Statistical Mechanics and Inference in Models of Neural Dynamics

M Rule

Understand emergence of collective neural dynamics

Tens, thousands, billions of neurons.... any hope?

 \bigcirc

$$\partial_t x = f(x) + \text{noise}$$

$$\partial_t \vec{x} = f(\vec{x}) + \text{noise}$$

$$\partial_t \vec{x} = f(\vec{x}) + \text{noise}$$

 $\partial_t \Pr(x) = f(\Pr(x))$

 $\partial_t \Pr(x) = f(\Pr(x))$

$$\partial_t \Pr(x) = f(\Pr(x))$$

$$\partial_t \Pr(x) = f(\Pr(x))$$

$$\partial_{t} \left\langle x \right\rangle = f\left(\left\langle x \right\rangle, \left\langle x x^{\top} \right\rangle\right)$$
$$\partial_{t} \left\langle x x^{\top} \right\rangle = g\left(\left\langle x \right\rangle, \left\langle x x^{\top} \right\rangle\right)$$

$$\partial_{t} \left\langle x \right\rangle = f\left(\left\langle x \right\rangle, \left\langle x x^{\top} \right\rangle\right)$$
$$\partial_{t} \left\langle x x^{\top} \right\rangle = g\left(\left\langle x \right\rangle, \left\langle x x^{\top} \right\rangle\right)$$

$$\partial_{t} \left\langle x \right\rangle = f\left(\left\langle x \right\rangle, \left\langle x x^{\top} \right\rangle\right)$$
$$\partial_{t} \left\langle x x^{\top} \right\rangle = g\left(\left\langle x \right\rangle, \left\langle x x^{\top} \right\rangle\right)$$

$$\partial_{t} \left\langle x \right\rangle = f\left(\left\langle x \right\rangle, \left\langle x x^{\top} \right\rangle\right)$$
$$\partial_{t} \left\langle x x^{\top} \right\rangle = g\left(\left\langle x \right\rangle, \left\langle x x^{\top} \right\rangle\right)$$

$$\partial_t \langle x \rangle = f\left(\langle x \rangle, \left\langle x x^\top \right\rangle, \text{higher moments?}\right)$$
$$\partial_t \left\langle x x^\top \right\rangle = g\left(\langle x \rangle, \left\langle x x^\top \right\rangle, \text{higher moments?}\right)$$

Moment Closure:

- Assume distributional form for x
- Match low-order moments
- Compute effect of higher-order moments under assumed distribution

Closed equations:

$$\dot{\mu} = f(\mu, \Sigma)$$
$$\dot{\Sigma} = g(\mu, \Sigma)$$

Stochastic Descriptions of Microscopic Dynamics

Part 1 A statistical field interpretation of Point-Process models

Conditional intensity given history, inputs ▶ Pr(spike) = f(history, input)

Time →

Conditional intensity given history, inputs

• Pr(spike) = f(history, input)

Conditional intensity given history, inputs

• Pr(spike) = f(history, input)

Conditional intensity given history, inputs ▶ Pr(spike) = f(history, input)

Conditional intensity given history, inputs

• Pr(spike) = f(history, input)

Conditional intensity given history, inputs ▶ Pr(spike) = f(history, input)

Conditional intensity given history, inputs
▶ Pr(spike) = f(history, input)

Conditional intensity given history, inputs

•
$$Pr(spike) = f(history, input)$$

Good

- Fast regression
- Pairwise spiking model
Autoregressive Point Process Models

Conditional intensity given history, inputs

• Pr(spike) = f(history, input)

Good

- Fast regression
- Pairwise spiking model

Could improve...

- Large populations?
- Stability?

Time →

Time →

Time →

Time →

Latent dynamics drive spiking

ẋ = *f*(*x*)
Pr(spike) = *g*(*x*)

Time →

Latent dynamics drive spiking

ẋ = *f*(*x*)
Pr(spike) = *g*(*x*)

Time →

Latent dynamics drive spiking

ẋ = *f*(*x*)
Pr(spike) = *g*(*x*)

Latent dynamics drive spiking

Good

Robust population models

Emergence from single-unit?

Good

 $\blacktriangleright \dot{x} = f(x)$

 $\blacktriangleright \operatorname{Pr(spike)} = q(x)$

Robust population models

Neural mass models

Mean-field limit, e.g. firing rate v $\blacktriangleright \tau \dot{v} = -v + f(Av + \theta)$

Neural mass models

Mean-field limit, e.g. firing rate v

$$\tau \dot{v} = -v + f(Av + \theta)$$

Good

- Analytically tractable
- Physical intuition

Neural mass models

Mean-field limit, e.g. firing rate v

$$\tau \dot{v} = -v + f(Av + \theta)$$

Good

- Analytically tractable
- Physical intuition

Could improve...

- Data-driven?
- Detail?

Moment-closure on PP-GLM models

Combine aspects ...

- Neural field models:
 - Analytically tractable ODEs
 - with mechanistic interpretation
- State-space models:
 - Low dimensional
 - Data-driven

Moment-closure on PP-GLM models

Combine aspects ...

