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How does the brain achieve stable representations, despite noisy biological components and ongoing plasticity?
We examine how population codes for navigation in the mouse posterior parietal cortex (PPC) might remain stable, despite changes in single neurons.
We address two
main questions:

1.How disruptive is drift in neuronal tuning in practice, considering that the brain employs a redundant population code?
2. Could plasticity compensate for this disruption, using physiologically plausible rates of synaptic weight change?

1. Single-neuron encoding of spatial navigation drifts over time
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Fig. 1. (a) Mice were trained to use visual cues to navigate to a reward in a virtual-reality maze; neural population activity
was recorded using Ca2+ imaging (1). (b) (Reprinted from 1) Neurons in PPC (y-axes) fire at various regions in the maze
(x-axes). Over days to weeks, individual neurons change their tuning, re-configuring the population code. This occurs even
at steady-state behavioral performance (after learning). (c) Neurons show diverse changes in tuning over days, including
instability, relocation, long-term stability, gain/loss of selectivity, advancement, and intermittent responsiveness.

2.Linear decoding recovers behavior from population activity
Mouse 4 Mouse 5 Fig. 2.

(a) Decoding
performance for a single
session (mouse 4).
Shaded colors: prediction
under cross-validation;
Solid lines: ground truth.
(b) Example (mouse 5),
same as (a).
(c) Linear decoding
performance summary;
each point denotes one
mouse. Error bars: 1σ
over all sessions.

Can we understand the impact of population drift on encoding by studying how
linear coding generalizes across days?

3. Redundancy allows a fixed linear readout to work over 5-7 days despite drift
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Fig. 3. (a,b) Red: Generalization error
(mean absolute error, ‘MAE’) for decoders
trained on a single day (‘0’) & tested on
past/future days. Blue: % increase in
error over the optimal decoder for the
testing day.
(c) Is there a fixed linear decoder that
could decode well over several days?
(d) Decoding error on concatenated data
(green) is only slightly worse than the
mean best single-day linear decoding error
(grey). (e.g. mouse 4 and 3; red: shuffle
chance-level reflects extent that redundancy allows
prediction across unrelated neural codes)

(e) The relevant measure of drift is not
neural activity, but decoding error (ε).
Redundant codes allow for many valid
decoders. Multiple days can share an
encoding subspace that works well,
but differs from optimal single-day
decoders.

4. Adaptive decoders can track coding-relevant drift with modest plasticity
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Fig. 4. Decoding results for the online Least-Mean-Squares (LMS) algorithm over multiple days. Example shown for mouse 3. (a) Position
and (b) speed predictions during initial latent learning (various colors: 10 random parameter initializations; black: ground truth). (c,d) Predictions of the LMS
algorithm after learning. (e,f) Smoothed absolute decoding error over the first four days for position and speed, respectively. (g) (blue) Average absolute change
of decoding weights Wi over time, (red) average % change from the previous weight value (position decoder). (h) Similar to (g), but for the linear bias/offset
parameter (speed decoder). (i) An adaptive linear readout could use error feedback from downstream areas to adjust its interpretation of
PPC firing and compensate for drift.

5. Most drift is in irrelevant directions
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Drift aligns more w. noise directions
than behavior-covarying ones 
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Task-conditioned neural population trajectories
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Fig. 5. (a) Projection of neural population trajectories (over a
short time window) onto behavior-coding, noise (trial-to-trial vari-
ability), and inter-day drift axes. Noise and inter-day drift are of-
ten correlated and orthogonal to the behavior-coding axis. (b) A
larger fraction (ρ) of drift is explained by population direc-
tions exhibiting trial-to-trial variability (yellow), compared
to directions that covary with behavior (blue).

We find that
1.Distributed and redundant population codes could allow for a surprisingly stable encoding of behavior, despite population reconfiguration
2. Changes in neural population codes align more with "noisy" dimensions of neural activity than with behavior-coding ones
3. Re-arrangement in population codes could be tracked using weak error feedback and synaptic plasticity (2%/day)
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