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1: Transient β-LFP wave events occur during movement preparation
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Figure 1. A We study the neural dynamics of movement preparation using a cued-reaching and grasping task with instructed
delays. B Spatiotemporal β-LFP activity was recorded in motor areas M1, PMv, and PMd, in rhesus macaques (two subjects,
R and S). C Trial-averaged β-LFP is elevated during preparatory steady-states (e.g. subject S). D Single-trial β-LFP activity
is variable and transient. E β-LFP transients are known to organise as travelling waves along the rostro-caudal axis (? ? ? ).

2: Multiple underlying mechanisms can explain travelling waves
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Figure 2. Redrawn from (? ).

A Anatomical conduction: β-LFP
oscillations may propagate from a common
source with varied delays. B Excitatory
waves: Waves may propagate as travelling
waves in an excitable medium. C Coupled
oscillators: Phase gradients in local β-LFP
oscillations can create apparent waves.

3: Wave patterns are diverse, not fixed
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Figure 3. Example β-LFP wave events from area PMv of subject S.

Figure 4. Synchrony, radiating, rotating, and complex patterns are
prevalent in preparatory steady-states (subjects R, S combined).

The observed pattern diversity is incompatible with fixed anatomical
conduction delays: zero-lag spatial phase synchrony, rotating, and
complex wave patterns cannot be explained in terms of β oscillations
propagating from a common source with varying delay.

4: β waves differ from travelling waves
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Figure 5. A β wavelength increases with amplitude, &
high-amplitude events are more synchronous. B Optogenetic
stimulation induces true travelling γ-LFP waves (? ) with
characteristic ∼2-4 mm wavelength that desynchronise γ-LFP.
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5: Single neurons show sustained β-rhythmic spiking at diverse frequencies (? )
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Figure 6. 90% (264/292) of neurons that fired during
delays exhibited β-rhythmic spiking (e.g. A subj. S,
PMd), suggesting that coupled-oscillator dynamics may
explain the diverse & transient nature of β-LFP waves.
B: Mode firing-frequencies do not exhibit a single
frequency, but are broadly distributed between
approximately 15 and 45 Hz (e.g. Subj. R).

Steady-state firing rates during β events
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Figure 7. Unlike β suppression
related to movement (grey bars),
β-LFP amplitude transients during
preparatory steady-states are not
associated with changes in the
underlying single-neuron firing
frequencies. (e.g. subj. S).

Spike-LFP phase coupling during & outside of β events
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Figure 8. Single neurons are
weakly coupled to β-LFP during
delay periods. No significant phase
coupling exists outside of transient
events, but there is a small
statistically significant increase in
spike-field phase coupling during
β-LFP transients (e.g. subj. S).

6: Heterogeneous frequencies → phase reorganisation → diverse β transients
• Unlike previous studies, which found travelling waves & posited directed information transfer, we find:
1. Diverse waves that cannot be explained by anatomical conduction delays
2. Transient variations in both spatial patterns and wavelengths that differ from travelling waves
3. Coexistence with sustained β-rhythmic single neuron firing, despite weak spike-LFP phase coupling

Conclusion: Spatiotemporal dynamics in β-LFP do not reflect only signal conduction: they also reflect
ongoing reorganisation of coupled oscillatory populations.

Conjecture: Frequency diversity encodes planned and upcoming actions (? ). This diversity limits phase
coupling of neurons to a single common β-LFP frequency, which necessarily gives rise to diverse β-LFP
transients via a mechanism akin to ‘beating’.

Future:
• Diverse wavelengths are incompatible with existing models of motor-cortex β-LFP (? ): modified models are needed.
• The ‘beating’ theory of β-LFP transients contrasts with the thalamic-input theory of somatosensory β-LFP transients (? ).
• Reconcile the oscillator hypothesis with the theory that β-LFP waves reflect directed spiking communication.
• Understand the neural mechanisms of preparatory steady-states in motor cortex
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