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Abstract: In this work we explore emergent encoding strategies learned by statistical models1

of sensory coding in noisy spiking networks. Early stages of sensory communication in neural2

systems can be viewed as encoding channels in the information-theoretic sense. However, spiking3

neural populations face constraints not commonly considered in communications theory. Using4

Restricted Boltzmann machines, we find that networks with sufficient capacity learn to balance5

precision and noise-robustness in order to adaptively communicate stimuli with varying information6

content. Mirroring variability suppression observed in sensory systems, highly informative stimuli7

are encoded with high precision, at the cost of highly variable responses to frequent, hence less8

informative stimuli. We find that this coding strategy corresponds to statistical criticality in the neural9

population code, and emerges at model sizes where the input statistics are well captured. These10

phenomena have well-defined thermodynamic interpretations, and we discuss their connection to11

prevailing theories of coding and statistical criticality in neural populations.12

Keywords: information theory; encoding; neural networks; sensory systems13

1. Introduction14

The rate at which information can be conveyed by a finite neural population is limited.15

Neurons have a maximum firing rate, and spiking communication is affected by noise. The spiking16

output of a neural population can therefore be viewed as a noisy communication channel in the17

information-theoretic sense. Neural communications channels must signal reliably under a range18

of operating conditions. For example, the optic nerve carries visual information from the retina to19

the brain. The capacity of the optic nerve is fixed, but the amount of information carried along it20

is not. Certain stimuli can contain more behaviorally-relevant ‘bits’ than others. To utilize sensory21

information, the brain must therefore find efficient coding strategies [1]. How might a noisy spiking22

communications channel structure its available spiking "code words" to reliably communicate stimuli23

with differing amounts of information?24

In conventional communications channels, deriving optimal codes is straightforward: the channel25

bandwidth is equal to the nominal bandwidth minus the entropy of any noise on the channel. The26

optimal code-word allocation is given by entropy coding [2], in which the cost (in bits) of a symbol27

with probability p should be roughly − log2(p). Optimal coding strategies are more subtle in spiking28

channels, since the amount of noise depends on the symbol being transmitted: spiking variability29

is higher when neurons spend more time close to firing threshold. In addition, limited encoding30

bandwidth favours models that capture salient latent causes underlying sensory inputs [3–5].31

In this work, we used Restricted Boltzmann Machines (RBMs) to study optimal encoding in32

stochastic spiking channels. Such models balance biological realism and theoretical accessibility. The33
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stochastic and binary nature of RBMs resembles physiological constraints on spiking communication,34

while the interpretation of RBMs as Ising spin models also allows access to information-theoretic and35

thermodynamic quantities [6–9].36

We organize this work as follows. We first detail an RBM model of sensory encoding and37

present evidence of an optimal population size for capturing stimulus statistics. We then show that38

stimulus-dependent suppression of ‘neuronal’ variability is an essential feature of the learned encoding39

strategy in sufficiently large populations. We observe that this corresponds to statistical criticality in the40

population code, a feature not inherited from the stimulus statistics. By examining a thermodynamics41

interpretation of the RBM models, we show that statistical criticality connects to the optimization of42

the underlying network parameters, and that it suggests an optimal model size that balances accuracy43

verses the number of neurons used for encoding. We conclude with a discussion of the connection44

between the statistical machine-learning approach used here and other prevailing theories of sensory45

encoding.46

2. Results47

2.1. RBMs as a statistical machine-learning analogue of stochastic spiking communication48

Restricted Boltzmann Machines (RBMs; Fig. 1a) are stochastic binary neural networks used in49

statistical machine learning [10]. They consist of two populations of stochastic binary units. One50

population, the ‘visible’ layer, is driven by incoming sensory stimuli. The other population, a ‘hidden’51

layer, learns to encode the latent causes of these stimuli. These hidden units can therefore be interpreted52

as a stochastic spiking communication channel that conveys information about incoming stimuli.53

In the RBM, processing of sensory input consists of a linear-nonlinear transformation of a stimulus
vector (v) that determines the probability that units in the hidden layer ‘spike‘ (i.e. emit a ‘1‘):

