Moment-closure approaches to statistical mechanics and inference in models of neural dynamics
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1. From Autoregressive Point-Processes to Latent State-Space Models(!)

Point-Process Generalized Linear Models (PPGLMs) are a popular
statistical analysis tool for predicting Pr(spikes)

Modeling stochastic effects: important for nonlinear recurrent systems
Existing methods neglect recurrent stochastic effects of spiking

Goal: Build State-Space Model (SSM) representation of PPGLM

Spiking as a Poisson point-process
y(t) — ZTEevents 6(t_7_)
A =exp(H'y + input)
y ~ Poisson (\-dt)

Emitted /observed spike train

Conditional intensity (firing rate)
Conditionally Poisson spiking

Langevin approximation:

Consider spiking history process h(7, t)=y(t — 7)
History h(7,t) is a delay line, with stochastic spiking input y(t):
ath — 57:0)/(1') — 87-/7

Approximate Poisson spiking ~ Gaussian with o=y

Poisson(\ - dt) ~ Adt + VAdW =

1
dh = (8,_\ — O, h) dt + 6-_gV/ AW L)

2. Model stochastic dynamics via moments

Model first two cumulants of Pr h(7, t):
= (h) Oept = 070 (A) — Orpu. (2)
Y =(hh") —ppu' L =Jr+3) +Q (3)
(J: Jacobian of O:h; Q: Poisson noise. Depend on i, ¥.!)

Evolution depends on higher moments; Approximations needed for closed
equations (moment closure):

Log-normal: Let In A ~ N (,u:HT,u——input, 02:HTZH)
(A\) ~ exp (HT,LL + input + %HTZH)
2"_order’?): Taylor approximate A\=f(a+¢) as \=f(a)+e-f'(a)
() = exp (HT,u + input) (1 + %HTZH)

(5)

Moment-closure for ¥ more involved, see Rule & Sanguinetti (2018).

In summary
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Figure 1. Moment closure captures slow timescales in the mean, and fast

timescales in the variance. Four approximations of the mean (black) and 1o (shaded)
of the In \ of a phasic bursting neuron model®) driven by a .3 pA current (vertical lines).
The Langevin approximation (A, Eq. 1) retains slow-timescale features. A mean-field
model (B) misses the impact of fluctuations, which are better captured by the Log-
Gaussian moment-closure (C, Eq. 4). The 2"-order model (D, Eq. 5) better estimates
variance.
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Figure 2. The moment-closure state-space model retains coarse-timescale
characteristics of the original system. A 2"-order moment closure (blue) yields
a low-order model of the moments of the autoregressive PPGLM, which was trained to

approximate a phasic-bursting Izhekevich neuron(®) (stimulus:black, voltage:red).
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Using moment closure, we convert PPGLM neuronal models to
ow-order SSMs that track the distribution of paths in the
orocess history. (Code available at bit. ly/2Hj84cd)
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AR-PPGLM—SSM: new ways to train

Bayesian filtering: infer moments & model likelihood from spikes
Future: apply methods from training SSM to PPGLM?

6

3. Neural Field Models & Latent State Inference®

« Neural field mode/s describe spatiotemporal population activity.
. Quiescent/Active /Refractory
- Rich wave dynamics without inhibition (like retinal waves(®

- 3-state model®)

« Goal: Infer neural-field states driving spatiotemporal sp/k/ng

g

Figure 5. Simulated 3-state model exhibits wave patterns at diverse scales. Excita-
tion of quiescent cells (blue) leads to propagating waves (red), which create localized refractory
patches (green), recapitulating the critical wave activity studied in (6).

Moment equations (Gaussian moment closure)
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Figure 3. Quiescent-Active-Refractory model of neural waves. The
Q-A-R states correspond to the Critical-Active-Stable retinal wave model in (6).
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Figure 4. Population moments summarize neural states. (A) Local
activity is summarized by the # of cells in each state; (B) Gaussian moment =
closure approximates the distribution of population states with 11 & ¥ (orange).

4. Bayesian filtering estimates latent neural-field

Observation model:

Means: functions pgo(x), pa(x), pr(x) that depend on location x

« Evolve according to the rate cells enter and leave each state:
et (x) = rrgl)— rea(x)
Orea(x) = rga(x)—rar(x)
Oeptr(X) = Far(X)—rrg(X)
= Transitions r,(x)=papa(x) and rq(x)=p,pr(x) are local & linear.
= Nonlinear excito-excitatory interaction depends on nearby activity:
raa(%) = patia(x)+pe [ k(x—x) (Q(x)A(X)) dx’

- k(Ax) is a spatial convolution kernel oc exp(—||Ax||*/202)
- Couples to 2" moment (Q(x)A(x"))

Covariances:
« Functions X ¢ a(x, x") over pairs of states and locations

Deterministic evolution according to the Jacobian of the mean-field system,
blus Poisson noise (similar form to Eq. 3; see (4) for details)

states from spikes

In summary

By modeling correlations in addition to mean-field

Spiking rate based o, 1 - - -

on # active cells w. gain y, bias (3. 2 §§ § = S dynamics, we construct a spatiotemporal Gaussian

c > . . .

—og = = rocess model that evolves nonlinearly in time and

A(x, t) = v(x)A(x, t) + B(x) 555 P _ Ay

BB o M can be used to infer latent neural-field states from
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Figure 6. Hidden Markov model for neural fields. For
all times t€ T, parameters 6 dictate the evolution of a Gaussian-
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observations.

The observation model  Solid lines: ground-truth; Shaded

process model (1, X) of neural fields.
reflects how latent states impact spiking y~ Poisson(\) observa-

tions.
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Figure (. Bayesian filtering recovers latent states from spiking

state scaled by x25). Colored plots (below) show the qualitative spatial
organization is recovered. See (4) for details.

» Integrate with spatiotemporal spiking datasets
» Future: Estimate parameters from data?
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