- Neural field models:
 - Analytically tractable ODEs
 - with mechanistic interpretation
- State-space models:
 - Low dimensional
 - Data-driven

Consider distribution over possible point-process paths

Describe dynamics of moments of PP-GLM models

Consider a log-linear model

Consider a log-linear model

$$\begin{split} y(t) &\sim \text{Poisson}(\lambda \cdot dt) \\ \lambda(t) &= \exp\left(H(\tau)^\top h(\tau, t) + I(t)\right) \\ H(\tau) &: \text{history filter} \\ I(t) &: \text{input} \end{split}$$

Consider a log-linear model

$$\begin{split} y(t) &\sim \text{Poisson}(\lambda \cdot dt) \\ \lambda(t) &= \exp\left(H(\tau)^\top h(\tau, t) + I(t)\right) \\ H(\tau) &: \text{history filter} \\ I(t) &: \text{input} \end{split}$$

History $h(\tau, t)$ of spikes y(t):

 $\partial_t h(\tau, t) = \delta_{\tau=0} y(t) - \partial_{\tau} h(\tau, t)$

Consider a log-linear model

$$y(t) \sim \text{Poisson}(\lambda \cdot dt)$$
$$\lambda(t) = \exp\left(H(\tau)^{\top}h(\tau, t) + I(t)\right)$$
$$H(\tau) : \text{history filter}$$
$$I(t) : \text{input}$$

History $h(\tau, t)$ of spikes y(t): $\partial_t h(\tau, t) = \delta_{\tau=0} y(t) - \partial_{\tau} h(\tau, t)$ Poisson noise \rightarrow Gaussian: $y(t) \approx \lambda \cdot dt + \sqrt{\lambda} \cdot dW$

Continuous approximation to history process

Consider a log-linear model

$$y(t) \sim \text{Poisson}(\lambda \cdot dt)$$
$$\lambda(t) = \exp\left(H(\tau)^{\top}h(\tau, t) + I(t)\right)$$
$$H(\tau) : \text{history filter}$$
$$I(t) : \text{input}$$

History $h(\tau, t)$ of spikes y(t): $\partial_t h(\tau, t) = \delta_{\tau=0} y(t) - \partial_{\tau} h(\tau, t)$ Poisson noise \rightarrow Gaussian: $y(t) \approx \lambda \cdot dt + \sqrt{\lambda} \cdot dW$

Continuous approximation to history process

$$dh(\tau, t) = (\delta_{\tau=0}\lambda - \partial_{\tau}h(\tau, t)) \cdot dt + \delta_{\tau=0}\sqrt{\lambda} \cdot dW$$

Does it work?

Case study:

- Emergent dynamics from spiking interactions
- PP-GLM emulation of phasic-bursting lzhikevich neuron (?)

Does it work?

Case study:

- Emergent dynamics from spiking interactions
- PP-GLM emulation of phasic-bursting lzhikevich neuron (?)

Moment-closure of autoregressive PP-GLM

Moment closure of PP-GLM history process

$$\partial_t \mu_h = -\partial_\tau \mu_h + \delta_{\tau=0} \left\langle \lambda \right\rangle$$
$$\left\langle \lambda \right\rangle = \exp\left(H^\top \mu_h + I(t) + \frac{1}{2}H^\top \Sigma H\right)$$

$$\partial_t \Sigma_h = J \Sigma_h + \Sigma_h J^\top + Q$$
$$J = \delta_{\tau=0} \langle \lambda \rangle H^\top - \partial_{\tau}$$
$$Q = \delta_{\tau=0} \langle \lambda \rangle \delta_{\tau=0}^\top$$

2nd-order approximation

$$\begin{aligned} \partial_t \mu_h &= -\partial_\tau \mu_h + \delta_{\tau=0} \left\langle \lambda \right\rangle \\ \left\langle \lambda \right\rangle &= \exp\left(H^\top \mu_h + I(t)\right) \left(1 + \frac{1}{2} H^\top \Sigma H\right) \end{aligned}$$

$$\partial_t \Sigma_h = J \Sigma_h + \Sigma_h J^\top + Q$$
$$Q = \delta_{\tau=0} \langle \lambda \rangle \, \delta_{\tau=0}^\top$$
$$J = \delta_{\tau=0} \bar{\lambda} H^\top - \partial_\tau$$
$$\bar{\lambda} = \exp\left(H^\top \mu_h + I(t)\right)$$

?

A SSM with point-process moment interpretation

Add Poisson noise to recurrent linear model (?)

$$dx = [Ax + C\lambda] \cdot dt + C\sqrt{\lambda} \cdot dW$$
$$w = Hx + m$$
$$\lambda = \exp(w)$$

Second-order state-space equations for extended Kalman filtering

$$\partial_t \mu_x = A \mu_x + C \langle \lambda \rangle \qquad \qquad \partial_t \Sigma_x = J \Sigma_x + \Sigma_x J^\top + Q$$

$$\mu_w = H \mu_x + m \qquad \qquad J = C \langle \lambda \rangle H^\top + A$$

$$\Sigma_w = H^\top \Sigma_x H \qquad \qquad Q = C \langle \lambda \rangle C^\top$$

$$\langle \lambda \rangle = \exp\left(\mu_w + \frac{1}{2} \Sigma_w\right)$$

A SSM with point-process moment interpretation

Add Poisson noise to recurrent linear model (?)

$$dx = [Ax + C\lambda] \cdot dt + C\sqrt{\lambda} \cdot dW$$
$$w = Hx + m$$
$$\lambda = f(w)$$

Second-order state-space equations for extended Kalman filtering

$$\partial_t \mu_x = A \mu_x + C \langle \lambda \rangle \qquad \qquad \partial_t \Sigma_x = J \Sigma_x + \Sigma_x J^\top + Q$$
$$\mu_w = H \mu_x + m \qquad \qquad J = C f'(\mu_w) H^\top + A$$
$$\Sigma_w = H^\top \Sigma_x H \qquad \qquad Q = C \langle \lambda \rangle C^\top$$
$$\langle \lambda \rangle \approx f(\mu_w) + \frac{1}{2} \Sigma_w f''(\mu_w)$$

A statistical field interpretation of Point-Process models

 $\mathsf{PP}\text{-}\mathsf{GLM} \to \mathsf{Langevin} \to \mathsf{moment-closure} \to \dot{\mu}_h, \, \dot{\Sigma}_h$

Closed equations for 'statistical fields' (history moments)

A statistical field interpretation of Point-Process models

 $\mathsf{PP}\text{-}\mathsf{GLM} \to \mathsf{Langevin} \to \mathsf{moment-closure} \to \dot{\mu}_h, \, \dot{\Sigma}_h$

Closed equations for 'statistical fields' (history moments)

2nd-order SSM with mechanistic interpretation

- Spikes are Poisson measurements
- Spiking interaction \rightarrow field coupling (?)

