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Hypothesis

• Attractor networks are hypothesized to store information in the
brain

• Real networks have a tendency to oscillate due to the latency
of inhibitory feedback

• How do we stabilize information in an oscillatory network?

• Can shared oscillatory drive can activate a mode with
distinct stable trajectories rather than fixed points?
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A rate model E-I oscillator

E IS

τeĖ = −E + f(AeeE −AeiI + θe + S(t) + ηe(t))

τiİ = −I + f(AieE −AiiI + θi + ηi(t))

η ∼ N (0, σ2)

f(x) =
1

1 + e−x
6 0 6
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Each E-I pair displays a damped oscillation
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Weakly coupled oscillators

E1 I1S1

E2 I2S2

Oscillator 1

Oscillator 2
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Weakly coupled oscillators: "experiment"

• System begins at steady state, no difference between
population activity

• An input arrives to one population, driving its activity up
• This sets up initial conditions of the system

• The input is removed, and the network is driven with shared
oscillatory drive

• After a delay, can we read out the initial conditions based on
the firing rates of the E populations?
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Two weakly coupled oscillators
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Storing information in an ensemble of 30 oscillators
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Two islands of encoded assembly stability
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Can we think of this as a damped, driven linear system?
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• 4D linear system

• Stable <(λ) < 0

• Set dominant mode to be an asynchronous, stable oscillation
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Synchronous drive cannot excite an asynchronous mode
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The firing rate nonlinearity is important
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Synaptic activation
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Firing rate nonlinearity

Exponential
∆Gain ~ ∆Activation
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∆Gain ~ -∆Activation

Linear
∆Gain ~ 0
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The nonlinear system occupies the exponential portion of the firing rate
nonlinearity, in which an increase in drive leads to an increase in gain.
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Linear analogy to two coupled oscillator model
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Periodic modulation of E-E coupling and periodic forcing, with a
limit on the maximum rate, qualitatively resembles nonlinear
system

• Limit the maximum rate to prevent instability
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Summary:

• Slow inhibitory feedback can create a damped, asynchronous
oscillation in inhibitory-coupled oscillators

• Periodically increasing the gain can prevent this mode from
decaying

• For low rates, the firing rate nonlinearity is supralinear, and
increasing input also increases gain
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End
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Extra slides....
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Assessing assembly stability
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Mutually inhibitory oscillators

E1 I1S1

E2 I2S2

τeĖ1 = −E1 + f(Aself
ee E1 −Aself

ei I1 −Aother
ei I2 + θe + geS(t))

τeĖ2 = −E2 + f(Aself
ee E2 −Aself

ei I2 −Aother
ei I1 + θe + geS(t))

τiİ1 = −I1 + f(Aself
ii I1 −Aself

ie E1 −Aother
ie E2 + θi)

τiİ2 = −I2 + f(Aself
ii I2 −Aself

ie E2 −Aother
ie E1 + θi)
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Weakly coupled oscillators
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Effective coupling is stronger than individual coupling

Se = σe〈Eother〉+ (1− σe)Eself

In limit of large N, for the bistable mode, some fraction γ of Ei will be part of
the same ensemble as Ej , call Eself , and the rest will occupy an Eother

Se = σe(γEself + (1− γ)Eother) + (1− σe)Eself

Se = σe(1− γ)Eother + (1− σe(1− γ))Eself

There is a new effective coupling constant σ′
e = σe(1− γ).
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