Self Healing Codes 5 November 2020

Michael Rule

The brain is plastic. The brain is stable.

Image neural population codes over time

Neural population code is unstable*

*In Posterior Parietal Cortex (PPC)

Representational Drift

High-dimensional population activity

Rule, O'Leary, Harvey,(2019) Causes and consequences of representational drift.

Rule, O'Leary, Harvey,(2019) Causes and consequences of representational drift.

Rule, O'Leary, Harvey,(2019) Causes and consequences of representational drift.

Many degrees of freedom in internal representations

Rule, O'Leary, Harvey,(2019) Causes and consequences of representational drift.

Rule, O'Leary, Harvey,(2019) Causes and consequences of representational drift.

Rule, O'Leary, Harvey,(2019) Causes and consequences of representational drift.

Stable Task Information

Rule ME, Loback AR, Raman DV, Driscoll L, Harvey CD, O'Leary T. 2020. Stable task information from an unstable neural population. eLife.

Invariance:

• ∆ in null-space of readout

Invariance:

• ∆ in null-space of readout

Invariance:

• ∆ in null-space of readout

Coordination:

• Slow ∆, readout adapts

Invariance:

• ∆ in null-space of readout

Coordination:

• Slow ∆, readout adapts

Analyse Driscoll et al. '17

- ∆ preserves invariant readout
- Slow plasticity can track ∆

Single-day decoders generalize poorly

Single-day decoders generalize poorly

. . . but hint at long-term stable structure

Long-term \approx stable subspace exists, drift is constrained

Fixed decoder trained over data from 7-10 days nearly as good as single-day

Long-term \approx stable subspace exists, drift is constrained

Fixed decoder trained over data from 7-10 days nearly as good as single-day

Unconstrained drift rapidly degrades performance

Long-term \approx stable subspace exists, drift is constrained

Fixed decoder trained over data from 7-10 days nearly as good as single-day

Unconstrained drift rapidly degrades performance

Results consistent with low-rank drift

Drift resembles trial-to-trial variability

Alignment of Δμ with coding, noise subspaces

. . . But some drift occurs in directions that encode task information

\approx Stable subspace can be identified, tracked with modest plasticity

Distributed representations could detect tuning changes, adjust decoding weights

(∼10-15% weight change per session for ∼100 cells, more cells → less plasticity)

Drift (∆) is structured

- Long-term ∆ less than expected
- Consistent with low-rank
- More ∆ in null directions

Track \approx stable subspace

- Non-null ∆: slow and easy to track
- \bullet Weak error feedback sufficient

This talk: Could neurons use what is stable to track what is volatile?

- Learning and correlated activation is sufficient to track drift
- How to stabilize readout without external feedback

Ongoing learning addresses drift

• Low-D latent variable

Latent State

Modality 1

Modality 2

Latent State

- Low-D latent variable
- Different areas, correlated variability

Latent State

- Low-D latent variable
- Different areas, correlated variability

- Low-D latent variable
- Different areas, correlated variability

- Low-D latent variable
- Different areas, correlated variability
- Restricted Boltzmann Machine
	- Stochastic, binary
	- Non-negative activity

- Low-D latent variable
- Different areas, correlated variability
- Restricted Boltzmann Machine
	- Stochastic, binary
	- Non-negative activity
- Drift: noise to synaptic weights
	- Train continuously
	- Maintain mean rates
	- Normalize population responses (units compete)

Ongoing learning addresses drift

Looks like drift

- Code in "association" area changes
- Population low-D task structure stable

Consistent readout via unsupervised learning

- Correlated activation \rightarrow error feedback
- Plasticity: readouts to learn as quickly as the representation changes

Problem: Forgets easily

How could stable internal codes coexist with such untsable representations?

Q: How to achieve stable interpretations of unstable codes? A: Homeostatic mechanisms create stability without error feedback.

Model Drift

 $\leftarrow \theta \rightarrow$

 $\leftarrow \theta \rightarrow$

Hard to change preferred tuning

 $\Delta s(\theta)$ must resemble $\Delta \theta$ near the peak θ_0 , only $\nabla_{\theta} \Delta s(\theta)$ matters Any $\Delta s(\theta)$ in null space of **u** irrelevant $\left[\nabla_\theta\nabla_\theta^\top x(\theta)\right]^{-1}$: sharper peaks are harder to move

Drift is gradual

Drift is gradual

Drift is gradual

Sensitivity Homeostasis

Sensitivity Homeostasis

Sensitivity Homeostasis and Hebbian Homeostasis

Why does this work?

Binary Threshold Analogy

Self-Healing Code

Linear Analogy

Redundant linear encoder

Low-D structure in High-D space

Many null-dimensions, weights align with signal dimensions

Small change in encoding...

Loss of drive to readout

New embedding of low-D structure

Weights no longer match signal variability

Detect loss of readout sensitivity

Hebbian homeostasis: realign weights to low-D structure

40

Linear-nonlinear readout

$$
y(\theta) = \phi[\mathbf{W}\mathbf{x}(\theta)]
$$

Sensitivity $y'(\theta) = \phi'[\mathsf{Wx}(\theta)]$ Drift Δx: Average squared tuning change:

$$
\left\langle \Delta_y^2 \right\rangle = \mathbf{W} \left\langle \Delta \mathbf{x} \Delta \mathbf{x}^{\intercal} \cdot y'(\theta)^2 \right\rangle \mathbf{W}^{\intercal}
$$

