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Understanding the sources of variability in single-neuron spiking responses is an

important open problem for the theory of neural coding. This variability is thought to

result primarily from spontaneous collective dynamics in neuronal networks. Here, we

investigate how well collective dynamics reflected in motor cortex local field potentials

(LFPs) can account for spiking variability during motor behavior. Neural activity was

recorded via microelectrode arrays implanted in ventral and dorsal premotor and primary

motor cortices of non-human primates performing naturalistic 3-D reaching and grasping

actions. Point process models were used to quantify how well LFP features accounted

for spiking variability not explained by themeasured 3-D reach and grasp kinematics. LFP

features included the instantaneous magnitude, phase and analytic-signal components

of narrow band-pass filtered (δ,θ ,α,β) LFPs, and analytic signal and amplitude envelope

features in higher-frequency bands. Multiband LFP features predicted single-neuron

spiking (1ms resolution) with substantial accuracy as assessed via ROC analysis.

Notably, however, models including both LFP and kinematics features displayed marginal

improvement over kinematics-only models. Furthermore, the small predictive information

added by LFP features to kinematic models was redundant to information available in

fast-timescale (<100 ms) spiking history. Overall, information in multiband LFP features,

although predictive of single-neuron spiking during movement execution, was redundant

to information available in movement parameters and spiking history. Our findings

suggest that, during movement execution, collective dynamics reflected in motor cortex

LFPs primarily relate to sensorimotor processes directly controlling movement output,

adding little explanatory power to variability not accounted by movement parameters.

Keywords: neural dynamics, neural point processes, generalized linear models, local field potentials, neural

variability

Introduction

The variability of neuronal responses at the level of single-neuron spiking is a fundamental
problem in neuroscience (Shadlen andNewsome, 1998; Churchland, 2010; Churchland andAbbott,
2012). Neuronal responses in neocortex to repeated stimuli presentation or behavioral tasks
show substantial variability. Determining the sources of this variability is particularly important
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FIGURE 9 | Conditioned on intrinsic spiking history, the contribution

of LFP features to kinematic models is redundant. Scatter plots

comparing the predictive power of a model based on kinematics and intrinsic

spiking history (x-axis) to that of a model based on kinematics, intrinsic

history, and LFP features (y-axis). LFP features add negligible predictive

power after accounting for behavioral and intrinsic spiking history effects. In

the figure legends, “S” indicates the session, µ1 is the mean change in

predictive power, and m1 is the median change in predictive power.

This result demonstrates that fast-timescale spiking history can
explain variability in single-neuron spiking that is not redundant
to variability examined by the kinematic features in this motor
task.

Conditioned on Spiking History, Contribution of
LFP Features to Kinematic Models is Further
Reduced
Having demonstrated that intrinsic spiking history adds
predictive power to kinematic models, we finally assessed
whether LFP features can account for variability in single-neuron
spiking not accounted for by kinematics and intrinsic history
features. Figure 9 shows that, across monkeys and motor areas,
adding LFP features to models based on kinematics and intrinsic

spiking history leads to no substantial improvement in predictive
power. Across sessions and areas, the mean change in predictive
power when adding LFP features to a model containing both
kinematics features and intrinsic spiking history features ranged
from 0.002 to 0.02, and the median change ranged from 0.001
to 0.02. Nevertheless, this median improvement was statistically
significant for all but one session (monkey C area PMv session 1)
(Wilcoxon signed-rank test, p < 0.05 with Bonferroni correction
for 19 (session, array) multiple tests).

This result demonstrates that the LFP predictive power not
redundant to kinematics features was primarily redundant to
information available in the recent 100 ms spiking history in this
motor task. In other words, additional single-neuron variability
not explained by kinematics seems to be better explained by
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fast-timescale features in intrinsic spiking history than by the
examined motor cortex LFP features in this reach and grasp task.

