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1. 3-State model for waves in excitable medium : Recover latent fields from spikes: Bayesian filtering

Three-state neural field model, Buice & Cowan '09 (1):

complex wave patterns without inhibitory cells. @ Predict state:
e Multivariate Gaussian state-space model
Jacobian J
Figure 3. Hidden Markov model for latent neural

@ p=(Q, A, R), covariance ¥
e Similar to continuous-time extended Kalman
Figure 1. Quiescent-Active-Refractory (QAR) model of neural waves. fields. For all time-points T, state transition parameters

® e Integrate forward ;1 mean-field equations
¥4 \\ 0
[A] paa MMW filter ¥ = JX + X J7 + 2 noise
The Q-A-R states (1) correspond to the Critical-Active-Stable retinal wave model of 0=(pq, Pas Pr» Pe, o) dictate the evolution of a multivariate

e Covariance X2 evolves according to the system
-(A) Q@ ‘R
Pga ® Measurement:
Hennig et al. ‘09 (2) and the Susceptible-Infected-Recovered model in epidemiology.  Gaussian model 1, of latent fields Q, A, R. Observation

e Refine estimate using spiking observations

e Spikes: Poisson events with intensity A\ = mA+ b

e Posterior is proportional to product of predicted
state and data likelihood

del 5 is a li ith adjustable gain and threshold, . :
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. Test case: developmental retinal waves
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Figure 4. lllustration of inner retina and recording setup. Spontaneous retinal waves are generated in a

2 Spatial svstem layer of laterally interconnected amacrine cells. These waves activate Retinal Ganglion Cells (RGCs), the output cells
: P y of the retina. RGC electrical activity is recorded via a 64 x64 multi-electrode array with 50 um spacing.

----------------------------------------------

Let fields depend on coordinates (x, y) and define a lateral excitation High-density multielectrode array
kernel k with radius o; (Nonlocal interactions) recordings of retinal waves

2 5 o 4096-electrode arrays (3)
k(x, y) X exp (—%X s ) e Recordings courtesy of the Sernagor lab (4, 5)
e Spontaneous waves during development (6)
e Small events divide retina into refractory patches
e Rare large events sweep across the retina
o Self-organized structure at multiple scales (2)
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Figure 5. 4096-electrode array. Left: Array (3).
Right: Spikes recorded in a single session.

Figure 2. 3-state model can exhibit self-organized wave phenomena.
Simulated on a [0, 1]? unit interval using 20x20 grid, 0=0.04, p,=0.1, p,=10"3,
pe=0.4. Spontaneous excitation rate p,=0.05. A finite threshold of 1073 avoids
widespread spontaneous excitation. Colors: Quiescent Active Refractory

Figure 6. Example wave event, spike histograms in one-second intervals. Mouse retina, postnatal day 11.

5. In practice

Numerically challenging:

o 3 states, 10x 10 grid — 300-D covariance matrix (4.5k entries)

e Avoid inverses: work with inverse covariance (precision) matrix

e Improve stability: Cholesky factorization, triangular system solvers
e Regularize state variance

Bayesian filtering recovers latent states
Performance e.g.:

° 37 s to f||ter 25 minutes Of retina| data, At:]. s, N4O SampleS/S - - - - .

e 10x 10 grid: Matlab implementation, 2.9 GHz 8-core Xeon CPU Figure 7. Filtering recovers retinal wave states. Frames shown every 48 seconds; postnatal day 10.

e Complexity dominated by matrix multiplication ] ]
Main points

Fluctuations: e Spatiotemporal neural phenomena are complex: excitability, nonlinearity, refractoriness
e A model of fluctuations is needed to model uncertainty in state estimation : : : : : : :
. . o L e Previous spatiotemporal point-process inference procedures unsuitable (simple, linear)
e Use a linear noise approximation of the original discrete system _ . _ _
0 AQ+ o R —poAQ R e Three-state neural field model is suitable for inference
Yoo = | —pAQ  piAL p AQ  —piA e Bayesian filtering recovers latent states, correlation structure, and model likelihood
—o/R —piA  p,R+ piA e Future: optimize for fast parameter inference and apply to basic neuroscience
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