Phase reorganization leads to diverse β-LFP spatial wave patterns in motor cortex during movement preparation

Michael Rule^{1,2}, Carlos Vargas-Irwin¹, John Donoghue^{1,3}, Wilson Truccolo^{1,3}

¹Department of Neuroscience, Brown University, Providence, RI, USA, 02912 ²Department of Informatics, University of Edinburgh, Edinburgh, UK, EH8 9AB ³U.S. Department of Veterans Affairs, Center for Neurorestoration and Neurotechnology, Providence, RI, USA

1: *Transient* β -LFP wave events occur during movement preparation

3: Wave patterns are *diverse*, not fixed

Figure 1. A We study the neural dynamics of movement preparation using a cued-reaching and grasping task with instructed delays. **B** Spatiotemporal β -LFP activity was recorded in motor areas M1, PMv, and PMd, in rhesus macaques (two subjects, R and S). C Trial-averaged β -LFP is elevated during preparatory steady-states (e.g. subject S). D Single-trial β -LFP activity is variable and transient. **E** β -LFP transients are known to organise as travelling waves along the rostro-caudal axis (???).

Α

2: Multiple underlying mechanisms can explain travelling waves

Figure 2. Redrawn from (?)

A Anatomical conduction: β-LFP oscillations may propagate from a common source with varied delays. **B Excitatory** waves: Waves may propagate as travelling waves in an excitable medium. C Coupled **oscillators:** Phase gradients in local β -LFP oscillations can create apparent waves.

Figure 3. Example β -LFP wave events from area PMv of subject S.

M1	7%	7%			32%		51%			
PMv	27%				18%		49%			
PMd	13% <mark>8% 6%</mark>							71%		
Compley/upclessified Dadiating/ratating Discourses Superconv										

Figure 4. Synchrony, radiating, rotating, and complex patterns are prevalent in preparatory steady-states (subjects R, S combined).

The observed pattern diversity is incompatible with fixed anatomical conduction delays: zero-lag spatial phase synchrony, rotating, and complex wave patterns cannot be explained in terms of β oscillations propagating from a common source with varying delay.

4: β waves differ from travelling waves

5: Single neurons show sustained β -rhythmic spiking at diverse frequencies (?)

Figure 6. 90% (264/292) of neurons that fired during delays exhibited β -rhythmic spiking (e.g. **A** subj. S, PMd), suggesting that coupled-oscillator dynamics may explain the diverse & transient nature of β -LFP waves. **B:** Mode firing-frequencies do not exhibit a single frequency, but are broadly distributed between approximately 15 and 45 Hz (e.g. Subj. R).

Figure 7. Unlike β suppression related to movement (grey bars), β -LFP amplitude transients during preparatory steady-states are not associated with changes in the underlying single-neuron firing frequencies. (e.g. subj. S).

Spike-LFP phase coupling during & outside of β events

Figure 8. Single neurons are weakly coupled to β -LFP during delay periods. No significant phase coupling exists outside of transient events, but there is a small statistically significant increase in spike-field phase coupling during β -LFP transients (e.g. subj. S).

Figure 5. A β wavelength increases with amplitude, & high-amplitude events are more synchronous. **B** Optogenetic stimulation induces true travelling γ -LFP waves (?) with characteristic \sim 2-4 mm wavelength that desynchronise γ -LFP.

Acknowledgements

This work supported by the National Science Foundation Graduate Research Fellowship grant NSF11-582 (MR), grants NIH-NINDS R01NS079533 (WT), NIH-NINDS K01 Career Award (WT), DARPA-REPAIR (JPD; WT), NIH/NINDS NS25074 (JPD; WT), the June Rockwell Levy Foundation (MR) and the Pablo J. Salame '88 Goldman Sachs endowed assistant professorship of Computational Neuroscience (WT).

6: Heterogeneous frequencies \rightarrow phase reorganisation \rightarrow diverse β transients

• Unlike previous studies, which found travelling waves & posited directed information transfer, we find:

1. **Diverse** waves that cannot be explained by anatomical conduction delays

2. Transient variations in both spatial patterns and wavelengths that differ from travelling waves

3. Coexistence with *sustained* β -rhythmic single neuron firing, despite weak spike-LFP phase coupling

Conclusion: Spatiotemporal dynamics in β -LFP do not reflect only signal conduction: they also reflect ongoing reorganisation of coupled oscillatory populations.

Conjecture: Frequency diversity encodes planned and upcoming actions (?). This diversity limits phase coupling of neurons to a single common β -LFP frequency, which necessarily gives rise to diverse β -LFP transients via a mechanism akin to 'beating'.

Future:

- Diverse wavelengths are incompatible with existing models of motor-cortex β -LFP (?): modified models are needed.
- The 'beating' theory of β -LFP transients contrasts with the thalamic-input theory of somatosensory β -LFP transients (?).

mate motor cortex. J Neurophysiol, 2017.

premotor cortex. J Neurosci, 2015.

- Reconcile the oscillator hypothesis with the theory that β -LFP waves reflect directed spiking communication.
- Understand the neural mechanisms of preparatory steady-states in motor cortex

References

- [1] Takahashi K, et al. Propagating waves in human motor cortex. [3] Rubino D, et al. Propagating waves mediate information trans- [5] Lu Y, et al. Optogenetically-induced spatiotemporal gamma Front Hum Neurosci, 2011. fer in the motor cortex. Nat Neurosci, 2006. tex. J Neurophysiol, 2015. [2] Takahashi K, et al. Large-scale spatiotemporal spike pattern- [4] Ermentrout GB et al. Traveling electrical waves in cortex:
- ing consistent with wave propagation in motor cortex. Nat Commun, 2015.
- tional role. Neuron, 2001.
- oscillations and neuronal spiking activity in primate motor cor-[7] Vargas-Irwin CE, et al. Linking objects to actions: Encod-
- insights from phase dynamics and speculation on a computa- [6] Rule ME, et al. Dissociation between sustained single-neuron spiking β -rhythmicity and transient β -lfp oscillations in pri-
- [8] Heitmann S, et al. A computational role for bistability and traveling waves in motor cortex. *Front Comput Neurosci*, 2012. [9] Sherman MA, et al. Neural mechanisms of transient neocortiing of target object and grasping strategy in primate ventral cal beta rhythms: Converging evidence from humans, computational modeling, monkeys, and mice. PNAS, 2016.