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Motivations

• Described by Jan Purkinje
in 1819

• Artistic and broader
interest

• Flicker hallucinations

• Applications
• Photosensitive epilepsy,

migraines, vertigo

• Recurrent networks
• Temporal encoding
• Oscillations
• Spatio-temporal

coupling

Purkinje’s Illustrations
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What are geometric phosphene hallucinations?

• Form constants (Kluver,
1960)

• reproducible across
subjects

• 10-40 Hz (Remole, 1971)

• Becker, Elliot (2006):
• 10 Hz :

honeycombs,
rectangles, zigzags

• 20-30 Hz:
spirals, targets, lines,
waves

Form constants, Bressloff et al. 2001
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What are geometric phosphene hallucinations?

• Form constants (Kluver,
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• reproducible across
subjects

• 10-40 Hz (Remole, 1971)

• Becker, Elliot (2006):
• 10 Hz :

honeycombs,
rectangles, zigzags

• 20-30 Hz:
spirals, targets, lines,
waves

Flicker-induced color & form: Interdependencies & relation to
stimulation frequency & phase,

Becker & Elliott, 2006
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Form Constants : Waves in Cortex
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Geometric visual hallucinations : instabilities in V1

• Ermentrout, Cowan (1979) : inhibition, excitation instability
• Migraine
• Sensory deprivation
• Hallucinogens

• Instability when driven with ’unnatural’ stimuli
• Geometric phosphenes from uniform flickering light

• Knoll (1963) : flicker phosphenes relate to resonance?

• Herrmann (2001): 10,20,40 Hz resonance in occipital EEG to
flickering light



Introduction Model Simulation Stability Conclusions

Open problems addressed in this talk

• Can existing models of visual hallucination explain
flicker-phosphenes?

• How can spatially uniform stimuli lead to hallucinated
patterns?

• Why do some stimuli induce hallucinations more readily than
others?

• How do different temporal stimuli induce different spatial
patterns?
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Wilson-Cowan equations: excitatory, inhibitory populations

τeU̇e = −Ue + f(aeeUe − aieUi − θe + geS(t))

τiU̇i = −Ui + f(aeiUe − aiiUi − θi + giS(t))

Ue,i : Population activation

τe,i : Time constants

aee,ei,ie,ii : Population interaction

θe,i : Bias

ge,i : Stimulus coupling

Firing rate nonlinearity:
f(x) = 1

1+e−x

Periodic stimulus: S(t) =
H(sin(2πt/T )− 0.8)
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Model: spatially extended Wilson-Cowan equations

τeU̇e(x, t) = −Ue(x, t)+f(aeeKe?Ue(x, t)−aieKi(x)?Ui(x, t)−θe+geS(t))

τiU̇i(x, t) = −Ui(x, t)+f(aeiKe?Ue(x, t)−aiiKi(x)?Ui(x, t)−θi+giS(t))
( based on Ermentrout and Cowan 1979 )

Lateral interaction
kernel

Ke,i ∝ e−x
2/σ2

e,i

Ke

Ki
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Notation

For succinctness, we sometimes denote this system as

U̇ = −DU + F (KU +GS(t))

• D : matrix of time constants

• F : nonlinearity applied in each dimension
• offsets θ subsumed in to the nonlinearity,

• K : matrix of interactions,
• including lateral interactions and e-i interactions

• GS(t) : stimulus drive to each dimension.
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Simulation
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1D patterns in time
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2D patterns: stripes and hexagons

x

y
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2D patterns: synchronous and period doubling

18 Hz : Symmetric, alternating stripes

9 Hz : Hexagons
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Frequency-dependent pattern formation
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Stability
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Stability analysis

• Nonlinear
• Linearize at spatially homogeneous solution and examine

stability

• Coefficients vary in time
• When stimulated, there are no fixed points, perhaps fixed

orbits?
• Exploit periodicity and use Floquet theory to understand

evolution
• Numerically compute monodromy matrix, examine eigenvalues
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Solving spatially homogeneous case

U̇(x) = −DU(x) + F (KU(x) +GS(t))

If the system is spatially homogeneous, lateral interactions can be
replaced with constants. This is a simpler 2D nonlinear system.
Call this solution V .

V̇ = −DV + F (KV + S(t))
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Linearizing around homogeneous solution

Once you have the spatially homogeneous solution V ,

V̇ = −DV + F (KV + S(t))

decompose U into V , and a perturbation around V , which we will
call Z.

Ż = −DZ + F ′(KoV (t) + S(t))(KZ)

Let B(t) = −D + F ′(KoV (t) + S(t)) ∗K, such that Ż = B(t)Z
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Assessing stability of periodic orbits

The spatially homogeneous solution V is periodic

V (t) = V (t+ T )

At critical points(orbits), Z is an ε departure from the spatially
homogeneous solution.

• Treat spatial eigenfunctions independently

• Examine how each eigenfunction evolves over one period

For a particular eigenfunction β, eigenvalues of the monodromy
matrix will tell us whether β is growing.

• Since the interactions are a convolution, the eigenfunctions
are Fourier space.

Zβ(t+ T ) =MβZβ(t)
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Stability analysis agrees with 1D simulation

Period T stability boundary

Period 2T stability boundary

Pattern-forming by simulation
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2D simulation?
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Parameter exploration: Feedforward Inhibition

q =
gi
ge
: ratio of feed-forward inhibition and excitation
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Open problems addressed in this talk

• Simple models of visual hallucination can simulate
flicker-phosphenes.

• Spatially uniform periodic stimuli may cause pattern formation
by forcing the neural field into a pattern-forming periodic
orbit.

• Resonant visual stimuli more readily induce patterns, but
period-doubling pattern forming regimes are also favored.
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Open questions

Modeling

• Better approximations of V1 network
• Orientation: Bressloff et al?
• Color: red-green effect in flicker, epilepsy

• Migraine?

• Epilepsy?

Experimental

• Psychophysics?

• Electrophysiology?
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(this is the end of the talk)
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Appendix



Retinotopic mapping of primary visual cortex



Retinotopic mapping of primary visual cortex





Hypothesis

• Plane waves in V1
account for subjective
patterns

• Periodic forcing with a
uniform stimulus creates
standing waves

• Like Faraday waves?

• Can a neural field behave
similarly?

Deegan, Merkt, Swinney,
Faraday waves in periodically forced

fluid, Center for Nonlinear
Dynamics, UT Austin.



Stability in a simplified model



Stripes or spots?
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Image credit: Farid Radjouh



Sums of plane waves



Stripes or spots?

Low Frequency (7-10Hz) High Frequency (15-30 Hz)

Bifurcation parameter µ is a function of model parameters
ge, gi, aee, aie, aei, θe, θi,

T
τe
, τiτe ,

σi
σe

. There is no closed form solution
for µ. µ can also be expressed as a function of the eigenvalues of
the monodromy matrix. When µ < 0 the homogeneous solution is
stable. As µ departs from 0 in the positive direction, we move in
to pattern-forming regimes. Blue curves indicate stable patterns.



Big picture

• Spatially coupled, nonlinear systems exhibit complex
resonance phenomena

• Resonance associated with instability in e-i dynamics

• Nonlinearity and spatial coupling create multiple resonance
peaks

• Spatial patterns depend on frequency
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