A statistical field interpretation of Point-Process models

 $\mathsf{PP}\text{-}\mathsf{GLM} \to \mathsf{Langevin} \to \mathsf{moment-closure} \to \dot{\mu}_h, \, \dot{\Sigma}_h$

Closed equations for 'statistical fields' (history moments)

2nd-order SSM with mechanistic interpretation

- Spikes are Poisson measurements
- Spiking interaction \rightarrow field coupling (?)

New directions

- Detect instability
- Bayesian estimation
- Analytic tools for reduction of population models?

Part 2 Bayesian State-Space Inference for Stochastic Neural fields

Developing retina exhibits spatiotemporal waves

$10 \times \text{ real-time}$

Developing retina exhibits spatiotemporal waves

$10 \times {\rm ~real-time}$

 $10 \times {\rm ~real-time}$

 $10 \times {\rm ~real-time}$

 $10 \times \text{ real-time}$

 $10 \times \text{ real-time}$

 $10 \times \text{ real-time}$

 $10 \times \text{ real-time}$

$10 \times \text{ real-time}$

 $10 \times {\rm ~real-time}$

 $10 \times {\rm ~real-time}$

 $10 \times \text{ real-time}$

 $10 \times {\rm ~real-time}$

 $10 \times {\rm ~real-time}$

 $10 \times {\rm ~real-time}$

 $10 \times \text{ real-time}$

 $10 \times \text{ real-time}$

 $10 \times {\rm ~real-time}$

Frequent: small events that do not propagate

 $10 \times \text{ real-time}$

Frequent: small events that do not propagate

Rare: large waves that cover the retina

Waves emerge in inner nuclear layer

Bipolar and amacrine cells (generate waves)

Waves emerge in inner nuclear layer

Bipolar and amacrine cells (generate waves)

Waves induce spiking in ganglion cell outputs

Bipolar and amacrine cells (generate waves)

Retinal Ganglion Cells

4096-electrode MEAs record RGC outputs

Bipolar and amacrine cells (generate waves)

Retinal Ganglion Cells

Multi-electrode array (spiking observations)

Objective: infer latent states

State inference

- Given spiking data and model parameters,
- Can we infer voltage, conductance, current?

Objective: infer latent states

State inference

- Given spiking data and model parameters,
- Can we infer voltage, conductance, current?

Conductance models

► Hennig et al. '09: Realistic discrete neurons (too complex)

- Slow refractory dynamics; rare, random depolarization
- ► Lansdell et al. '14: Continuum field approach
 - Conductance dynamics still too complicated

Objective: infer latent states

State inference

- Given spiking data and model parameters,
- Can we infer voltage, conductance, current?

Conductance models

► Hennig et al. '09: Realistic discrete neurons (too complex)

- Slow refractory dynamics; rare, random depolarization
- Lansdell et al. '14: Continuum field approach
 - Conductance dynamics still too complicated

Something simpler?
Buice & Cowan '09: a simple model for retinal waves

3-state model of retinal waves (?)

- ► Q "Quiescent" (not spiking)
- A "Active" (spiking)
- ► R "Refractory"

Buice & Cowan '09: a simple model for retinal waves

3-state model of retinal waves (?)

- ► Q "Quiescent" (not spiking)
- A "Active" (spiking)
- ► R "Refractory"

4 rates

- ▶ ρ_q Spontaneous activation $\blacksquare \rightarrow \blacksquare$
- ▶ ρ_a Cells become refractory $\blacksquare \rightarrow \blacksquare$
- ▶ ρ_r Refractory cells become Quiescent → ■
- ρ_e Excitation of Quiescent cells \blacksquare \rightarrow \blacksquare

Spatially extended 3-state mean-field model

Model *fraction* of N neurons in each state

- Let ρ_{qa} denote effective excitation $\rho_{qa} = \rho_q + f[A]\rho_e$
- Means evolve as

$$\partial_t Q = -\rho_{qa}Q + \rho_r R$$
$$\partial_t A = -\rho_a A + \rho_{qa}Q$$
$$\partial_t R = -\rho_r R + \rho_a A$$

Space:

Extend Q, A, and R fields be defined over a 2D (x,y) domain
Nonlocal excitation kernel k radius σ_i

$$f[A] = k * A, \qquad k(x,y) \propto \exp\left(-\frac{1}{2} \frac{x^2 + y^2}{\sigma_i^2}\right)$$

$$f[A] = \begin{cases} A - \varepsilon, & \text{if } A \ge \varepsilon \\ 0 & \text{elsewise} \end{cases}$$

 $\Pr(Q \to A) \sim \rho_q \cdot \delta,$

$$f[A] = \begin{cases} A - \varepsilon, & \text{if } A \ge \varepsilon \\ 0 & \text{elsewise} \end{cases}$$

 $\Pr(Q \to A) \sim \rho_q \cdot \delta,$

$$f[A] = \begin{cases} A - \varepsilon, & \text{if } A \ge \varepsilon \\ 0 & \text{elsewise} \end{cases}$$

 $\Pr(Q \to A) \sim \rho_q \cdot \delta,$

$$f[A] = \begin{cases} A - \varepsilon, & \text{if } A \ge \varepsilon \\ 0 & \text{elsewise} \end{cases}$$