Pr(hi = 1) = σ(Wiv + Bhi
), (1)

where σ(a) = [1 + exp(−a)]−1 is a logistic sigmoid nonlinearity, W is a matrix of ‘synaptic‘ weights54

between the visible and hidden layers, and Bhi
is a per-unit bias that sets the baseline firing rate for55

hidden units hi.56

In addition to retaining phenomenological aspects of spiking population coding, RBMs can be57

trained readily using the contrastive divergence algorithm [10,11]. We trained RBMs on binarized58

regions of natural images in order to study emergent learned encoding strategies (Fig. 1a; Methods59

§4.1-4.2). We evaluated a range of population sizes for the hidden layer (Fig. 1b-e) to study how60

encoding strategies change with network size. Small networks did not accurately model the stimulus61

distribution (Fig. 1b,c), and a minimum population size of ≈30 units was necessary to faithfully model62

small binary image patches from the CIFAR dataset. Network activity became increasingly sparse (Fig.63

1d) and uncorrelated (Fig. 1e) for larger hidden-unit population sizes, mimicking the sparse spiking64

activity of biological neural networks.65

It appears that sufficiently large RBMs can learn stochastic spiking representations of incoming66

stimuli. We next examine these learned encoding strategies in depth in order to answer two related67

questions. First, can we understand general principles of sensory encoding in stochastic spiking68

populations based on the encoding strategies learned by these models? Second, what are the statistical69

correlates of a model being “sufficiently large” that could be used to identify the optimal population70

size required for good representations?71

2.2. RBMs provide an energy-based interpretation of spiking population codes72

For models that capture the stimulus distribution well, we would like to understand how the73

network allocates its coding space: how do ‘visible’ stimuli map to spiking patterns in the latent74

‘hidden’ layer, and vice-versa? The limited number of hidden units favors precise neural codes, in75
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Figure 1. Effect of the channel size on encoding of stimulus statistics. (a) We trained RBMs to model local
regions of (binarized) CIFAR-10 images. We interpret the number of hidden units as the size of a
sensory communication channel. (b) A minimum number of hidden units is required to faithfully
capture stimulus statistics. We quantified model accuracy by the Kullback-Leibler divergence between
model samples and held-out training data. Accuracy improves as the hidden-layer size increases,
up to a point. Results for three different sizes of stimulus patches (13, 21, 37 pixels) are shown. (c)
Comparison of actual and predicted pattern probabilities for four hidden-layer sizes. We denote
probability in terms of the negative log-probability (in bits), abbreviated as energy E=− log2 Pr(·).
Larger models capture the stimulus distribution better. (d,e) Hidden-layer activation becomes sparser
(d) as model size increases, and more decorrelated (e). 13 visible units were used for c-e.
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which specific stimuli reliably evoke a specific pattern of neuronal spiking. However, noise can limit76

coding precision, requiring multiple neural states to map to each stimulus to achieve robustness.77

Overall, two strategies are available for increasing information content in stochastic spiking codes.78

Neurons can become reliable, and use precise codes with less noise. Neurons can also increase their79

firing rates. These strategies have natural analogues in information theory. Increasing codeword80

precision amounts to decreasing the conditional entropy of evoked neural activity, i.e. reducing the81

channel noise. Using higher firing rates amounts to increasing the ‘energy’ of the neural codes, which82

is equivalent to using longer symbols (or more bandwidth) in a conventional digital code. Hinton et al.83

(1995) [12] first noted this in the context of spiking latent-variable models, showing that in optimal84

codes the amount of information in a stimulus should match the average information in the latent85

spiking pattern minus the entropy (i.e. variability) in that evoked pattern. However, the question86

remains of how an optimized spiking channel might make use of these two encoding strategies.87

Here, we assume that the sensory channel represents all stimuli equally, so that the amount of88

behaviorally-relevant information in each stimulus is indeed equal to its negative log-probability. This89

reflects the number of bits required to communicate it in an optimal code in Shannon sense. In reality,90

early stages of sensory processing filter and discard information, preserving only important details.91

