® Population low-D task structure stable

Consistent readout via unsupervised learning
® Correlated activation — error feedback
® Plasticity: readouts to learn as quickly as
the representation changes

Problem: Forgets easily

How could stable internal codes coexist with
such untsable representations?
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Q: How to achieve stable interpretations of unstable codes?

A: Homeostatic mechanisms create stability without error feedback.
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Model Drift
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Model encoding drift

Input Features Encoding Units
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Neurons extract maxima of activation function over 6

Features
s(0)
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Neurons extract maxima of activation function over 6

Features
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Neurons extract maxima of activation function over 6
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Neurons extract maxima of activation function over 6
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Neurons extract maxima of activation function over 6
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Neurons extract maxima of activation function over 6

Features
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Rate
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Hard to change preferred tuning
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As(6) must resemble Af near the peak 6y, only VgAs(6) matters
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[VQVJX(G)]_I: sharper peaks are harder to move
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Unit #67

Model encoding drift
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Model encoding drift
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Drift is gradual

Day 1

Mean Rate (normalized)
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Drift is gradual

Day 7
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Drift is gradual

Day 7
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Stable

Unstable

Drift causes loss of excitability, not tuning
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Unstable

Drift causes loss of excitability, not tuning

Day 7

!

s

Wx (a.u) -

Synaptic
Activation

7Q;Yth r.

0 6 1

29



Stable

Unstable

Drift causes loss of excitability, not tuning

Day 7

!

Wx (a.u) -

Synaptic
Activation

0 6 1

7Q;Yth r.

Net
Activation

29



Stable

Unstable

Drift causes loss of excitability, not tuning
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Sensitivity Homeostasis
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Unit #2

Sensitivity Homeostasis
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(a) Fixed Weights: (b) Sensitivity Homeostasis: (¢) Hebbian Homeostasis:

Firing rate (a.u.) -»

Loss of Excitability Punctuated Stability Stable Readout

Original tuning

5% reconfigured

10%

25%

J\
\_
AN

A
A
=

50%

90%

95%

100%

p

1 1 1
0 Location 100 0 Location 100 0 Location 100

32



Why does this work?
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Binary Threshold Analogy
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Error-Correcting Code
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Error-Correcting Code

Encoding Decode
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Self-Healing Code
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Linear Analogy
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Redundant linear encoder
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U x(6)=U8 w
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Many null-dimensions, weights align with signal dimensions
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Small change in encoding...
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New embedding of low-D structure
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Detect loss of readout sensitivity
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Hebbian homeostasis: realign weights to low-D structure
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Linear-nonlinear readout

y(6) = p[Wx(6)]

Sensitivity y'(0) = ¢'[Wx(6)]
Drift Ax; Average squared tuning change:

(A7) = W (AXAXT - y'(6)%) WT

Average sensitivity: ||)/[|” = fdgy
Normalized sensitivity: p(6) = /(6 ) /Hy H‘

(82) = /17 - WIARAXT - p(0) WT = /7 Wi T

~ Binary: saturating responses make ||y’||° small

(0)

~ Linear: Locally-re-weighted input drift ZZX is low rank
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(remember)

Representational drift is gradual (or null). It can be tracked via error feedback.
Ongoing practice could provide this feedback, via prediction errors. However,
this does not lead to stable internal representations.

Model drift as shifting encoding weights

® Activity has low-D structure
® Sensitivity homeostasis leads to punctuated stability: occassional large shifts
® Hebbian homeostasis uses redundancy to re-learn weights as drift occurs

® Binary: hard to change saturated responses
® Linear: track low-D subspace

® [ eads to stable readouts of unstable codes

Next: Stabilizing population codes

42



Population Interactions
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Unstable
Population
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Unstable Stable
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Unstable Stable
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# Input Changes (60 inputs) -
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Drift is gradual/null:

(remember)

0 Location 1
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Drift is gradual/null:
® Track with error feedback
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Drift is gradual/null:

® Track with error feedback
® Ongoing practice provides this
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(remember)
Drift is gradual/null:

® Track with error feedback
® Ongoing practice provides this Dimensionality
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Drift is gradual/null:

® Track with error feedback
® Ongoing practice provides this

Model drift: Inputs have low-D structure Unit #2 19
® Hard to change tuning; punctuated stability *2 % g&g
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(remember)

Drift is gradual/null:

® Track with error feedback
® Ongoing practice provides this

Model drift: Inputs have low-D structure

® Hard to change tuning; punctuated stability
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Drift is gradual/null:

® Track with error feedback
® Ongoing practice provides this

Model drift: Inputs have low-D structure
® Hard to change tuning; punctuated stability

Hebbian homeostasis:
® Re-learn tuning as inputs change

Stable

Unstable

Day 7
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Drift is gradual/null:

® Track with error feedback
® Ongoing practice provides this

Model drift: Inputs have low-D structure
® Hard to change tuning; punctuated stability

Hebbian homeostasis:

® Re-learn tuning as inputs change
® Binary: hard to change saturated responses
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Drift is gradual/null:

® Track with error feedback
® Ongoing practice provides this

Model drift: Inputs have low-D structure
® Hard to change tuning; punctuated stability

Hebbian homeostasis:

® Re-learn tuning as inputs change
® Binary: hard to change saturated responses
® Linear: track low-D subspace

(remember)

N

«0-

AWTx(0,-0,)x6" = (01- 0,)xx"WT

48



Drift is gradual/null:

® Track with error feedback
® Ongoing practice provides this

Model drift: Inputs have low-D structure
® Hard to change tuning; punctuated stability

Hebbian homeostasis:

® Re-learn tuning as inputs change
® Binary: hard to change saturated responses
® Linear: track low-D subspace

Population interactions

(remember)

Unstable Stable
Population Population
x(6) = ¢[U s(6)] y(6) = ¢p[W x(6)]
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Homeostasis .
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Drift is gradual/null:

® Track with error feedback
® Ongoing practice provides this

Model drift: Inputs have low-D structure
® Hard to change tuning; punctuated stability

Hebbian homeostasis:

® Re-learn tuning as inputs change
® Binary: hard to change saturated responses
® Linear: track low-D subspace

Population interactions

® Normalize: competition ensures coverage

(remember)
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Drift is gradual/null:

® Track with error feedback
® Ongoing practice provides this

Model drift: Inputs have low-D structure
® Hard to change tuning; punctuated stability

Hebbian homeostasis:

® Re-learn tuning as inputs change
® Binary: hard to change saturated responses
® Linear: track low-D subspace

Population interactions

® Normalize: competition ensures coverage
® Recurrent connections — stable readout

(remember)

Unstable Stable
Population Population
x(6) = ¢[U s(6)] y(6) = ¢[W x(6)]
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y(6) = ¢[W x(6) + R y(6)]
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End of Content
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