 $\Pr(Q \to A) \sim \rho_q \cdot \delta,$

$$f[A] = \begin{cases} A - \varepsilon, & \text{if } A \ge \varepsilon \\ 0 & \text{elsewise} \end{cases}$$

 $\Pr(Q \to A) \sim \rho_q \cdot \delta,$

$$f[A] = \begin{cases} A - \varepsilon, & \text{if } A \ge \varepsilon \\ 0 & \text{elsewise} \end{cases}$$

 $\Pr(Q \to A) \sim \rho_q \cdot \delta,$

$$f[A] = \begin{cases} A - \varepsilon, & \text{if } A \ge \varepsilon \\ 0 & \text{elsewise} \end{cases}$$

 $\Pr(Q \to A) \sim \rho_q \cdot \delta,$

$$f[A] = \begin{cases} A - \varepsilon, & \text{if } A \ge \varepsilon \\ 0 & \text{elsewise} \end{cases}$$

 $\Pr(Q \to A) \sim \rho_q \cdot \delta,$

$$f[A] = \begin{cases} A - \varepsilon, & \text{if } A \ge \varepsilon \\ 0 & \text{elsewise} \end{cases}$$

 $\Pr(Q \to A) \sim \rho_q \cdot \delta,$

$$f[A] = \begin{cases} A - \varepsilon, & \text{if } A \ge \varepsilon \\ 0 & \text{elsewise} \end{cases}$$

 $\Pr(Q \to A) \sim \rho_q \cdot \delta,$

$$f[A] = \begin{cases} A - \varepsilon, & \text{if } A \ge \varepsilon \\ 0 & \text{elsewise} \end{cases}$$

 $\Pr(Q \to A) \sim \rho_q \cdot \delta,$

$$f[A] = \begin{cases} A - \varepsilon, & \text{if } A \ge \varepsilon \\ 0 & \text{elsewise} \end{cases}$$

 $\Pr(Q \to A) \sim \rho_q \cdot \delta,$

$$f[A] = \begin{cases} A - \varepsilon, & \text{if } A \ge \varepsilon \\ 0 & \text{elsewise} \end{cases}$$

$$\Pr(Q \to A) \sim \rho_q \cdot \delta,$$

$$f[A] = \begin{cases} A - \varepsilon, & \text{if } A \ge \varepsilon \\ 0 & \text{elsewise} \end{cases}$$

 $\Pr(Q \to A) \sim \rho_q \cdot \delta,$

$$f[A] = \begin{cases} A - \varepsilon, & \text{if } A \ge \varepsilon \\ 0 & \text{elsewise} \end{cases}$$

 $\Pr(Q \to A) \sim \rho_q \cdot \delta,$

$$f[A] = \begin{cases} A - \varepsilon, & \text{if } A \ge \varepsilon \\ 0 & \text{elsewise} \end{cases}$$

 $\Pr(Q \to A) \sim \rho_q \cdot \delta,$

Stochastic 3-state model

Finite, discrete nature of the retina leads to fluctuations

Stochastic 3-state model

Finite, discrete nature of the retina leads to **fluctuations** Restore fluctuation effects as **noise**

- State transition ~ Poisson
- Variance = mean \sim rate \cdot concentration

Stochastic 3-state model

Finite, discrete nature of the retina leads to fluctuations

Restore fluctuation effects as noise

- State transition ~ Poisson
- Variance = mean \sim rate \cdot concentration

Langevin approximation:

- Approximate Poisson (jump) noise with Gaussian (continuous)
- Fluctuations $\sim \mathcal{O}\left(\sqrt{N}\right)$ for N transitions

32/1

32/1

32/1

32/1

Active Refractory

Quiescent Active

Refractory

Quiescent

Active

Refractory

Quiescent Active

Refractory

State-space model: 3-state moment-closure equations

Means:

$$\begin{array}{ll} \partial_t \left\langle Q \right\rangle = r_{rq} - r_{qa} & r_{qa} = \rho_q \left\langle Q \right\rangle + \rho_e \left\langle Q \cdot f[A] \right\rangle \\ \partial_t \left\langle A \right\rangle = r_{qa} - r_{ar} & r_{ar} = \rho_a \left\langle A \right\rangle \\ \partial_t \left\langle R \right\rangle = r_{ar} - r_{rq} & r_{rq} = \rho_r \left\langle R \right\rangle \end{array}$$

Covariance:

- Deterministic evolution given by Jacobian of mean
- Noise contribution is:

$$\Sigma_{\text{noise}}(Q, A, R) = \begin{bmatrix} r_{qa} + r_{rq} & -r_{qa} & -r_{rq} \\ -r_{qa} & r_{qa} + r_{ar} & -r_{ar} \\ -r_{rq} & -r_{ar} & r_{ar} + r_{qa} \end{bmatrix}$$

 θ : Model parameters

- θ : Model parameters
- $\mu, \Sigma: QAR$ **3-state** Gaussian appx.

- θ : Model parameters
- $\mu, \Sigma: QAR$ **3-state** Gaussian appx.
 - β : Observation model

 θ : Model parameters

 λ : Ganglion Cell firing intensity

- $\mu, \Sigma : QAR$ **3-state** Gaussian appx.
 - β : Observation model

- θ : Model parameters
- $\mu, \Sigma : QAR$ **3-state** Gaussian appx.
 - β : Observation model

- λ : Ganglion Cell firing **intensity**
- $y: \mathbf{Observed} \text{ point-process}$
State-space model for inference

- θ : Model parameters
- $\mu, \Sigma: QAR$ **3-state** Gaussian appx.
 - β : Observation model

- λ : Ganglion Cell firing **intensity**
- $y: \mathbf{Observed} \text{ point-process}$
- T : for all time-points $t \in T$

