Constrained plasticity can compensate for ongoing drift in the parietal cortex

AR Loback, ME Rule, DV Raman, LN Driscoll, CD Harvey, TS O'Leary

NCCD, Capbreton, France, 2019

23 September 2019

Neurons in some sensorimotor areas reconfigure their tunings even after the task is learned ('drift').

Neurons in some sensorimotor areas reconfigure their tunings even after the task is learned ('drift').

How can we interpret continuously changing neural codes?

Neurons in some sensorimotor areas reconfigure their tunings even after the task is learned ('drift').

How can we interpret continuously changing neural codes?

What prevents this drift from disrupting task performance?

Virtual T-maze task

Driscoll et al. 2017

Normalized and filtered Ca2+ fluorescence $4 \times$ real-time

(cartoon example)

(cartoon example)

(cartoon example)

Task representation is not fixed

Task representation is not fixed

Day 10 Driscoll et al. 2017 6

Task representation is not fixed

Task structure persists

Task structure persists

Task structure persists

Reconcile drift with stable performance:

Task-relevant neural representation in parietal cortex **change**

Task-relevant neural representation in parietal cortex **change** This change does not disrupt behavior

Task-relevant neural representation in parietal cortex **change** This change does not disrupt behavior What are the implications for neural coding?

Task-relevant neural representation in parietal cortex **change** This change does not disrupt behavior What are the implications for neural coding? We will show that:

Task-relevant neural representation in parietal cortex **change** This change does not disrupt behavior What are the implications for neural coding? We will show that:

This change does not disrupt behavior

What are the implications for neural coding?

We will show that:

1. Shifts in mean activity are mostly irrelevant: they resemble noise

This change does not disrupt behavior

What are the implications for neural coding?

We will show that:

- 1. Shifts in mean activity are mostly irrelevant: they resemble noise
- 2. Redundancy allows many codes, and there is a stable subspace

This change does not disrupt behavior

What are the implications for neural coding?

We will show that:

- 1. Shifts in mean activity are mostly irrelevant: they resemble noise
- 2. Redundancy allows many codes, and there is a stable subspace
- 3. Modest plasticity would be required to track remaining drift

This change does not disrupt behavior

What are the implications for neural coding?

We will show that:

- 1. Shifts in mean activity are mostly irrelevant: they resemble noise
- 2. Redundancy allows many codes, and there is a stable subspace
- 3. Modest plasticity would be required to track remaining drift

Shifts in mean activity are mostly irrelevant
Not all drift is disruptive

Mouse 3 session 2/3 pseudotime 40%±10

previous turn right, next turn right

Not all drift is disruptive

Mouse 3 session 2/3 pseudotime 40%±10

previous turn right, next turn right

Not all drift is disruptive

Mouse 3 session 2/3 pseudotime 40%±10

previous turn right, next turn right

 $z(x)$: neural population activity

 $z(x)$: neural population activity Drift : $\Delta \mu(x) = \langle z(x) \rangle_{\text{Dav 2}} - \langle z(x) \rangle_{\text{Dav 1}}$

 $z(x)$: neural population activity Drift : $\Delta \mu(x) = \langle z(x) \rangle_{\text{Day 2}} - \langle z(x) \rangle_{\text{Day 1}}$ $\nabla_{z(x)}$: task-co-varying activity $\Sigma_{z(x)}$: trial-to-trial variability

 $z(x)$: neural population activity Drift : $\Delta \mu(x) = \langle z(x) \rangle_{\text{Dav 2}} - \langle z(x) \rangle_{\text{Dav 1}}$ $\nabla_{z(x)}$: task-co-varying activity $\Sigma_{z(x)}$: trial-to-trial variability

Drift & task-covarying directions: $\left\langle \| \Delta \mu(x)^\top \nabla_{z(x)} \|^2 \right\rangle$ Drift & noise directions: $\left\langle\Delta\mu(x)^\top \Sigma_{z(x)} \Delta\mu(x)\right\rangle$

(normalize for expected alignment)

... (some) drift resembles noise

Drift between days is concentrated in these directions

Drift between days is concentrated in these directions

Decoders that ignore trial-to-trial fluctuations can ignore this drift

Drift between days is concentrated in these directions

Decoders that ignore trial-to-trial fluctuations can ignore this drift

Task-relevant neural representation in parietal cortex **change**

This change does not disrupt behavior

What are the implications for neural coding?

We will show that:

- 1. Shifts in mean activity are mostly irrelevant: they resemble noise
- 2. Redundancy allows many codes, and there is a stable subspace
- 3. Modest plasticity would be required to track remaining drift

Can we find a long-term stable encoding subspace?