This issue is minor, however, since one can consider the stimuli in the simulations here as reflecting92

only the behaviorally-relevant bits.93

To explore this, let us first make precise these notions of ‘energy’ and ‘entropy’ in the trained RBM
networks. For an RBM with weight matrix W and hidden and visible biases Bh and Bv, the probability
of any population activity state (h, v) can be written as:

Pr(h, v) = exp (−E(h, v))

E(h, v) = −B>v v− B>h h− h>Wv + constant,
(2)

where E(h, v) is the energy of the state (h, v). Throughout this paper, we will use the term ‘energy‘94

synonymously with negative log-probability.95

We adopt the compact notation of Dayan et al. (1995) [13], and write energy of a state (h, v) as
Eφ

h,v, where φ = {W, Bh, Bv} are the model parameters. Probabilities are denoted similarly, and we
use Q to denote the distribution of latent factors learned by the RBM network. In this notation, the
stimulus-evoked entropy of the hidden-unit spiking h given a specific stimulus v is

Hφ

h|v = ∑
h

Qφ

h|v Eφ

h|v =
〈

Eφ

h|v

〉
h|v

(3)

Above, 〈·〉h|v denotes expectation with respect to the distribution of stimulus-evoked spiking activity

in the latent units, Qφ

h|v. In this notation, optimal representations are achieved when the amount of
information in a stimulus (Ev) matches the amount of information in the evoked spiking activity minus
the entropy of any "noise" in the channel (Hh|v) :

Ev =
〈
Eh,v

〉
h|v −Hh|v . (4)

(c.f. Eq. 5 in Hinton et al. 1995 [12]). In practice, the optimization procedure identifies parameters φ96

that only approximately achieve the above relationship. For models that are too small, not all stimuli97

are equally well-encoded, as reflected in the increased Kullback-Leibler divergence in the fits for98

smaller models (Fig. 1b).99

2.3. Stimulus-dependent variability suppression is a key feature of optimal encoding100

We calculated the stimulus-evoked energy and entropy for a range of network sizes (Methods101

§4.3). In Fig. 2 we examine how these quantities vary a function of stimulus energy. Here, stimulus102

energy is equivalent to negative log-probability (Ev =− log Pv), and reflects the amount of information103
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(in bits) needed to specify a particular stimulus. This can be interpreted as the bitrate required to104

convey a stimulus, and groups of stimuli with similar energy therefore reflect different bitrates required105

of the sensory communication channel.106

We found that RBMs learned to reserve the highest-bandwidth (low noise) parts of coding space107

for high-information stimuli. This can be seen in Figure 2a, which shows that the stimulus-evoked108

entropy in the latent spiking activity is reduced when higher bitrates are needed, provided the channel109

is sufficiently large (≥35 units). This reflects an adaptive code that lowers neuronal variability when110

more bandwidth is required. Conversely, stimuli that require less bandwidth are represented using111

noisier parts of encoding space.112

Curiously, we found that channels that were too small to properly encode all stimuli (<35 units)113

exhibited the opposite trend: the reliable parts of coding space are allocated to low-information stimuli.114

This suggests that variability suppression may emerge above a critical model size, and might be a115

useful correlate for optimizing the number of latent units in the channel.116

To communicate more information, neural codes can either reduce noise (Hh|v), or they can use117

more informative code-words. In optimal Shannon coding, more informative codewords are simply118

rarer (information is negative log-probability), and correspond to specific spiking patterns reserved for119

rare stimuli. One can summarize how "rare" the spiking patterns for a particular stimulus are in terms120

of the average energy of the evoked codewords, which we denote as 〈Eφ
h 〉h|v. Intuitively, 〈Eφ

h 〉h|v is the121

average number of bits needed to specify a particular codeword h evoked by stimulus v (if we do not122

know v in advance). That is, it is the amount of information needed to encode the stimulus-evoked123

neural states.124

We expected 〈Eφ
h 〉h|v to increase for higher stimulus bitrates, but found instead that it closely125

tracked variability (Hh|v), decreasing for stimuli that required more bits to communicate. Indeed,126

above a critical model size (≥35 units in this case), the stimulus-evoked entropy and energy tracked127