Discrete: break time into Δt width bins, and let

- \blacktriangleright *n* index time-bins
- \blacktriangleright x be a vector of *latent states*
- ▶ *y* be a vector of *observations* (spikes)

Discrete: break time into Δt width bins, and let

- n index time-bins
- \blacktriangleright x be a vector of *latent states*
- ▶ y be a vector of *observations* (spikes)

Predict next state:

$$\Pr(x_n) = \int \Pr(x_n | x_{n-1}) \Pr(x_{n-1}) dx_{n-1}$$

Discrete: break time into Δt width bins, and let

- n index time-bins
- x be a vector of *latent states*
- y be a vector of observations (spikes)

Predict next state: $\Pr(x_n) = \int \Pr(x_n | x_{n-1}) \Pr(x_{n-1}) dx_{n-1}$

Update based on observations: $Pr(x_n|y_n) \propto 1$

 $\Pr(x_n|y_n) \propto \Pr(y_n|x_n) \Pr(x_n)$

Discrete: break time into Δt width bins, and let

- n index time-bins
- x be a vector of *latent states*
- y be a vector of observations (spikes)

Predict next state: $Pr(x_n) = \int Pr(x_n|x_{n-1}) Pr(x_{n-1}) dx_{n-1}$

Update based on observations:

 $\Pr(x_n|y_n) \propto \Pr(y_n|x_n) \Pr(x_n)$

Approximate:

- $\Pr(x) \sim \text{multivariate Gaussian}$
- ▶ Poisson likelihood Pr(y|x) via Laplace approximation

37 / 1

Blue: Quiescent (Q)

500

Q λ x10

R No. Spikes x10

Q λ x10

460

440

No. Spikes x10

480

520

560

Q λ x10

R No. Spikes x10

Q λ x10

R No. Spikes x10

540

True (860 out of 3000)

True (1180 out of 3000)

P6 mouse retina; $20 \times$ real-time

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)
P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)
P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

P6 mouse retina; $20 \times$ real-time

Blue: Quiescent (Q) Red: Active (A) Green: Refractory (R)

Inferring parameters...

Neural field \rightarrow SSMs: New directions

Neural field moment closure applied to retinal waves:

- ► 3-state model (??)
- Infer retinal wave states
- Parameters capture developmental shifts

Neural field \rightarrow SSMs: New directions

Neural field moment closure applied to retinal waves:

- 3-state model (??)
- Infer retinal wave states
- Parameters capture developmental shifts
- Statistical mechanics \rightarrow Bayesian inference
 - Posterior for population states
 - Partially observed via spiking data
 - Posterior for neural field parameters given data
 - New algorithms to optimize, sample, variational approx.

In Summary...

Moment Closure Point-Process Generalized Linear Model

Moment Closure Point-Process Generalized Linear Model

Moment-closure on Langevin approximation to history process

Moment Closure Point-Process Generalized Linear Model

- Moment-closure on Langevin approximation to history process
- 'Neural field in time' state-space equations

Moment Closure Point-Process Generalized Linear Model

- Moment-closure on Langevin approximation to history process
- 'Neural field in time' state-space equations
- Explore
 - Generalize to spatiotemporal population case
 - Apply to data

Moment Closure Point-Process Generalized Linear Model

- Moment-closure on Langevin approximation to history process
- 'Neural field in time' state-space equations
- Explore
 - Generalize to spatiotemporal population case
 - Apply to data

Neural Field State Space Model

Moment Closure Point-Process Generalized Linear Model

- Moment-closure on Langevin approximation to history process
- 'Neural field in time' state-space equations
- Explore
 - Generalize to spatiotemporal population case
 - Apply to data

Neural Field State Space Model

Moment-closure for 3-state retinal wave model

Moment Closure Point-Process Generalized Linear Model

- Moment-closure on Langevin approximation to history process
- 'Neural field in time' state-space equations
- Explore
 - Generalize to spatiotemporal population case
 - Apply to data

Neural Field State Space Model

- Moment-closure for 3-state retinal wave model
- Second-order equations define state-space

Moment Closure Point-Process Generalized Linear Model

- Moment-closure on Langevin approximation to history process
- 'Neural field in time' state-space equations
- Explore
 - Generalize to spatiotemporal population case
 - Apply to data

Neural Field State Space Model

- Moment-closure for 3-state retinal wave model
- Second-order equations define state-space
- Bayesian inference of states and model likelihood

Single-neuron \rightarrow collective dynamics in 5 easy steps

1. Microscopic description

Stochastic Descriptions of Microscopic Dynamics

Single-neuron \rightarrow collective dynamics in 5 easy steps

- 1. Microscopic description
- 2. Langevin approximation

Stochastic Descriptions of Microscopic Dynamics Master Equation / Fokker Plank Equation

> Stochastic Descriptions of Emergent Population Dynamics
- 1. Microscopic description
- 2. Langevin approximation
- 3. Moment equations $\dot{\mu}$, $\dot{\Sigma}$

- 1. Microscopic description
- 2. Langevin approximation
- 3. Moment equations $\dot{\mu}$, $\dot{\Sigma}$
- 4. Second-order state-space model
 - Spiking data as measurements
 - States with physical interpretation

- 1. Microscopic description
- 2. Langevin approximation
- 3. Moment equations $\dot{\mu}$, $\dot{\Sigma}$
- 4. Second-order state-space model
 - Spiking data as measurements
 - States with physical interpretation
- 5. Bayesian Inference

- 1. Microscopic description
- 2. Langevin approximation
- 3. Moment equations $\dot{\mu}$, $\dot{\Sigma}$
- 4. Second-order state-space model
 - Spiking data as measurements
 - States with physical interpretation
- 5. Bayesian Inference
 - Infer population states from data
 - Optimize likelihood via filtering

Generality

Generality

Reduce more realistic models in this framework?

