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‘Drift’

Neurons in some sensorimotor areas reconfigure their tunings
even after the task is learned (‘drift’).

How can we interpret continuously changing neural codes?

What prevents this drift from disrupting task performance?
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Reward

Cue: Wall Pattern
Go left Go right

Virtual T-maze task

Delay:
no cues
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Normalized and filtered Ca2+ fluorescence

4× real-time
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Neural tunings tile the task
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Task representation is not fixed
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Neural tunings change over days-weeks
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Neural tunings change over days-weeks
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Neural tunings change over days-weeks
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Task structure persists

Driscoll et al. 2017
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Task structure persists

Low-dimensional 
neural dynamics

High-dimensional
population activity

Dimensionality
reduction

1

235
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Task structure persists

External covariates
(T-maze) 

day 1

day 2

day 3

 

Many degrees of freedom 
in internal representations
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Reconcile drift with stable performance:

Task-relevant neural representation in parietal cortex change
This change does not disrupt behavior

What are the implications for neural coding?

We will show that:
1. Shifts in mean activity are mostly irrelevant: they resemble

noise
2. Redundancy allows many codes, and there is a stable

subspace
3. Modest plasticity would be required to track remaining drift
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Shifts in mean activity are mostly irrelevant
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Not all drift is disruptive

Mouse 3 session 2/3 pseudotime 40%±10

previous turn right, next turn right
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Does drift resemble noise?

z(x) : neural population activity

Drift : ∆µ(x) = 〈z(x)〉Day 2 − 〈z(x)〉Day 1

∇z(x) : task-co-varying activity

Σz(x) : trial-to-trial variability
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Does drift resemble noise?

z(x) : neural population activity

Drift : ∆µ(x) = 〈z(x)〉Day 2 − 〈z(x)〉Day 1

∇z(x) : task-co-varying activity

Σz(x) : trial-to-trial variability

Drift & task-covarying directions:
〈
‖∆µ(x)>∇z(x)‖2

〉
Drift & noise directions:

〈
∆µ(x)>Σz(x)∆µ(x)

〉
(normalize for expected alignment)
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... (some) drift resembles noise

0
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Mouse 1 Mouse 3 Mouse 4 Mouse 5

Alignment of  with coding, noise subspaces

Chance level
Coding directions
Noise directions
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... (some) drift resembles noise

Neural populations exhibit structured trial-to-trial variability

Drift between days is concentrated in these directions

Decoders that ignore trial-to-trial fluctuations can ignore this drift

15



... (some) drift resembles noise

Neural populations exhibit structured trial-to-trial variability

Drift between days is concentrated in these directions

Decoders that ignore trial-to-trial fluctuations can ignore this drift

15



... (some) drift resembles noise

Neural populations exhibit structured trial-to-trial variability

Drift between days is concentrated in these directions

Decoders that ignore trial-to-trial fluctuations can ignore this drift

15



... (some) drift resembles noise

Neural populations exhibit structured trial-to-trial variability

Drift between days is concentrated in these directions

Decoders that ignore trial-to-trial fluctuations can ignore this drift

15



Reconcile drift with stable performance:

Task-relevant neural representation in parietal cortex change
This change does not disrupt behavior

What are the implications for neural coding?

We will show that:
1. Shifts in mean activity are mostly irrelevant: they resemble

noise
2. Redundancy allows many codes, and there is a stable

subspace
3. Modest plasticity would be required to track remaining drift
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Can we find a long-term stable encoding
subspace?
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Region of 'good' models

Optimal 
single-day
decoders

Good multi-day decoder

Day 3

Day 2

Day 1

Concatenated decoder
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... there is a (mostly) stable subspace
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... there is a (mostly) stable subspace

Observation over time can identify a relatively stable linear
subspace

For 100-200 neurons, over 7-10 days, we can decode from this
subspace with 10-20% error increase

Addressing this error increase:
I Accuracy required to perform task unclear?
I Larger population observations may be needed?
I Plasticity could track these changes?
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Reconcile drift with stable performance:

Task-relevant neural representation in parietal cortex change
This change does not disrupt behavior

What are the implications for neural coding?

We will show that:
1. Shifts in mean activity are mostly irrelevant: they resemble

noise
2. Redundancy allows many codes, and there is a stable

subspace
3. Modest plasticity would be required to track remaining

drift
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How much plasticity is needed to track an
evolving code?
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Small changes are enough
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... (modest) plasticity is required

Good decoding performance with small weight changes is possible

Continual learning could achieve this

For 100-200 neurons, O(10%) weight-change/day

Could be less for larger populations (depends on correlations)
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Drift is compatible with stable performance:

Neural codes in mouse PPC change w/o disrupting behavior
I Redundancy: Many neurons, low-D task

• Ignore the noise (much drift resembles noise)
I Space of possible representations remains ‘sloppy’

• There is a stable subspace
I Plasticity

• Slow change may sill occur, but could be tracked
• (internal prediction error feedback?)

Observed changes in PCC:
I Learning of other tasks (or compensation for learning

elsewhere?)
I Ongoing plasticity at steady-state?
I ‘Time-stamping’?
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Mongillo, Rumpel, Loewenstein (2017), review:
I Synapses are unstable; Preserve effective connectivity:
I Multiple configurations → same computation
I E.g. Brinkman & al. (2018)
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Premise
I The Posterior Parietal Cortex (PPC) in mice contains neural

correlates of spatial navigation
I Single neuron tunings change over days
I The overall population continues to tile the task
I Similar latent low-dimensional manifolds can be extracted

Hypotheses
I Reconfiguration occurs within a ‘null’ space
I Concurrent changes in other brain areas preserve

sensorimotor transformations

Approach
I Can we find a stable encoding subspace?
I How much plasticity is needed to track an evolving code?
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