Figure 2. Informative stimuli suppress variability in stochastic spiking communication channels. Here, we
trained RBMs to encode 13 visible units from circular patches of binarized CIFAR-10 images. Plots
show how the statistics of the evoked activity in hidden units (vertical axes) varies as a function of
stimulus information content (horizontal axes). Larger ‘energies’ (Ev) represent stimuli (blue dots) that
require more bits to communicate. All units are in bits. (a) Sufficiently large models learn to reduce
channel entropy (variability) for stimuli that require more information to codify. (b) To communicate
more information, neural codes can either reduce stimulus-conditioned entropy Hh|v, or they can use
rarer code-words, i.e. increase 〈Eh〉h|v. In sufficiently large models, we find that energy and entropy
both decrease for stimuli that require more information to communicate. (gray bars; dots=mean,
bars=inter-quartile range).

Submitted to Entropy, pages 5 – 16 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy


each-other with a 1:1 ratio. This is illustrated in Fig. 2b, which plots the difference between these two128

quantities over a range of stimulus bitrates.129

Surprisingly, this 1:1 balance between energy and entropy corresponds to statistical criticality and130

the emergence of 1/ f power-law statistics in the latent spiking activity. Criticality in the brain has131

been the subject of some controversy over the past decades [14,15], and we unpack this observation in132

more depth in the following sections.133

2.4. Optimal codes exhibit statistical criticality134

When we say that a collection of observations exhibit "statistical criticality", we mean that they135

are consistent with being generated by a physical process that lies close to a phase transition in the136

thermodynamic sense. At first glance, it is unclear how the allocation of codewords in a stochastic137

spiking code might be related to criticality, or why this relationship might be interesting from the138

standpoint of neural coding.139

Historically, the study of statistical criticality in neural systems was motivated by theories that140

suggest that dynamical regimes close to a phase transition might be useful for processing information141

[9]. Indeed, several studies have suggested evidence of statistical criticality in neural data [16–18].142

However, other studies call the significance of this into question [19], showing that these statistics can143

arise under very generic circumstances [20], might be inherited from the environment [21], and could144

even be a data-processing artefact [22]. We hope to clarify some of this controversy by examining the145

emergence of statistical criticality in this in silico model of spiking population coding.146

Figure 3. Stimulus information content predicts energy and entropy of evoked activity in latent units. Each
plot shows the average stimulus-evoked entropy (Hh|v) plus a constant (Ienc) on the vertical axis,
against the information content of the code-words evoked by a given stimulus (〈Eh〉h|v horizontal axis).
Here, Ienc=〈DKL(Qh|v‖Qh)〉 is the average energy-entropy relationship for all stimuli, which becomes
approximately constant above a critical model size (Fig. 2b). Color indicates the stimulus bitrate Ev.
Points reflect the average energy and entropy of hidden patterns evoked for a given Ev. In too-small
models (n=10), low-variability states are used to represent common (low-information) stimuli. This
relationship shifts as the encoding capacity increases (n=20,25). Above a critical model size (n≥35),
an inverse relationship between visible energies and the entropy of latent representations emerges:
high-energy visible patterns suppress variability. A 1:1 trade-off between using energy and entropy
for modulating bit rate also emerges (red lines). This relationship persists in larger models (n=60,120).
This 1:1 trade-off reflects emergence of a 1/f power-law in the statistics of hidden unit activity, which
gives rise to statistical criticality. Here, models were trained to encode 13 visible units from circular
patches of binarized CIFAR-10 images.
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Figure 3 illustrates how the energy and entropy of stimulus-evoked activity varies as a function147

of stimulus bitrate. We group stimuli into sets "VE" of similar energy, which correspond to different148

bitrates required of the spiking channel. For each VE, we plot the average stimulus-evoked entropy149

Hh|v (a correlate of the spiking noise), and energy 〈Eφ
h 〉h|v (the average number of bits required to150

specify a particular evoked spiking pattern). To more clearly illustrate the scaling, the entropy is151

shifted by a constant Ienc which reflects the average difference between energy and entropy. For this152

particular set of stimuli, models with at least 35 hidden unit exhibit a positive correlation between153

energy and entropy, with a slope that approaches one as the model size increases.154

This relationship corresponds to the so-called "Zipf’s law" [15]. Zipf’s law refers to the frequency155

