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Understand emergence of collective neural dynamics

Tens, thousands, billions of neurons.... any hope?
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Moment approximations of population dynamics

∂tx = f(x) + noise
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Moment approximations of population dynamics
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Moment approximations of population dynamics

Moment Closure:
I Assume distributional form for x
I Match low-order moments
I Compute effect of higher-order moments under assumed

distribution
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Moment approximations of population dynamics

Closed equations:
µ̇ = f (µ,Σ)

Σ̇ = g (µ,Σ)
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Part 1
A statistical field interpretation of Point-Process models

6 / 1
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I Pr(spike) = f(history, input)

Good
I Fast regression
I Pairwise spiking model

Could improve...
I Large populations?
I Stability?
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Latent State-Space Model (SSM)
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Latent dynamics drive spiking
I ẋ = f(x)
I Pr(spike) = g(x)

Good
I Robust population models

Can we
I Interpret?
I Emergence from single-unit?
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I ẋ = f(x)
I Pr(spike) = g(x)

Good
I Robust population models

Can we
I Interpret?
I Emergence from single-unit?

8 / 1



Latent State-Space Model (SSM)

Dynamics

Stimulus

Observation

Spike train

Latent dynamics drive spiking
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Neural mass models

Population

Moments

Observation

Dynamics

Mean-field limit, e.g. firing rate v
I τ v̇ = −v + f(Av + θ)

Good
I Analytically tractable
I Physical intuition

Could improve...
I Data-driven?
I Detail?
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Moment-closure on PP-GLM models

Combine aspects . . .

I Neural field models:
• Analytically tractable ODEs
• with mechanistic interpretation

I State-space models:
• Low dimensional
• Data-driven

Consider distribution over possible point-process paths
I Describe dynamics of moments of PP-GLM models
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History process of an autoregressive PP-GLM

Consider a log-linear model

y(t) ∼ Poisson(λ · dt)

λ(t) = exp
(
H(τ)>h(τ, t) + I(t)

)
H(τ) : history filter
I(t) : input

History h(τ, t) of spikes y(t): ∂th(τ, t)=δτ=0y(t)− ∂τh(τ, t)

Poisson noise → Gaussian: y(t) ≈ λ · dt+
√
λ · dW

Continuous approximation to history process

dh(τ, t) = (δτ=0λ− ∂τh(τ, t)) · dt+ δτ=0

√
λ · dW
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Does it work?

Case study:
I Emergent dynamics from spiking interactions
I PP-GLM emulation of phasic-bursting Izhikevich neuron

(?)
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Moment-closure of autoregressive PP-GLM

History Moments

Dynamics
Stimulus

Observation
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Moment closure of PP-GLM history process

∂tµh = −∂τµh + δτ=0 〈λ〉

〈λ〉 = exp
(
H>µh + I(t) + 1

2H
>ΣH

)
∂tΣh = JΣh + ΣhJ

> +Q

J = δτ=0 〈λ〉H> − ∂τ
Q = δτ=0 〈λ〉 δ>τ=0
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〈λ〉 = 〈f(w)〉 , where w = H>h(τ, t) + I(t)
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Pulse Response
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2nd-order approximation

∂tµh = −∂τµh + δτ=0 〈λ〉

〈λ〉 = exp
(
H>µh + I(t)

)(
1 + 1

2H
>ΣH

)
∂tΣh = JΣh + ΣhJ

> +Q

Q = δτ=0 〈λ〉 δ>τ=0

J = δτ=0λ̄H
> − ∂τ

λ̄ = exp
(
H>µh + I(t)

)

17 / 1



2
0

 d
B

Langevin approximation

1

20

S
a
m

p
le

2
0

 d
B

Second-order state-space model

0 100 200 300 400 500 600 700 800 900 1000
Time (ms)

1

20

S
a
m

p
le

?

