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Invasive cortical BCIs

Implanted multi-electrode arrays in cortex
High bandwidth, high performance

They work! In humans since 20041

Robot arms2 and computers3

Email, browse web at 13-31 char/min4

Decode neural population activity

Motor cortex: movement commands

Cognitive BCIs: goals/coordinates?5
4Nuyujukian et al. 18

1Hochberg et al. ’06 2e.g. Hochberg et al. ’12; Vogel et al. ’15; Wodlinger et al. ’15, many others
3e.g. Bacher et al. ’15; Jarosiewicz et al. ’15, ’17, many others 5see Andersen et al. ’05; Aflalo et al. ’15
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Calcium imaging: high-volume recording for BCI research

Ca2+ imaging BCIs

In micea, nonhuman primatesb

Driscoll et al. ’17:

Track population over weeks

Posterior Parietal Cortex (PPC)

Study how neural code changes
• Neural codes "drift"
• Not recording instability!c

Plasticity in well-learned tasks!
aClancy & Mrsic-Flogel ’19; Liberti &al. 29
bTrautmann &al. 19; Bollimunta &al. 20
cPerge &al. 13; Downey &al. 18

Cue: wall pattern

Left Right

Delay:
no cues

Reward

Virtual T-maze task
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Neural tunings tile the task

←Task location→
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Driscoll et al. 2017
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The brain is robust to changing neural codes, how?

Invariance:
• Change in null-space of
readout

Coordination:
• Slow change,
downstream areas adapt

Analyse Driscoll et al. ’17
• Drift preserves an
invariant readout
• Rate of plasticity needed
to track drift is plausible
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Single-day decoders generalize poorly
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Long-term ≈ stable subspace exists, drift is constrained

Fixed decoder trained over (subset of)
data concatenated from 7-10 days nearly
as good as single-day

Unconstrained drift would more rapidly
degrade performance

Results consistent with low-rank drift

c.f. Sussillo et al. ’16: Robustness
achieved in part by using months of
training data

E
rr

o
r

(%
 c

h
a
n
ce

 l
e
v
e
l)

8



Long-term ≈ stable subspace exists, drift is constrained

Fixed decoder trained over (subset of)
data concatenated from 7-10 days nearly
as good as single-day

Unconstrained drift would more rapidly
degrade performance

Results consistent with low-rank drift

c.f. Sussillo et al. ’16: Robustness
achieved in part by using months of
training data

Shaded = 95% confidence

Data

Null model (random drift)
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Drift resembles trial-to-trial variability

Trial-to-trial

variability

Behavior-

related

variability

Δμ

Drift in 

trial-averaged

population 

response
θ

ρ (noise)

ρ (coding)

Alignment of Δμ with coding, noise subspaces

Chance level Coding directions Noise directions

M1 M5M3 M4

0

1

ρ

. . . But a significant amount of drift lies in directions that seem to encode task
information
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≈ Stable subspace can be identified, tracked with modest plasticity

Distributed representations could detect tuning changes, adjust decoding weights
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(∼10-15% weight change per session for ∼100 cells, more cells → less plasticity)

10



🙟 Drift is constrained

Some benign: like inter-trial variability

Disruptive drift is slow (easily tracked)

With enough data, ≈ stable codes can be
found, but...
• Volatile codes still carry information
• Multiple codes with differing stability?

Implications for decoding:
• Long term: track ≈ stable subspace
• Use to bootstrap decoder recalibration
• Short term: detect & use volatile
codes
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