Generality

Reduce more realistic models in this framework?

Accuracy

Generality

Reduce more realistic models in this framework?

Accuracy

Other ways to 'close' moment equations

Generality

- Reduce more realistic models in this framework?
- Accuracy
 - Other ways to 'close' moment equations
 - Moment closure using other distributions

Generality

Reduce more realistic models in this framework?

Accuracy

Other ways to 'close' moment equations

- Moment closure using other distributions
- 2nd-order SSM: locally quadratic, others?

Generality

Reduce more realistic models in this framework?

Accuracy

- Other ways to 'close' moment equations
 - Moment closure using other distributions
 - 2nd-order SSM: locally quadratic, others?
- ► Higher moments? Particle filter?

Generality

Reduce more realistic models in this framework?

Accuracy

Other ways to 'close' moment equations

- Moment closure using other distributions
- 2nd-order SSM: locally quadratic, others?
- ► Higher moments? Particle filter?

Generality

Reduce more realistic models in this framework?

Accuracy

- Other ways to 'close' moment equations
 - Moment closure using other distributions
 - 2nd-order SSM: locally quadratic, others?
- ► Higher moments? Particle filter?

Efficiency

State-space models from moment closure

Generality

Reduce more realistic models in this framework?

Accuracy

- Other ways to 'close' moment equations
 - Moment closure using other distributions
 - 2nd-order SSM: locally quadratic, others?
- ► Higher moments? Particle filter?

- State-space models from moment closure
 - Difficult to integrate?

Generality

Reduce more realistic models in this framework?

Accuracy

- Other ways to 'close' moment equations
 - Moment closure using other distributions
 - 2nd-order SSM: locally quadratic, others?
- ► Higher moments? Particle filter?

- State-space models from moment closure
 - Difficult to integrate?
 - Non-convex likelihoods?

Generality

Reduce more realistic models in this framework?

Accuracy

- Other ways to 'close' moment equations
 - Moment closure using other distributions
 - 2nd-order SSM: locally quadratic, others?
- Higher moments? Particle filter?

- State-space models from moment closure
 - Difficult to integrate?
 - Non-convex likelihoods?
- Requires new algorithms

Single-neuron \rightarrow collective dynamics: **Directions**

Neural mass/field:

- Bayesian framework from statistical mechanics?
- Far from μ-field: Statistical fields of point-processes?
- Fields as both spatial and temporal coarse-graining?

Single-neuron \rightarrow collective dynamics: **Directions**

Neural mass/field:

- Bayesian framework from statistical mechanics?
- Far from μ-field: Statistical fields of point-processes?
- Fields as both spatial and temporal coarse-graining?

State Space Models:

- Incorporate nonlinearities and Poisson $O(\sqrt{N})$ noise?
- States not latent: partially-observed point-process?

Single-neuron \rightarrow collective dynamics: **Directions**

Neural mass/field:

- Bayesian framework from statistical mechanics?
- Far from μ-field: Statistical fields of point-processes?
- Fields as both spatial and temporal coarse-graining?

State Space Models:

- Incorporate nonlinearities and Poisson $O(\sqrt{N})$ noise?
- States not latent: partially-observed point-process?

Autoregressive Point Process Models:

- Bayesian estimation: add dynamical fidelity into loss?
- Statistical field description of point process?
 - Coarse-graining of pairwise models?

Acknowledgements

Project supervisors:

- Guido Sanguinetti
- Matthias Hennig

Experimental collaborators:

- Evelyne Sernagor
- Gerrit Hilgen

Computational and theoretical collaborators:

- David Schnoerr
- Martino Sorbaro
- Botond Cseke

Funding source: EPSRC

Sanguinetti+Hennig labs:

- Alina Selega
- Andreas C. Kapourani
- Anastasis Georgoulas
- Botond Cseke
- David Schnoerr
- Dimitris Milios
- Edward Wallace
- Gabriele Schweikert
- Giulio Caravagna
- Michalis Michaelides
- Tom Mayo
- Yuanhua Huang

Stop Here

Appendix

Statistical Models

Statistical Models

Write down equations for moments of density

Write down equations for moments of density Differentiate in time

Write down equations for moments of density Differentiate in time Get (possibly infinite) series in terms of moments

Write down equations for moments of density Differentiate in time Get (possibly infinite) series in terms of moments Low-order moments may couple to higher-order moments

Write down equations for moments of density Differentiate in time Get (possibly infinite) series in terms of moments Low-order moments may couple to higher-order moments Assume a particular density

Write down equations for moments of density Differentiate in time Get (possibly infinite) series in terms of moments Low-order moments may couple to higher-order moments Assume a particular density Write down higher-order moments in terms of lower-order moments

Write down equations for moments of density

Differentiate in time

Get (possibly infinite) series in terms of moments

Low-order moments may couple to higher-order moments

Assume a particular density

Write down higher-order moments in terms of lower-order moments Closed system

Assume a density

Assume a density Differentiate equations for the moments

Assume a density Differentiate equations for the moments Hope that expectations w.r.t. assumed density have closed form

Assume a density Differentiate equations for the moments Hope that expectations w.r.t. assumed density have closed form e.g. for Gaussian $\langle x^2 \rangle \langle e^x \rangle \langle e^{x^2} \rangle$ etc. convenient

Three approaches to spiking population models

Generalized Linear Point-Process Models (PP-GLM)
Generalized Linear Point-Process Models (PP-GLM)

► Pairwise spike↔spike

Generalized Linear Point-Process Models (PP-GLM)

- ► Pairwise spike↔spike
- ► (????)

Generalized Linear Point-Process Models (PP-GLM)

- ► Pairwise spike↔spike
- (????