18 / 1



0 200 400 600 800 1000
Time (ms)

20
 d

B

Second-order state-space model

= 0 = 150 ms

0

1 Hz

19 / 1



0 200 400 600 800 1000
Time (ms)

20
 d

B

Second-order state-space model

= 0 = 150 ms

0

1 Hz

19 / 1



0 200 400 600 800 1000
Time (ms)

20
 d

B

Second-order state-space model

= 0 = 150 ms

0

1 Hz

19 / 1



0 200 400 600 800 1000
Time (ms)

20
 d

B

Second-order state-space model

= 0 = 150 ms

0

1 Hz

19 / 1



0 200 400 600 800 1000
Time (ms)

20
 d

B

Second-order state-space model

= 0 = 150 ms

0

1 Hz

19 / 1



0 200 400 600 800 1000
Time (ms)

20
 d

B

Second-order state-space model

= 0 = 150 ms

0

1 Hz

19 / 1



0 200 400 600 800 1000
Time (ms)

20
 d

B

Second-order state-space model

= 0 = 150 ms

0

1 Hz

19 / 1



0 200 400 600 800 1000
Time (ms)

20
 d

B

Second-order state-space model

= 0 = 150 ms

0

1 Hz

19 / 1



0 200 400 600 800 1000
Time (ms)

20
 d

B

Second-order state-space model

= 0 = 150 ms

0

1 Hz

19 / 1



0 200 400 600 800 1000
Time (ms)

20
 d

B

Second-order state-space model

= 0 = 150 ms

0

1 Hz

19 / 1



0 200 400 600 800 1000
Time (ms)

20
 d

B

Second-order state-space model

= 0 = 150 ms

0

1 Hz

19 / 1



0 200 400 600 800 1000
Time (ms)

20
 d

B

Second-order state-space model

= 0 = 150 ms

0

1 Hz

19 / 1



0 200 400 600 800 1000
Time (ms)

20
 d

B

Second-order state-space model

= 0 = 150 ms

0

1 Hz

19 / 1



0 200 400 600 800 1000
Time (ms)

20
 d

B

Second-order state-space model

= 0 = 150 ms

0

1 Hz

19 / 1



0 200 400 600 800 1000
Time (ms)

20
 d

B

Second-order state-space model

= 0 = 150 ms

0

1 Hz

19 / 1



0 200 400 600 800 1000
Time (ms)

20
 d

B

Second-order state-space model

= 0 = 150 ms

0

1 Hz

19 / 1



0 200 400 600 800 1000
Time (ms)

20
 d

B

Second-order state-space model

= 0 = 150 ms

0

1 Hz

19 / 1



0 200 400 600 800 1000
Time (ms)

20
 d

B

Second-order state-space model

= 0 = 150 ms

0

1 Hz

19 / 1



0 200 400 600 800 1000
Time (ms)

20
 d

B

Second-order state-space model

= 0 = 150 ms

0

1 Hz

19 / 1



0 200 400 600 800 1000
Time (ms)

20
 d

B

Second-order state-space model

= 0 = 150 ms

0

1 Hz

19 / 1



0 200 400 600 800 1000
Time (ms)

20
 d

B

Second-order state-space model

= 0 = 150 ms

0

1 Hz

19 / 1



0 200 400 600 800 1000
Time (ms)

20
 d

B

Second-order state-space model

= 0 = 150 ms

0

1 Hz

19 / 1



0 200 400 600 800 1000
Time (ms)

20
 d

B

Second-order state-space model

= 0 = 150 ms

0

1 Hz

19 / 1



0 200 400 600 800 1000
Time (ms)

20
 d

B

Second-order state-space model

= 0 = 150 ms

0

1 Hz

19 / 1



0 200 400 600 800 1000
Time (ms)

20
 d

B

Second-order state-space model

= 0 = 150 ms

0

1 Hz

19 / 1



0 200 400 600 800 1000
Time (ms)

20
 d

B

Second-order state-space model

= 0 = 150 ms

0

1 Hz

19 / 1



0 200 400 600 800 1000
Time (ms)