( f ) of symbols in a dataset. Here, the symbols are the spiking "codewords" (h) in the hidden units.156

Zipf’s law states that frequency of any symbols is inversely proportional to its rank in the frequency157

table. I.e. the rarer a pattern is the more patterns there are of similar frequency. For example, in a158

dataset exhibiting Zipf’s law we would expect approximately 2E patterns with frequency above 2−E
159

(up to some multiplicative constant). These statistics are especially curious in the context of the RBM,160

which can be interpreted as a type of Ising spin model. Ising spin models at a critical point exhibit161

Zipf’s law in their distribution of states [9,15].162

We confirm that the 1:1 variation in entropy and energy observed here corresponds to Zipf’s163

law in the codeword frequencies in Figure 5a. The stimulus-evoked entropy Hh|v determines the164

number of hidden codewords h that correspond to a given stimulus v. Loosely, one can think of165

a stimulus as eliciting 2Hh|v possible patterns. Likewise, the "energy" of a hidden codeword Eh is166

proportional to its negative log-probability. In the models examined here, the energy and entropy of167

stimulus-evoked spiking patterns vary similarly as a function of stimulus energy Ev, giving rise to168

Zipf’s law in the frequencies of population spiking patterns. This means that, as the neural code gets169

noisier, the probability of any specific codeword also decreases. Overall then, we find that stimuli170

that are encoded in the "noisier" parts of coding space are allocated over a larger pool of increasingly171

rare, but representationally equivalent, codewords. This strategy is essential for reserving the reliable172

parts of the coding space for high-information stimuli, while also using a robust code to communicate173

low-information stimuli in noisier parts of the coding space.174

Here we show that statistical criticality emerges naturally in a model of stochastic spiking175

encoding, but only for models that are large enough to capture the stimulus distribution. Our use176

of a ground-truth model simulation ensures that these statistics are not an artefact of recording or177

data-processing [22]. A natural question, however, is whether these statistics arise from the statistics of178

natural images, which also exhibit Zipf’s law [21]. In Figure 4 we confirm that this is not the case, as179

models trained on synthetic visual stimuli designed to have other statistics still exhibit 1/ f power-law180

statistics in latent unit activity.181

Many processes can generate similar statistics, and while criticality implies 1/ f statistics, the182

converse is not necessarily true [20,24,25]. We next therefore asked whether the observed statistics183

are associated with true criticality in the thermodynamic sense, and whether this tells us anything184

significant about the model optimization and the learned encoding strategies.185

2.5. Evidence for an optimal population size186

So far, we have demonstrated that Zipf’s law emerges in optimized RBM models of spiking187

population codes. Should we attribute any significance to these statistics? Do they imply anything188

meaningful about the underling spiking population code, or could they arise from more mundane189

explanations [14,20]? To address these questions in depth, we leverage the fact that the RBM can be190

interpreted as a thermodynamic system. This means that one can define signatures of a true phase191

transition, and therefore examine whether these critical statistics imply anything meaningful with192

respect to model parameters and their optimization.193
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Figure 4. Learned encoding strategies do not depend on the statistics of the stimulus distribution. In natural
visual stimuli, the visible samples themselves display 1/f power-law statistics. This might encourage
similar statistics in the activations of hidden units, explaining the 1:1 trade-off between modulating
entropy and energy that we observed. Here we show the energy-entropy balance as a function of
stimulus information content (i.e. bit-rate, Ev) for RBMs fit to two-dimensional lattice Ising models,
sampled at a range of temperature above and below the critical temperature of Tc=2/ ln(1+

√
2)≈2.269.