Latent State-Space Models (SSM)

Generalized Linear Point-Process Models (PP-GLM)

- ► Pairwise spike↔spike
- (????

Latent State-Space Models (SSM)

Population models of latent dynamics

Generalized Linear Point-Process Models (PP-GLM)

- ► Pairwise spike↔spike
- (????

Latent State-Space Models (SSM)

- Population models of latent dynamics

Generalized Linear Point-Process Models (PP-GLM)

- ► Pairwise spike↔spike
- ▶ (????

Latent State-Space Models (SSM)

Population models of latent dynamics

Neural mass and neural field models

Generalized Linear Point-Process Models (PP-GLM)

- ► Pairwise spike↔spike
- ► (????

Latent State-Space Models (SSM)

Population models of latent dynamics

 זיזיזיוויויו

Neural mass and neural field models

Mean-field, infinite population limit

Generalized Linear Point-Process Models (PP-GLM)

- ► Pairwise spike↔spike
- ▶ (????

Latent State-Space Models (SSM)

Population models of latent dynamics
??????????

Neural mass and neural field models

- Mean-field, infinite population limit
- (????)

Autoregressive PP-GLM with history dependence

Autoregressive PP-GLM with history dependence Augment with history \rightarrow infinite dimensional stochastic process

Autoregressive PP-GLM with history dependence Augment with history \rightarrow infinite dimensional stochastic process Moment closure \rightarrow infinite dimensional moment equations (PDE)

Autoregressive PP-GLM with history dependence Augment with history \rightarrow infinite dimensional stochastic process Moment closure \rightarrow infinite dimensional moment equations (PDE) Basis Project \rightarrow ordinary differential equations (ODE)

Autoregressive PP-GLM with history dependence Augment with history \rightarrow infinite dimensional stochastic process Moment closure \rightarrow infinite dimensional moment equations (PDE) Basis Project \rightarrow ordinary differential equations (ODE)

Compute the deterministic contribution to the derivative of the covariance:

$$\Sigma = \left\langle hh^{\top} \right\rangle - \left\langle h \right\rangle \left\langle h \right\rangle^{\top}$$

Differentiating the covariance:

$$\begin{aligned} \partial_t \Sigma &= \partial_t \left(\left\langle hh^\top \right\rangle - \left\langle h \right\rangle \left\langle h \right\rangle^\top \right) \\ &= \partial_t \left\langle hh^\top \right\rangle - \partial_t \left(\left\langle h \right\rangle \left\langle h \right\rangle^\top \right) \\ &= \left\langle (\partial_t h) h^\top \right\rangle + \left\langle h(\partial_t h^\top) \right\rangle - \left(\partial_t \left\langle h \right\rangle \right) \left\langle h \right\rangle^\top - \left\langle h \right\rangle \left(\partial_t \left\langle h \right\rangle^\top \right) \end{aligned}$$

Symmetric terms from the product rule. Examine one set of terms, substitute delay-line evolution:

$$\left\langle (\partial_t h) h^\top \right\rangle - \left(\partial_t \left\langle h \right\rangle \right) \left\langle h \right\rangle^\top = \left\langle [\delta_{\tau=0} \lambda - \partial_\tau h] h^\top \right\rangle - [\delta_{\tau=0} \left\langle \lambda \right\rangle - \partial_\tau \left\langle h \right\rangle] \left\langle h \right\rangle^\top \\ = \delta_{\tau=0} \left[\left\langle \lambda h^\top \right\rangle - \left\langle \lambda \right\rangle \left\langle h \right\rangle^\top \right] - \partial_\tau \left[\left\langle h h^\top \right\rangle - \left\langle h \right\rangle \left\langle h \right\rangle^\top \right]$$

Linear, except $\left< \lambda h^{\top} \right>$

Evaluate $\left<\lambda h^{\top}\right>$ by completing the square $m\!=\!\left< h\right> + \Sigma H$

$$\begin{split} \left\langle \lambda h^{\top} \right\rangle &= \left\langle h^{\top} e^{H^{\top} h + I} \right\rangle \\ &= e^{I(t)} \int_{dh} h e^{H^{\top} h} \frac{1}{\sqrt{|2\pi\Sigma|}} e^{-\frac{1}{2}(h - \langle h \rangle)^{\top} \Sigma^{-1}(h - \langle h \rangle)} \\ &= e^{I(t)} e^{\frac{1}{2}(m^{\top} \Sigma^{-1} m - \langle h \rangle^{\top} \Sigma^{-1} \langle h \rangle)} \cdot m^{\top} \\ &= e^{H^{\top} \langle h \rangle + I(t) + \frac{1}{2} H^{\top} \Sigma H} \cdot m^{\top} \\ &= \langle \lambda \rangle \left(\langle h \rangle + \Sigma H \right)^{\top}. \end{split}$$

Overall, the deterministic contribution to the covariance is:

$$\left\langle (\partial_t h) h^\top \right\rangle - \left(\partial_t \left\langle h \right\rangle \right) \left\langle h \right\rangle^\top = \delta_{\tau=0} \left(\left\langle \lambda \right\rangle \left(\left\langle h \right\rangle + \Sigma H \right)^\top - \left\langle \lambda \right\rangle \left\langle h \right\rangle^\top \right) - \partial_\tau \Sigma$$
$$= \underbrace{\left(\delta_{\tau=0} \left\langle \lambda \right\rangle H^\top - \partial_\tau \right)}_J \Sigma$$

Finite Basis Projected Gaussian Moment Closure for PP-GLMs

$$\partial_t \mu_z = -A\mu_z + C \langle \lambda \rangle$$
$$\langle \lambda \rangle = \exp\left(\beta^\top \mu_z + I(t) + \frac{1}{2}\beta^\top \Sigma_z \beta\right)$$
$$\partial_t \Sigma_z = J\Sigma_z + \Sigma_z J^\top + Q(t)$$
$$J = C \langle \lambda \rangle \beta^\top - A$$
$$Q = C \langle \lambda \rangle C^\top$$