20
 d

B

Second-order state-space model

= 0 = 150 ms

0

1 Hz

19 / 1



0 200 400 600 800 1000
Time (ms)

20
 d

B

Second-order state-space model

= 0 = 150 ms

0

1 Hz

19 / 1



0 200 400 600 800 1000
Time (ms)

20
 d

B

Second-order state-space model

= 0 = 150 ms

0

1 Hz

19 / 1



0 200 400 600 800 1000
Time (ms)

20
 d

B

Second-order state-space model

= 0 = 150 ms

0

1 Hz

19 / 1



0 200 400 600 800 1000
Time (ms)

20
 d

B

Second-order state-space model

= 0 = 150 ms

0

1 Hz

19 / 1



A SSM with point-process moment interpretation

Add Poisson noise to recurrent linear model (?)

dx = [Ax+ Cλ] · dt+ C
√
λ · dW

w = Hx+m

λ = exp (w)

Second-order state-space equations for extended Kalman filtering

∂tµx = Aµx + C 〈λ〉
µw = Hµx +m

Σw = H>ΣxH

〈λ〉 = exp
(
µw + 1

2Σw

)
∂tΣx = JΣx + ΣxJ

> +Q

J = C 〈λ〉H> +A

Q = C 〈λ〉C>
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A statistical field interpretation of Point-Process models

PP-GLM → Langevin → moment-closure → µ̇h, Σ̇h

I Closed equations for ‘statistical fields’ (history moments)

2nd-order SSM with mechanistic interpretation
I Spikes are Poisson measurements
I Spiking interaction → field coupling (?)

New directions
I Detect instability
I Bayesian estimation
I Analytic tools for reduction of population models?
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Part 2
Bayesian State-Space Inference for Stochastic Neural fields

22 / 1



Developing retina exhibits spatiotemporal waves

Frequent: small
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propagate

Rare: large waves
that cover the
retina
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Waves emerge in inner nuclear layer

24 / 1



Waves emerge in inner nuclear layer

24 / 1



Waves induce spiking in ganglion cell outputs

25 / 1



4096-electrode MEAs record RGC outputs

26 / 1



Objective: infer latent states

State inference
I Given spiking data and model parameters,
I Can we infer voltage, conductance, current?

Conductance models
I Hennig et al. ’09: Realistic discrete neurons (too complex)

• Slow refractory dynamics; rare, random depolarization
I Lansdell et al. ’14: Continuum field approach

• Conductance dynamics still too complicated
Something simpler?
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Buice & Cowan ’09: a simple model for retinal waves

e

3-state model of retinal waves (?)
I Q "Quiescent" (not spiking)
I A "Active" (spiking)
I R "Refractory"

4 rates
I ρq Spontaneous activation �→ �
I ρa Cells become refractory �→ �
I ρr Refractory cells become Quiescent �→ �
I ρe Excitation of Quiescent cells ��→ ��
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Spatially extended 3-state mean-field model

Model fraction of N neurons in each state
I Let ρqa denote effective excitation ρqa = ρq + f [A]ρe
I Means evolve as

∂tQ = −ρqaQ+ ρrR

∂tA = −ρaA+ ρqaQ

∂tR = −ρrR+ ρaA

Space:
I Extend Q, A, and R fields be defined over a 2D (x,y) domain
I Nonlocal excitation kernel k radius σi

f [A] = k ∗A, k(x, y) ∝ exp
(
−1

2
x2+y2

σ2
i

)

29 / 1



Incorporate a threshold, random initiation

f [A] =

{
A− ε, if A ≥ ε
0 elsewise

Pr(Q→ A) ∼ ρq · δ,

δ ∼ Poisson (λq)
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Stochastic 3-state model

Finite, discrete nature of the retina leads to fluctuations
Restore fluctuation effects as noise
I State transition ∼ Poisson
I Variance = mean ∼ rate · concentration

Langevin approximation:
I Approximate Poisson (jump) noise with Gaussian (continuous)
I Fluctuations ∼ O

(√
N
)
for N transitions
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Stochastic 3-state model recapitulates retinal waves