Time Bin

Concatenated decoder

... there is a (mostly) stable subspace

Y position (m)

Mouse 4 (10 days)

> Shuffle control Concatenated Same-day

... there is a (mostly) stable subspace

... there is a (mostly) stable subspace

Observation over time can identify a relatively stable linear subspace

For 100-200 neurons, over 7-10 days, we can decode from this subspace with 10-20% error increase

For 100-200 neurons, over 7-10 days, we can decode from this subspace with 10-20% error increase

Addressing this error increase:

For 100-200 neurons, over 7-10 days, we can decode from this subspace with 10-20% error increase

Addressing this error increase:

For 100-200 neurons, over 7-10 days, we can decode from this subspace with 10-20% error increase

Addressing this error increase:

 \blacktriangleright Accuracy required to perform task unclear?

For 100-200 neurons, over 7-10 days, we can decode from this subspace with 10-20% error increase

Addressing this error increase:

- \blacktriangleright Accuracy required to perform task unclear?
- \blacktriangleright Larger population observations may be needed? I Plasticity could track these changes?

For 100-200 neurons, over 7-10 days, we can decode from this subspace with 10-20% error increase

Addressing this error increase:

- \blacktriangleright Accuracy required to perform task unclear?
- \blacktriangleright Larger population observations may be needed?
- \blacktriangleright Plasticity could track these changes?

Task-relevant neural representation in parietal cortex **change**

This change does not disrupt behavior

What are the implications for neural coding?

We will show that:

- 1. Shifts in mean activity are mostly irrelevant: they resemble noise
- 2. Redundancy allows many codes, and there is a stable subspace
- 3. Modest plasticity would be required to track remaining drift

How much plasticity is needed to track an evolving code?

Constrained decoder

$$
(1 - \lambda) \sum_{d=1}^{n} ||x_d - M_d z_d||^2 + \lambda \sum_{d=1}^{n-1} ||M_{d+1} - M_d||^2
$$

Mouse 4 (10 days)

> Shuffle control Concatenated Same-day Constrained models

Small changes are enough

... (modest) plasticity is required

Continual learning could achieve this

Continual learning could achieve this

For 100-200 neurons, $O(10\%)$ weight-change/day

Continual learning could achieve this

For 100-200 neurons, O(10%) weight-change/day

Could be less for larger populations (depends on correlations)

Continual learning could achieve this

For 100-200 neurons, O(10%) weight-change/day

Could be less for larger populations (depends on correlations)

Neural codes in mouse PPC change w/o disrupting behavior

 \blacktriangleright Redundancy: Many neurons, low-D task

- \blacktriangleright Redundancy: Many neurons, low-D task
	- Ignore the noise (much drift resembles noise)

- \blacktriangleright Redundancy: Many neurons, low-D task
	- Ignore the noise (much drift resembles noise)
- \triangleright Space of possible representations remains 'sloppy'

- \blacktriangleright Redundancy: Many neurons, low-D task
	- Ignore the noise (much drift resembles noise)
- \triangleright Space of possible representations remains 'sloppy'
	- There is a stable subspace

- \blacktriangleright Redundancy: Many neurons, low-D task
	- Ignore the noise (much drift resembles noise)
- \triangleright Space of possible representations remains 'sloppy'
	- There is a stable subspace
- \blacktriangleright Plasticity

- \blacktriangleright Redundancy: Many neurons, low-D task
	- Ignore the noise (much drift resembles noise)
- \triangleright Space of possible representations remains 'sloppy'
	- There is a stable subspace
- \blacktriangleright Plasticity
	- Slow change may sill occur, but could be tracked

- \blacktriangleright Redundancy: Many neurons, low-D task
	- Ignore the noise (much drift resembles noise)
- \triangleright Space of possible representations remains 'sloppy'
	- There is a stable subspace
- \blacktriangleright Plasticity
	- Slow change may sill occur, but could be tracked
	- (internal prediction error feedback?)

Neural codes in mouse PPC change w/o disrupting behavior

- \blacktriangleright Redundancy: Many neurons, low-D task
	- Ignore the noise (much drift resembles noise)
- \triangleright Space of possible representations remains 'sloppy'
	- There is a stable subspace
- \blacktriangleright Plasticity
	- Slow change may sill occur, but could be tracked
	- (internal prediction error feedback?)

Observed changes in PCC:

Neural codes in mouse PPC change w/o disrupting behavior

- \blacktriangleright Redundancy: Many neurons, low-D task
	- Ignore the noise (much drift resembles noise)
- \triangleright Space of possible representations remains 'sloppy'
	- There is a stable subspace
- \blacktriangleright Plasticity
	- Slow change may sill occur, but could be tracked
	- (internal prediction error feedback?)

Observed changes in PCC:

 \blacktriangleright Learning of other tasks (or compensation for learning elsewhere?) I Ongoing plasticity at steady-state?

Neural codes in mouse PPC change w/o disrupting behavior

- \blacktriangleright Redundancy: Many neurons, low-D task
	- Ignore the noise (much drift resembles noise)
- \triangleright Space of possible representations remains 'sloppy'
	- There is a stable subspace
- \blacktriangleright Plasticity
	- Slow change may sill occur, but could be tracked
	- (internal prediction error feedback?)