Average sensitivity: $||y'||^2 = \int_{d\theta} y'(\theta)^2$ Normalized sensitivity: $\rho(\theta) = y'(\theta)^2 / ||y'||^2$

$$
\left\langle \Delta_{\mathbf{y}}^2 \right\rangle = \|\mathbf{y}'\|^2 \cdot \mathbf{W} \langle \Delta \mathbf{x} \Delta \mathbf{x}^{\mathsf{T}} \cdot \rho(\theta) \rangle \mathbf{W}^{\mathsf{T}} = \|\mathbf{y}'\|^2 \cdot \mathbf{W} \Sigma_{\Delta \mathbf{x}}^{\rho(\theta)} \mathbf{W}^{\mathsf{T}}
$$

 \sim Binary: saturating responses make $\|y'\|^2$ small \sim Linear: <code>Locally-re-weighted input drift $\Sigma_{\Delta \mathsf{x}}^{\rho(\theta)}$ is low rank</mark></code>

Representational drift is gradual (or null). It can be tracked via error feedback. Ongoing practice could provide this feedback, via prediction errors. However, this does not lead to stable internal representations.

Model drift as shifting encoding weights

- Activity has low-D structure
- Sensitivity homeostasis leads to punctuated stability: occassional large shifts
- Hebbian homeostasis uses redundancy to re-learn weights as drift occurs
	- Binary: hard to change saturated responses
	- Linear: track low-D subspace
- Leads to stable readouts of unstable codes

Next: Stabilizing population codes

Population Interactions

Recurrence $\mathbf{y}(\theta) = \phi[\mathbf{W} \mathbf{x}(\theta) + \mathbf{R} \mathbf{y}(\theta)]$

 $\mathbf{y}(\theta) = \phi[\mathbf{W} \mathbf{x}(\theta) + \mathbf{R} \mathbf{y}(\theta)]$

46

Drift is gradual/null:

Drift is gradual/null:

• Track with error feedback

Drift is gradual/null:

- Track with error feedback
- Ongoing practice provides this

Drift is gradual/null:

- Track with error feedback
- Ongoing practice provides this

Model drift: Inputs have low-D structure

Drift is gradual/null:

- Track with error feedback
- Ongoing practice provides this

Model drift: Inputs have low-D structure

 \bullet Hard to change tuning; punctuated stability 32

Drift is gradual/null:

- Track with error feedback
- Ongoing practice provides this

Model drift: Inputs have low-D structure

• Hard to change tuning; punctuated stability

Hebbian homeostasis:

Drift is gradual/null:

- Track with error feedback
- Ongoing practice provides this

Model drift: Inputs have low-D structure

• Hard to change tuning; punctuated stability

Hebbian homeostasis:

• Re-learn tuning as inputs change

Drift is gradual/null:

- Track with error feedback
- Ongoing practice provides this

Model drift: Inputs have low-D structure

• Hard to change tuning; punctuated stability

Hebbian homeostasis:

- Re-learn tuning as inputs change
- Binary: hard to change saturated responses

Drift is gradual/null:

- Track with error feedback
- Ongoing practice provides this

Model drift: Inputs have low-D structure

• Hard to change tuning; punctuated stability

Hebbian homeostasis:

- Re-learn tuning as inputs change
- Binary: hard to change saturated responses
- Linear: track low-D subspace

(remember)

Drift is gradual/null:

- Track with error feedback
- Ongoing practice provides this

Model drift: Inputs have low-D structure

• Hard to change tuning; punctuated stability

Hebbian homeostasis:

- Re-learn tuning as inputs change
- Binary: hard to change saturated responses
- Linear: track low-D subspace

Population interactions

(remember)

Drift is gradual/null:

- Track with error feedback
- Ongoing practice provides this

Model drift: Inputs have low-D structure

• Hard to change tuning; punctuated stability

Hebbian homeostasis:

- Re-learn tuning as inputs change
- Binary: hard to change saturated responses
- Linear: track low-D subspace

Population interactions

• Normalize: competition ensures coverage

Ilnstable Stable Population Population $\mathbf{x}(\theta) = \phi[\mathbf{U} \mathbf{s}(\theta)]$ $\mathbf{v}(\theta) = \phi[\mathbf{W} \mathbf{x}(\theta)]$ Hebbian Homeostasis Homeostasis ĺw Recurrence $\mathbf{y}(\theta) = \phi[\mathbf{W} \mathbf{x}(\theta) + \mathbf{R} \mathbf{y}(\theta)]$

(remember)

Drift is gradual/null:

- Track with error feedback
- Ongoing practice provides this

Model drift: Inputs have low-D structure

• Hard to change tuning; punctuated stability

Hebbian homeostasis:

- Re-learn tuning as inputs change
- Binary: hard to change saturated responses
- Linear: track low-D subspace

Population interactions

- Normalize: competition ensures coverage
- Recurrent connections \rightarrow stable readout

 $\mathbf{y}(\theta) = \phi[\mathbf{W} \mathbf{x}(\theta) + \mathbf{R} \mathbf{y}(\theta)]$

End of Content

Thanks to:

Dhruva Raman

Timothy O'Leary

Chris Harvey

Laura Driscoll

Adrianna Loback

Fulvio Forni

Alon Rubin

Yaniv Ziv

Aspects of this work published in:

Rule ME, Loback AR, Raman DV, Driscoll L, Harvey CD, O'Leary T. 2020. Stable task information from an unstable neural population. eLife

Rule ME, O'Leary T, Harvey CD. 2019. Causes and consequences of representational drift. Current opinion in neurobiology 58:141-147

Funding:

This work was supported by the Human Frontier Science Program (RGY0069), ERC Starting Grant (StG FLEXNEURO 716643) and grants from the NIH (NS089521, MH107620, NS108410)