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Statistical criticality and latent-variable encoding

I Signs of “statistical criticality” have been observed in retinal activity in the
form of Zipf laws and diverging specific heats [4].

I It has been proposed that inference is more likely to find critical models [3].
I Zipf laws are very widespread in nature, and have also been attributed to the

presence of broadly distributed latent factors [1].
I It is not known whether statistical criticality has a functional or biological

relevance, or if it is connected to dynamics.

We compare encoding of sensory stimuli in retinal ganglion cells and restricted
Boltzmann machines (RBMs), and observe signatures of criticality. We study how
to interpret signs of statistical criticality in latent-variable encoding.

Visual encoding in Restricted Boltzmann Machines (RBMs)

Figure 1: Analogy between a Restricted
Boltzmann Machine (RBM), encoding
the probability distribution of images into
hidden units, and the retina, encoding an
image to retinal ganglion cells (RGC)
activity.

Figure 2: Processing of the CIFAR
dataset into small binary patches, on
which RBMs are trained.

Zipf laws in retinas and models
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Figure 3: Left: The activity of a mouse retina is recorded on a multi-electrode
array. Spikes are sorted using a custom algorithm [2] and local patches are used for
analysis (coloured dots are examples). Right: Zipf laws are observed on any group
of neurons in a retina stimulated by a random checkerboard. Each curve is a Zipf
plot for 100 nearby neurons (activity binned in 10 ms bins).
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Figure 4: Samples from RBMs trained on CIFAR exhibit Zipf-like statistics as soon
as they are complex enough to faithfully reproduce the data.

Fitted models lie close to the critical temperature
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Largest eigenvalue of the Fisher Information as a function of temperature

Figure 5: Largest eigenvalue of the Fisher information matrix as a function of
temperature. T = 1 indicates the original temperature of the fit. The peak is a
signature of criticality in the statistical sense.

Sufficiently large models learn sparse, decorrelated representations

10 20 30 40 50 60 70 80 90

Number of hidden units

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
e
a
n
 a

ct
iv

it
y
 o

f 
h
id

d
e
n
 u

n
it

Latent activity becomes sparse
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Pairwise correlations decrease

As the model becomes larger...
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Figure 6: Left: The RBM learns a factorized generative model, and the distance
between the generative distribution and the data reflects the quality of the model
fit. Here, this distance is summarized in terms of the KL-divergence between the
model distribution and the training data. After a certain hidden layer size, we
achieve asymptotically good fits to the data. Middle: As the model gets larger and
the quality of the fit increases, hidden units are less active, indicating sparse
coding. Right: Correlations are attenuated in larger models, indicating successful
learning of a factorized latent-variable model.
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Figure 7: The first eigenvector of the Fisher information for various RBMs, which
shows the most sensitive parameter direction. The addition of further hidden units
after a good fit is reached doesn’t add any sensitive parameters.
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Figure 8: “Receptive fields” for the 40 hidden units of an RBM, sorted by their
importance, as measured by Fisher information. RGC-like receptive fields
correspond to more important units, and appear in smaller RBMs.

RBMs as a model for latent-variable encodings

I Optimal latent-variable encoding of visual stimuli seems to consistently yield
models near statistical criticality. Poor fits (too few hidden units,
under-fitting) do not exhibit this property.

I Critical RBMs mimic the retina in Zipf laws, sparsity, and decorrelation.
I Above the optimal model size, extra units are weakly constrained as measured

by Fisher information. Receptive fields of excess units are less retina-like.

Questions and controversy
I Is statistical criticality a general feature of factorized latent variable models?
I Is criticality in the retina expected based simply on optimal encoding?

References
L. Aitchison, N. Corradi, and P. E. Latham.
Zipfs law arises naturally when there are underlying, unobserved
variables.
PLOS Computational Biology, 12(12):1–32, 12 2016.

G. Hilgen, M. Sorbaro, S. Pirmoradian, J.-O. Muthmann, I. E.
Kepiro, S. Ullo, C. J. Ramirez, A. P. Encinas, A. Maccione,
L. Berdondini, et al.
Unsupervised spike sorting for large-scale, high-density
multielectrode arrays.
Cell reports, 18(10):2521–2532, 2017.

I. Mastromatteo and M. Marsili.
On the criticality of inferred models.
J. of Statistical Mechanics: Theory and Experiment,
2011(10):P10012, 2011.
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