Discussion

Neocortical neurons are embedded in large networks possessing
highly recurrent connectivity. Recurrent connectivity typically
leads to rich spontaneous collective dynamics. The extent to
which these spontaneous dynamics contribute to single neuron
variability in awake behaving primates, and how these dynamics
interact with sensory inputs and behavioral outputs is an
important open question in neuroscience. Here we examined
this problem in the context of collective dynamics reflected in
LFP oscillations at multiple frequencies in three different areas of
motor cortex in monkeys performing naturalistic 3-D reach and
grasp actions. These LFPs are thought to result, to a large extent,
from collective modes of activity driving spatially coherent
postsynaptic potentials at multiple spatiotemporal scales (Nunez
and Srinivasan, 2006; Buzsáki et al., 2012). LFP features (e.g.,
amplitude envelope, phase, and analytic signal) in eight different
frequency bands predicted single neuron spiking (1ms time
resolution) with significant predictive power for many neurons
in all of the three examined motor cortex areas (PMv, PMd, and
M1). Neurons for which LFP predictive power was high tended
also to show high kinematics predictive power. In fact, this
relationship was close to linear (Pearson correlation coefficient
ranging from 0.52 to 0.96 across all the studied areas, monkeys
and sessions). More importantly, predictive information in the
examined LFP features was mostly redundant to the predictive
information available in kinematics. In other words, models
combining both LFP features and kinematics typically improved
only marginally over models using only kinematics in the studied
3-D reach and grasp task. These results should not be dismissed
as overfitting artifacts since they were obtained under well
controlled L2 regularization aiming to preserve generalization
of models with larger number of parameters. Furthermore, in
the few cases for which LFP features seemed to add predictive
information with respect to kinematics, this information turned
out to be redundant to the information available in short term
correlations in the intrinsic spiking history. Overall, our findings
suggest that multiband LFP oscillations in motor cortex of alert
behaving primates, although predictive of single-neuron spiking
during movement execution, are primarily related to collective
dynamics controlling aspects of motor output (e.g., kinematics)
rather than other potential ongoing dynamics not directly related
to the task (e.g., arousal levels).

Several previous studies have looked at the relationship
between single-neuron spiking and features of LFP oscillations,
mostly in sensory cortices and during anesthesia (e.g., Haslinger
et al., 2006; Kelly et al., 2010). Recent work by Ecker et al.
(2014) has shown that previously reported high correlations
between neuronal pairs and strong phase locking to ongoing
LFPs in primary visual cortex during stimulation were highly
dependent on the anesthesia state, with neuronal ensemble
spiking becoming much more asynchronous during awake
stimulation tasks. Our analysis goes beyond previous studies by
examining motor cortex LFP and spiking in awake behaving

non-human primates. Furthermore, to our knowledge, this is the
first time that the redundancy between the information available
in multiband LFP features and the information available in
behavioral output (kinematics) has been systematically assessed
in motor cortex. It remains to be seen how much of the residual
variability is inherent to stochastic aspects of the biophysics (e.g.,
noise due to synaptic failure and amplification effects during
spike generations; Carandini, 2004), to other motor-related
covariates (e.g., torques and muscle activations) not examined
in this paper, or to network dynamics not faithfully reflected
in LFP features. In the latter, it is possible that the cortical
layer from which the electrode tips recorded (likely layer 5 in
our data) may impact LFP predictive power. For example, LFPs
recorded from layers 2/3 of motor cortex may potentially exhibit
different spike prediction performance and different levels of
redundancy with respect to kinematics. In addition, we note that
typically recorded LFPs might not be as “localized” as previously
thought (Kajikawa and Schroeder, 2011). In particular, rhythmic
oscillations in electric potentials recorded intracellularly and on
broad extracellular fields may share similar frequencies, and
yet show very different phase-locking dynamics with respect to
neuronal spiking (e.g., Harvey et al., 2009). Thus, the broader LFP
spatial average might result in signals that are less predictive of
single-neuron spiking and more related to population activity.

