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1. From Autoregressive Point-Processes to Latent State-Space Models(1)

•Point-Process Generalized Linear Models (PPGLMs) are a popular
statistical analysis tool for predicting Pr(spikes)

•Modeling stochastic effects: important for nonlinear recurrent systems
•Existing methods neglect recurrent stochastic effects of spiking
•Goal: Build State-Space Model (SSM) representation of PPGLM

Spiking as a Poisson point-process
y(t) = ∑

τ∈events δ(t−τ ) Emitted/observed spike train
λ = exp(H>y + input) Conditional intensity (firing rate)
y ∼ Poisson (λ·dt) Conditionally Poisson spiking

Langevin approximation:
•Consider spiking history process h(τ, t)=y(t − τ )
•History h(τ, t) is a delay line, with stochastic spiking input y(t):

∂th = δτ=0y(t)− ∂τh
•Approximate Poisson spiking ≈ Gaussian with σ2=µ:

Poisson(λ · dt) ≈ λdt +
√
λdW ⇒

dh ≈ (δτ=0λ− ∂τh) dt + δτ=0
√
λdW

(1)

2. Model stochastic dynamics via moments
Model first two cumulants of Pr h(τ, t):

µ = 〈h〉 ∂tµ = δτ=0 〈λ〉 − ∂τµ. (2)
Σ =

〈
hh>

〉
− µµ> ∂tΣ = JΣ + ΣJ> + Q (3)

(J: Jacobian of ∂th; Q: Poisson noise. Depend on µ, Σ!)
Evolution depends on higher moments; Approximations needed for closed
equations (moment closure):
• Log-normal: Let lnλ ∼ N

(
µ=H>µ+input, σ2=H>ΣH

)
〈λ〉 ≈ exp

(
H>µ + input + 1

2H
>ΣH

)
(4)

• 2nd-order(2): Taylor approximate λ=f (a+ε) as λ≈f (a)+ε·f ′(a)
〈λ〉 ≈ exp

(
H>µ + input

) (
1 + 1

2H
>ΣH

)
(5)

•Moment-closure for Σ more involved, see Rule & Sanguinetti (2018).
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Figure 1. Moment closure captures slow timescales in the mean, and fast
timescales in the variance. Four approximations of the mean (black) and 1σ (shaded)
of the lnλ of a phasic bursting neuron model(3) driven by a .3 pA current (vertical lines).
The Langevin approximation (A, Eq. 1) retains slow-timescale features. A mean-field
model (B) misses the impact of fluctuations, which are better captured by the Log-
Gaussian moment-closure (C, Eq. 4). The 2nd-order model (D, Eq. 5) better estimates
variance.

Figure 2. The moment-closure state-space model retains coarse-timescale
characteristics of the original system. A 2nd-order moment closure (blue) yields
a low-order model of the moments of the autoregressive PPGLM, which was trained to
approximate a phasic-bursting Izhekevich neuron(3) (stimulus:black, voltage:red).

in summary
Using moment closure, we convert PPGLM neuronal models to
low-order SSMs that track the distribution of paths in the
process history. (Code available at bit. ly/ 2Hj84cd )

AR-PPGLM→SSM: new ways to train
»Bayesian filtering: infer moments & model likelihood from spikes
» Future: apply methods from training SSM to PPGLM?

3. Neural Field Models & Latent State Inference(4)

•Neural field models describe spatiotemporal population activity.
• 3-state model(5): Quiescent/Active/Refractory
•Rich wave dynamics without inhibition (like retinal waves(6))
•Goal: Infer neural-field states driving spatiotemporal spiking

e

Figure 3. Quiescent-Active-Refractory model of neural waves. The
Q-A-R states correspond to the Critical-Active-Stable retinal wave model in (6).

Figure 4. Population moments summarize neural states. (A) Local
activity is summarized by the # of cells in each state; (B) Gaussian moment
closure approximates the distribution of population states with µ & Σ (orange).

Figure 5. Simulated 3-state model exhibits wave patterns at diverse scales. Excita-
tion of quiescent cells (blue) leads to propagating waves (red), which create localized refractory
patches (green), recapitulating the critical wave activity studied in (6).

Moment equations (Gaussian moment closure)
Means: functions µQ(x), µA(x), µR(x) that depend on location x
•Evolve according to the rate cells enter and leave each state:

∂tµQ(x) = rrq(x)−rqa(x)
∂tµA(x) = rqa(x)−rar(x)
∂tµR(x) = rar(x)−rrq(x)

•Transitions rar(x)=ρaµA(x) and rrq(x)=ρrµR(x) are local & linear.
•Nonlinear excito-excitatory interaction depends on nearby activity:

rqa(x) = ρqµQ(x)+ρe
∫
k(x−x ′) 〈Q(x)A(x ′)〉 dx ′,

• k(∆x) is a spatial convolution kernel ∝ exp(−||∆x ||2/2σ2
e)

•Couples to 2nd moment 〈Q(x)A(x ′)〉

Covariances:
•Functions ΣQ,A(x , x ′) over pairs of states and locations
•Deterministic evolution according to the Jacobian of the mean-field system,
plus Poisson noise (similar form to Eq. 3; see (4) for details)

4. Bayesian filtering estimates latent neural-field states from spikes

Observation model: Spiking rate based
on # active cells w. gain γ, bias β.

λ(x , t) = γ(x)A(x , t) + β(x)

Figure 6. Hidden Markov model for neural fields. For
all times t∈T , parameters θ dictate the evolution of a Gaussian-
process model (µ,Σ) of neural fields. The observation model
reflects how latent states impact spiking y∼Poisson(λ) observa-
tions.
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Figure 7. Bayesian filtering recovers latent states from spiking
observations. (top) Average fraction of cells in each state over time.
Solid lines: ground-truth; Shaded regions: 95% confidence interval (A
state scaled by ×25). Colored plots (below) show the qualitative spatial
organization is recovered. See (4) for details.

in summary
By modeling correlations in addition to mean-field
dynamics, we construct a spatiotemporal Gaussian
process model that evolves nonlinearly in time and
can be used to infer latent neural-field states from
spiking observations.
Applications:
» Integrate with spatiotemporal spiking datasets
» Future: Estimate parameters from data?
Funding provided by EPSRC EP/L027208/1 Large
scale spatio-temporal point processes: novel
machine learning methodologies and application to
neural multi-electrode arrays.
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