Quiescent

Active
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State-space model: 3-state moment-closure equations

Means:

∂t 〈Q〉 = rrq − rqa
∂t 〈A〉 = rqa − rar
∂t 〈R〉 = rar − rrq

rqa = ρq 〈Q〉+ ρe 〈Q · f [A]〉
rar = ρa 〈A〉
rrq = ρr 〈R〉

Covariance:
I Deterministic evolution given by Jacobian of mean
I Noise contribution is:

Σnoise(Q,A,R) =

rqa + rrq −rqa −rrq
−rqa rqa + rar −rar
−rrq −rar rar + rqa


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State-space model for inference

θ : Model parameters
µ,Σ : QAR 3-state Gaussian appx.
β : Observation model

λ : Ganglion Cell firing intensity
y : Observed point-process
T : for all time-points t ∈ T
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Infer states by filtering

Discrete: break time into ∆t width bins, and let
I n index time-bins
I x be a vector of latent states
I y be a vector of observations (spikes)

Predict next state: Pr(xn) =
∫

Pr(xn|xn−1) Pr(xn−1)dxn−1

Update based on observations: Pr(xn|yn) ∝ Pr(yn|xn) Pr(xn)

Approximate:
I Pr(x) ∼ multivariate Gaussian
I Poisson likelihood Pr(y|x) via Laplace approximation
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Filtering infers latent intensities from spikes
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Inferring parameters...
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Neural field → SSMs: New directions

Neural field moment closure applied to retinal waves:
I 3-state model (??)
I Infer retinal wave states
I Parameters capture developmental shifts

Statistical mechanics → Bayesian inference
I Posterior for population states

• Partially observed via spiking data
I Posterior for neural field parameters given data

• New algorithms to optimize, sample, variational approx.
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In Summary...
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Moments in time and space

Moment Closure Point-Process Generalized Linear Model
I Moment-closure on Langevin approximation to history process
I ‘Neural field in time’ state-space equations
I Explore

• Generalize to spatiotemporal population case
• Apply to data

Neural Field State Space Model
I Moment-closure for 3-state retinal wave model
I Second-order equations define state-space
I Bayesian inference of states and model likelihood
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Single-neuron→collective dynamics in 5 easy steps

1. Microscopic description

2. Langevin approximation

3. Moment equations µ̇, Σ̇

4. Second-order state-space model
I Spiking data as measurements
I States with physical

interpretation

5. Bayesian Inference
I Infer population states from data
I Optimize likelihood via filtering

Stochastic Descriptions 
of Microscopic Dynamics
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There are challenges

Generality
I Reduce more realistic models in this framework?

Accuracy
I Other ways to ‘close’ moment equations

• Moment closure using other distributions
• 2nd-order SSM: locally quadratic, others?

I Higher moments? Particle filter?
Efficiency
I State-space models from moment closure

• Difficult to integrate?
• Non-convex likelihoods?

I Requires new algorithms
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Single-neuron→collective dynamics: Directions

Neural mass/field:
I Bayesian framework from statistical mechanics?
I Far from µ-field: Statistical fields of point-processes?
I Fields as both spatial and temporal coarse-graining?

State Space Models:
I Incorporate nonlinearities and Poisson O(

√
N) noise?

I States not latent: partially-observed point-process?

Autoregressive Point Process Models:
I Bayesian estimation: add dynamical fidelity into loss?
I Statistical field description of point process?
I Coarse-graining of pairwise models?
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Moment closure: how to?

Write down equations for moments of density
Differentiate in time
Get (possibly infinite) series in terms of moments
Low-order moments may couple to higher-order moments
Assume a particular density
Write down higher-order moments in terms of lower-order moments
Closed system
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Moment closure, short cut:

Assume a density
Differentiate equations for the moments
Hope that expectations w.r.t. assumed density have closed form
e.g. for Gaussian 〈x2〉 〈ex〉 〈ex2〉 etc. convenient
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Three approaches to spiking population models

Generalized Linear Point-Process Models (PP-GLM)
I Pairwise spike↔spike
I (????)