The relationship between single-neuron spiking and ongoing
LFP oscillations, in particular the locking of neuronal spiking
to the phase of oscillations in specific frequency bands, might
be highly dependent on the neuron types (e.g., pyramidal vs.
fast spiking interneurons; Buzsáki et al., 2012). Recent work by
Vigneswaran et al. (2011) has demonstrated that certain types
of pyramidal neurons in primary motor and premotor cortices
can show features of action potential waveforms and spiking
statistics that are indistinguishable from features in inhibitory
interneurons. Therefore, an analysis based on such putative
classification would remain highly questionable in our motor
cortex data.

In our analysis, low frequency (0.3–2 Hz) and higher (>100
Hz) frequency LFP bands tended to contribute the most to
prediction of neuronal spiking. The former relate to motor
evoked potentials, which are known to be highly correlated
with the population spiking (Bansal et al., 2012), and the latter
to multiunit activity, whose movement-related modulation also
reflects correlated spiking in neuronal populations. Intermediate
frequency bands tended to contribute little during movement
execution in this type of task. One could raise the possibility that
the relationship between LFP features and single-neuron spiking
in these intermediate frequency bands could be much more
transient than the relationship between spiking and kinematics
during movement execution. For example, beta oscillations, even
during movement preparation, typically occur in transient, not
sustained, events lasting a few or several cycles. Thus, one
would like to build models in which spiking phase-locking
should be obviously conditioned on the amplitude of the
beta filtered LFPs, so that these transients can be properly
captured. In this regard, we note that the neural point process
models used here should capture such dependence on beta
amplitude, since the log-additive form of the models allows
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for (nonlinear) multiplicative effects and interactions among
different terms (e.g., beta amplitude and phase) in the models.
We also note that, although more complex LFP features and
models could potentially improve spike prediction, the same
could be said about improving the predictive power of motor
behavioral covariates by using more complex or a larger set of
kinematic features, including for example kinetics (torques) and
muscle activation covariates. We hope to be able to examine
more complex LFP and motor behavior-related features in the
future.

The results reported here on the redundancy between motor-
cortex multiband-LFP features and motor behavior are specific
to execution of motor tasks in non-human primates who were
highly engaged during movement execution. Multiband LFP
features also provide reliable biomarkers for broader brain states
and their changes. For example, the relationship between single-
neuron spiking activity and ongoing LFPs is likely to change
substantially depending on anesthesia, drowsiness, resting vs.
awake states, attentional and volitional states, as well as stages
during motor tasks (e.g., preparation vs. execution). In this
broader context, including a larger variety of neural states than
examined in this study, we expect multiband LFP features will
be an important independent signal to account for neuronal
spiking variability not explained by stimuli or behavioral
covariates.

Variability in single-neuron spiking activity has often been
characterized as of two types: private and shared (e.g., Deweese
and Zador, 2004; Churchland and Abbott, 2012; Litwin-Kumar
andDoiron, 2012; Goris et al., 2014). Private variability is likely to
reflect chaotic nonlinear dynamics in highly recurrent neuronal
networks (Litwin-Kumar and Doiron, 2012). Amplification of
membrane potential fluctuations by the spiking generation
process (Carandini, 2004) in addition to local stochastic factors
such as thermal fluctuations and synaptic failure (Faisal et al.,

2008) are also important contributors. On the other hand,
shared variability in neuronal ensembles is thought to evolve on
slower time scales and reflect representational and computational
states in neuronal networks (Churchland and Abbott, 2012;
Litwin-Kumar and Doiron, 2012). The examined fluctuations
in multiband LFP oscillations seem primarily to be related to
this shared variability. Multiband oscillatory LFP activity results
in large part from coherent or shared dynamics in neuronal
networks. In addition, features in these oscillations that are
predictive of single-neuron spiking seemed mostly redundant
to parameters in motor behavior. Overall, our finding was that
information in the examined multiband LFP features directly
relates to these shared representational and computational
dynamics across neural populations in motor cortex. Single-
neuron activity in motor cortex populations has been shown
to be dominated by latent low-dimensional collective dynamics
(Truccolo et al., 2010; Churchland et al., 2012). We hope in
the future to investigate the relationship between multiband
oscillatory LFP activity, in particular slow fluctuations, and latent
low-dimensional rhythmic dynamics (Churchland et al., 2012) in
motor cortex.
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