Inter-wave intervals suggest multiple refractory states

 $\tau = {\sf mode \ inter-wave \ interval}$

Inter-wave intervals suggest multiple refractory states

 $au = {\sf mode \ inter-wave \ interval}$

 $\Pr(wave) \propto (\alpha t)^3 e^{-\alpha t}, \quad \alpha = 3/\tau$

Inter-wave intervals suggest multiple refractory states

 $\tau = {\sf mode \ inter-wave \ interval}$

 $\Pr(wave) \propto (\alpha t)^3 e^{-\alpha t}, \quad \alpha = 3/\tau$

$$A \to R_1 \to R_2 \to R_3 \to S$$

Numerically challenging:

 \blacktriangleright 3 states, 10×10 grid \rightarrow covariance matrix with 4.5k entries

- \blacktriangleright 3 states, 10×10 grid \rightarrow covariance matrix with 4.5k entries
- Improve stability: Cholesky factorization, triangular solvers

- \blacktriangleright 3 states, 10×10 grid \rightarrow covariance matrix with 4.5k entries
- Improve stability: Cholesky factorization, triangular solvers
- Avoid inverses: work with inverse covariance (precision)

- \blacktriangleright 3 states, 10×10 grid \rightarrow covariance matrix with 4.5k entries
- Improve stability: Cholesky factorization, triangular solvers
- Avoid inverses: work with inverse covariance (precision)
- Regularize state variance

Numerically challenging:

- \blacktriangleright 3 states, 10×10 grid \rightarrow covariance matrix with 4.5k entries
- Improve stability: Cholesky factorization, triangular solvers
- Avoid inverses: work with inverse covariance (precision)
- Regularize state variance

Fix Gaussian model limitations:

Numerically challenging:

- ▶ 3 states, 10×10 grid \rightarrow covariance matrix with 4.5k entries
- Improve stability: Cholesky factorization, triangular solvers
- Avoid inverses: work with inverse covariance (precision)
- Regularize state variance

Fix Gaussian model limitations:

Positivity constraint on means

Numerically challenging:

- ▶ 3 states, 10×10 grid \rightarrow covariance matrix with 4.5k entries
- Improve stability: Cholesky factorization, triangular solvers
- Avoid inverses: work with inverse covariance (precision)
- Regularize state variance

Fix Gaussian model limitations:

- Positivity constraint on means
- Ensure integration of means *conserves neuron number*

Numerically challenging:

- ▶ 3 states, 10×10 grid \rightarrow covariance matrix with 4.5k entries
- Improve stability: Cholesky factorization, triangular solvers
- Avoid inverses: work with inverse covariance (precision)
- Regularize state variance

Fix Gaussian model limitations:

- Positivity constraint on means
- Ensure integration of means conserves neuron number
- Correlations enforce conservation in measurement updates

Numerically challenging:

- ▶ 3 states, 10×10 grid \rightarrow covariance matrix with 4.5k entries
- Improve stability: Cholesky factorization, triangular solvers
- Avoid inverses: work with inverse covariance (precision)
- Regularize state variance

Fix Gaussian model limitations:

- Positivity constraint on means
- Ensure integration of means conserves neuron number
- Correlations enforce conservation in measurement updates

Performance e.g.:

Numerically challenging:

- ▶ 3 states, 10×10 grid \rightarrow covariance matrix with 4.5k entries
- Improve stability: Cholesky factorization, triangular solvers
- Avoid inverses: work with inverse covariance (precision)
- Regularize state variance

Fix Gaussian model limitations:

- Positivity constraint on means
- Ensure integration of means conserves neuron number
- Correlations enforce conservation in measurement updates

Performance e.g.:

▶ 37 s to filter 25 min of retinal data, Δt =1 s, ~40 samples/s

Numerically challenging:

- ▶ 3 states, 10×10 grid \rightarrow covariance matrix with 4.5k entries
- Improve stability: Cholesky factorization, triangular solvers
- Avoid inverses: work with inverse covariance (precision)
- Regularize state variance

Fix Gaussian model limitations:

- Positivity constraint on means
- Ensure integration of means conserves neuron number
- Correlations enforce conservation in measurement updates

Performance e.g.:

- ▶ 37 s to filter 25 min of retinal data, Δt =1 s, ~40 samples/s
- ▶ 10×10 grid; Matlab, 2.9 GHz 8-core Xeon CPU

Numerically challenging:

- ▶ 3 states, 10×10 grid \rightarrow covariance matrix with 4.5k entries
- Improve stability: Cholesky factorization, triangular solvers
- Avoid inverses: work with inverse covariance (precision)
- Regularize state variance

Fix Gaussian model limitations:

- Positivity constraint on means
- Ensure integration of means conserves neuron number
- Correlations enforce conservation in measurement updates

Performance e.g.:

- ▶ 37 s to filter 25 min of retinal data, Δt =1 s, ~40 samples/s
- ▶ 10×10 grid; Matlab, 2.9 GHz 8-core Xeon CPU
- Complexity dominated by matrix multiplication

References I
Statistical Mechanics & Inference in Population Models

Background

Modeling the microscopic and macroscopic

Statistical Mechanics & Inference in Population Models

Background

Modeling the microscopic and macroscopic

Part 1:

 A statistical field state-space interpretation of Point-Process models

Statistical Mechanics & Inference in Population Models

Background

Modeling the microscopic and macroscopic

Part 1:

 A statistical field state-space interpretation of Point-Process models

Part 2:

- Bayesian State-Space Inference for Stochastic Neural fields
- Applied to waves in the developing retina