Latent State-Space Models (SSM)
I Population models of latent dynamics
I ???????????

Neural mass and neural field models
I Mean-field, infinite population limit
I (????)
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Reducing the model

Autoregressive PP-GLM with history dependence
Augment with history → infinite dimensional stochastic process
Moment closure → infinite dimensional moment equations (PDE)
Basis Project → ordinary differential equations (ODE)
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Time evolution of the covariance

Compute the deterministic contribution to the derivative of the
covariance:

Σ =
〈
hh>

〉
− 〈h〉 〈h〉>
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Time evolution of the covariance

Differentiating the covariance:

∂tΣ = ∂t

(〈
hh>

〉
− 〈h〉 〈h〉>

)
= ∂t

〈
hh>

〉
− ∂t

(
〈h〉 〈h〉>

)
=
〈

(∂th)h>
〉

+
〈
h(∂th

>)
〉
−
(
∂t 〈h〉

)
〈h〉> − 〈h〉

(
∂t 〈h〉>

)
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Time evolution of the covariance

Symmetric terms from the product rule. Examine one set of terms,
substitute delay-line evolution:〈

(∂th)h>
〉
−
(
∂t 〈h〉

)
〈h〉> =

〈
[δτ=0λ− ∂τh]h>

〉
− [δτ=0 〈λ〉 − ∂τ 〈h〉] 〈h〉>

= δτ=0

[〈
λh>

〉
− 〈λ〉 〈h〉>

]
− ∂τ

[〈
hh>

〉
− 〈h〉 〈h〉>

]
Linear, except

〈
λh>

〉
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Time evolution of the covariance

Evaluate
〈
λh>

〉
by completing the square m= 〈h〉+ ΣH〈

λh>
〉

=
〈
h>eH

>h+I
〉

= eI(t)
∫
dh he

H>h 1√
|2πΣ|

e−
1
2

(h−〈h〉)>Σ−1(h−〈h〉)

= eI(t)e
1
2 (m>Σ−1m−〈h〉>Σ−1〈h〉) ·m>

= eH
>〈h〉+I(t)+ 1

2H
>ΣH ·m>

= 〈λ〉 (〈h〉+ ΣH)> .
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Time evolution of the covariance

Overall, the deterministic contribution to the covariance is:〈
(∂th)h>

〉
−
(
∂t 〈h〉

)
〈h〉> = δτ=0

(
〈λ〉 (〈h〉+ ΣH)> − 〈λ〉 〈h〉>

)
− ∂τΣ

=
(
δτ=0 〈λ〉H> − ∂τ

)
︸ ︷︷ ︸

J

Σ
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Finite Basis Projected Gaussian Moment Closure for
PP-GLMs

∂tµz = −Aµz + C 〈λ〉

〈λ〉 = exp
(
β>µz + I(t) + 1

2β
>Σzβ

)
∂tΣz = JΣz + ΣzJ

> +Q(t)

J = C 〈λ〉β> −A
Q = C 〈λ〉C>
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Inter-wave intervals suggest multiple refractory states
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τ = mode inter-wave interval

Pr(wave) ∝ (αt)3e−αt, α = 3/τ

A→ R1 → R2 → R3 → S
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In Practice

Numerically challenging:
I 3 states, 10×10 grid → covariance matrix with 4.5k entries
I Improve stability : Cholesky factorization, triangular solvers
I Avoid inverses: work with inverse covariance (precision)
I Regularize state variance

Fix Gaussian model limitations:
I Positivity constraint on means
I Ensure integration of means conserves neuron number
I Correlations enforce conservation in measurement updates

Performance e.g.:
I 37 s to filter 25 min of retinal data, ∆t=1 s, ∼40 samples/s
I 10×10 grid; Matlab, 2.9 GHz 8-core Xeon CPU
I Complexity dominated by matrix multiplication
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models
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I Applied to waves in the developing retina
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