
Inference of Latent Neural Field Intensities from Spatiotemporal
Point-Process Observations

Michael Rule, David Schnoerr, Matthias Hennig, Guido Sanguinetti
School of Informatics, University of Edinburgh, Edinburgh, UK, EH8 9AB

1. 3-State model for waves in excitable medium
Three-state neural field model, Buice & Cowan ’09 (1):
complex wave patterns without inhibitory cells.

Figure 1. Quiescent-Active-Refractory (QAR) model of neural waves.
The Q-A-R states (1) correspond to the Critical-Active-Stable retinal wave model of
Hennig et al. ‘09 (2) and the Susceptible-Infected-Recovered model in epidemiology.

3 states
•Q Quiescent
• A Active
• R Refractory

4 rate parameters
• ρq Spontaneous spiking; Q to A �→ �
• ρa A to R transition �→ �
• ρr R to Q transition �→ �
• ρe Active cells excite Quiescent ��→ ��

Mean-field dynamics (exclude spontaneous Q → A)

Q̇ = −ρeAQ + ρrR
Ȧ = −ρaA + ρeAQ
Ṙ = −ρrR + ρaA

Spontaneous Q → A sampled as shot noise (Poisson).

2. Spatial system

Let fields depend on coordinates (x , y) and define a lateral excitation
kernel k with radius σi (Nonlocal interactions)

k(x , y) ∝ exp
−1

2
x2+y2
σ2i



Figure 2. 3-state model can exhibit self-organized wave phenomena.
Simulated on a [0, 1]2 unit interval using 20x20 grid, σ=0.04, ρa=0.1, ρr=10−3,
ρe=0.4. Spontaneous excitation rate ρq=0.05. A finite threshold of 10−3 avoids
widespread spontaneous excitation. Colors: Quiescent Active Refractory

5. In practice

Numerically challenging:
• 3 states, 10×10 grid → 300-D covariance matrix (4.5k entries)
• Avoid inverses: work with inverse covariance (precision) matrix
• Improve stability : Cholesky factorization, triangular system solvers
• Regularize state variance

Performance e.g.:
• 37 s to filter 25 minutes of retinal data, ∆t=1 s, ∼40 samples/s
• 10×10 grid; Matlab implementation, 2.9 GHz 8-core Xeon CPU
• Complexity dominated by matrix multiplication

Fluctuations:
• A model of fluctuations is needed to model uncertainty in state estimation
• Use a linear noise approximation of the original discrete system

Σnoise =


ρeAQ + ρrR −ρeAQ −ρrR
−ρeAQ ρiA + ρeAQ −ρiA
−ρrR −ρiA ρrR + ρiA



3. Recover latent fields from spikes: Bayesian filtering
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Figure 3. Hidden Markov model for latent neural
fields. For all time-points T , state transition parameters
θ=(ρq, ρa, ρr , ρe, σ) dictate the evolution of a multivariate
Gaussian model µ,Σ of latent fields Q,A,R . Observation
model β is a linear map with adjustable gain and threshold,
and reflects how field A couples to firing intensity λ. Point-
process observations (spikes) y are Poisson with intensity λ.

Predict state:
• Multivariate Gaussian state-space model
µ=(Q,A,R), covariance Σ

• Integrate forward µ mean-field equations
• Covariance Σ evolves according to the system
Jacobian J

• Similar to continuous-time extended Kalman
filter Σ̇ = JΣ + ΣJT + Σnoise

Measurement:
• Refine estimate using spiking observations
• Spikes: Poisson events with intensity λ = mA + b
• Posterior is proportional to product of predicted
state and data likelihood

• Laplace approximation (gradient descent;
constrain to positive field intensities)

4. Test case: developmental retinal waves
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Figure 4. Illustration of inner retina and recording setup. Spontaneous retinal waves are generated in a
layer of laterally interconnected amacrine cells. These waves activate Retinal Ganglion Cells (RGCs), the output cells
of the retina. RGC electrical activity is recorded via a 64×64 multi-electrode array with 50 μm spacing.

High-density multielectrode array
recordings of retinal waves
• 4096-electrode arrays (3)
• Recordings courtesy of the Sernagor lab (4, 5)
• Spontaneous waves during development (6)
• Small events divide retina into refractory patches
• Rare large events sweep across the retina
• Self-organized structure at multiple scales (2) Figure 5. 4096-electrode array. Left: Array (3).

Right: Spikes recorded in a single session.
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Figure 6. Example wave event, spike histograms in one-second intervals. Mouse retina, postnatal day 11.

6. Bayesian filtering recovers latent states

Figure 7. Filtering recovers retinal wave states. Frames shown every 48 seconds; postnatal day 10.

Main points
• Spatiotemporal neural phenomena are complex: excitability, nonlinearity, refractoriness
• Previous spatiotemporal point-process inference procedures unsuitable (simple, linear)
• Three-state neural field model is suitable for inference
• Bayesian filtering recovers latent states, correlation structure, and model likelihood
• Future: optimize for fast parameter inference and apply to basic neuroscience
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