Observed changes in PCC:

- \blacktriangleright Learning of other tasks (or compensation for learning elsewhere?)
- \triangleright Ongoing plasticity at steady-state? $\sum_{i=1}^{n}$

Neural codes in mouse PPC change w/o disrupting behavior

- \blacktriangleright Redundancy: Many neurons, low-D task
	- Ignore the noise (much drift resembles noise)
- \triangleright Space of possible representations remains 'sloppy'
	- There is a stable subspace
- \blacktriangleright Plasticity
	- Slow change may sill occur, but could be tracked
	- (internal prediction error feedback?)

Observed changes in PCC:

- \blacktriangleright Learning of other tasks (or compensation for learning elsewhere?)
- \triangleright Ongoing plasticity at steady-state?
- \blacktriangleright 'Time-stamping'?

Thanks!

Timothy O'Leary

Adrianna Loback

Dhruva Raman

Fulvio Forni

Laura Driscoll

Chris Harvey

Alon Rubin

Yaniv Ziv

This work was supported by the Human Frontier Science Program (RGY0069), ERC Starting Grant (StG FLEXNEURO 716643) and grants from the NIH (NS089521, MH107620, NS108410)

end

Synapses are unstable; Preserve effective connectivity:

Mongillo, Rumpel, Loewenstein (2017)

- Synapses are unstable; Preserve effective connectivity:
- \triangleright Multiple configurations \rightarrow same computation

Mongillo, Rumpel, Loewenstein (2017)

- \triangleright Synapses are unstable; Preserve **effective** connectivity:
- \triangleright Multiple configurations \rightarrow same computation
- \blacktriangleright E.g. Brinkman & al. (2018)

Brinkman & al. (2018)

▶ The Posterior Parietal Cortex (PPC) in mice contains neural correlates of spatial navigation

- ▶ The Posterior Parietal Cortex (PPC) in mice contains neural correlates of spatial navigation
- \triangleright Single neuron tunings change over days

- ▶ The Posterior Parietal Cortex (PPC) in mice contains neural correlates of spatial navigation
- \triangleright Single neuron tunings change over days
- \blacktriangleright The overall population continues to tile the task

- ▶ The Posterior Parietal Cortex (PPC) in mice contains neural correlates of spatial navigation
- \triangleright Single neuron tunings change over days
- \blacktriangleright The overall population continues to tile the task
- \triangleright Similar latent low-dimensional manifolds can be extracted
- ▶ The Posterior Parietal Cortex (PPC) in mice contains neural correlates of spatial navigation
- \triangleright Single neuron tunings change over days
- \blacktriangleright The overall population continues to tile the task
- \triangleright Similar latent low-dimensional manifolds can be extracted

Hypotheses

- ▶ The Posterior Parietal Cortex (PPC) in mice contains neural correlates of spatial navigation
- \triangleright Single neuron tunings change over days
- \blacktriangleright The overall population continues to tile the task
- \triangleright Similar latent low-dimensional manifolds can be extracted

Hypotheses

 \blacktriangleright Reconfiguration occurs within a 'null' space I Concurrent changes in other brain areas preserve

- ▶ The Posterior Parietal Cortex (PPC) in mice contains neural correlates of spatial navigation
- \triangleright Single neuron tunings change over days
- \blacktriangleright The overall population continues to tile the task
- \triangleright Similar latent low-dimensional manifolds can be extracted

Hypotheses

- \blacktriangleright Reconfiguration occurs within a 'null' space
- \triangleright Concurrent changes in other brain areas preserve sensorimotor transformations

- ▶ The Posterior Parietal Cortex (PPC) in mice contains neural correlates of spatial navigation
- \triangleright Single neuron tunings change over days
- \blacktriangleright The overall population continues to tile the task
- \triangleright Similar latent low-dimensional manifolds can be extracted

Hypotheses

- \blacktriangleright Reconfiguration occurs within a 'null' space
- \triangleright Concurrent changes in other brain areas preserve sensorimotor transformations

Approach

- ▶ The Posterior Parietal Cortex (PPC) in mice contains neural correlates of spatial navigation
- \triangleright Single neuron tunings change over days
- \blacktriangleright The overall population continues to tile the task
- \triangleright Similar latent low-dimensional manifolds can be extracted

Hypotheses

- \blacktriangleright Reconfiguration occurs within a 'null' space
- \triangleright Concurrent changes in other brain areas preserve sensorimotor transformations

Approach

 \triangleright Can we find a stable encoding subspace? In the much plasticity is needed to track an evolving code?

- ▶ The Posterior Parietal Cortex (PPC) in mice contains neural correlates of spatial navigation
- \triangleright Single neuron tunings change over days
- \blacktriangleright The overall population continues to tile the task
- \triangleright Similar latent low-dimensional manifolds can be extracted

Hypotheses

- \blacktriangleright Reconfiguration occurs within a 'null' space
- \triangleright Concurrent changes in other brain areas preserve sensorimotor transformations

Approach

- \triangleright Can we find a stable encoding subspace?
- \blacktriangleright How much plasticity is needed to track an evolving code?