The energy-entropy balance converges to identity regardless of the data temperature (right column).
However, the critical hidden-layer size (N) does decrease with temperature, illustrated here (middle
column) by the increasing hidden-layer size displaying intermediate energy-entropy statistics. Small
models (left column) exhibit a correlation between visible energy and entropy for training-data
temperatures above Tc. Ising models were simulated on a 10×10 grid, and sampled via the
Swendsen-Wang algorithm [23] with 10k steps burn-in and 100k training patterns drawn every 100
samples. 13-unit patches were presented to the RBM for training. All units are in bits.
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To explore the thermodynamic interpretation of the RBM, one can extend the energy-based
definition of the RBM (Eq. 2) to include an inverse temperature parameter β:

Ph,v ∝ exp (−β Eh,v) . (5)

This corresponds to scaling the biases and weights by β, and controls a single direction in parameter194

space that determines how ordered or disordered the spiking activity is. High temperatures (β→ 0)195

corresponding to a noisy phase where the probability of all states are equal. Low temperatures (β→ ∞)196

exhibit only a few fixed patterns. Critical models exists at a specific temperature β = 1/Tc that defines197

a transition between the these two phases.198

To generalize this idea, we can study the Fisher Information Matrix (FIM), which defines a local199

measure of "importance" to various directions in the space of RBM parameters φ = {W, Bh, Bv}. The200

FIM provides an infinitesimal equivalent of the Kullback-Leibler divergence between the model and a201

neighbouring model, which differs by an infinitesimal deviation in the parameter space, and is defined202

as follows:203

Fij(φ) = ∑
v,h

Pv,h
∂2Ev,h

∂φi∂φj
. (6)

For RBMs, one can calculate the FIM from the activity statistics (Methods §4.4). The FIM is a generalized204

measure of susceptibility or specific heat [26], and it diverges at the point of phase transition β = 1/Tc.205

Intuitively, this is because the model’s statistics change abruptly at the critical temperature, where206

the model’s behavior as a function of parameters approaches a non-differentiable point with infinite207

curvature (i.e. diverging FIM) for increasing system sizes. For small, finite models, there is no true208

phase transition per-se. Instead, the FIM exhibits a local peak around β = 1/Tc which indicates the209

finite-size analogue of a critical temperature [26].210

One can assess whether a given model is close to a phase transition by examining the structure211

of the FIM for a range of temperatures. Analyzing the behavior of the largest FIM eigenvalue is212

analogous to studying the divergence of specific heat [9], but its interpretation is more general. In213

Figure 5a we find that a local peak in the maximum FIM eigenvalue (the direction in parameter214

space with the largest curvature) emerges for models with ≥ 30 units. This is also the model size at215

which statistical criticality emerges (Fig. 3, 5a rightmost column). We conclude that the emergence of216

statistical criticality corresponds to a true critical point in the thermodynamics sense. Empirically we217

find that models that are sufficiently large to fit the data exhibit a localized peak in the FIM curvature218

for β=1. We conjecture that these statistics might be useful in identifying the optimal model size that219

balances accuracy vs. size cost.220

Above the model size at which criticality emerges ("critical model size"), we find diminishing221

returns in terms of model accuracy (Fig. 1b,c). We examined the structure of the FIM to determine222

whether the model exhibited "sloppy" [27–29] parameters that might be removed without degrading223

accuracy. Indeed, we found that many single units or weights become relatively unimportant in larger224

models (Fig. 5a) . This suggests that the activity statistics may reveal superfluous neurons or synapses225

that could be removed or "pruned" with relatively little damage to the network’s function.226

However, the parameter importance as assessed by FIM should be interpreted with caution. We227

find that the least "important" units, in terms of FIM curvature, have receptive fields corresponding228

to complex or high spatial-frequency features (Fig. 5d). These units therefore encode fine details of229

images. While removing a single unit might have a minor effect of the model accuracy, collectively230

many unimportant units may be necessary for maximising the encoded information.231

In these simulations, the emergence of Zipf’s law can be connected to an energy-based description232

of spiking correlations that lies close to a phase transition, and is not inherited from the statistics of the233

stimuli, nor is it a data-processing artefact. While neural networks in vivo do not use the optimization234

procedure that we used here, any learning procedure that adapts its internal states to optimally encode235
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Figure 5. Analyses of parameter sensitivity suggests an optimal model size for encoding sensory statistics. (a)
Analysis of the Fisher Information Matrix (FIM) over a range of hidden-layer sizes (top to bottom;
13 visible units). From left to right, (1) FIM eigenvalue spectra λi (y-axis) over a range of inverse
temperatures β indicate that model fits (β=1) past a certain size lie at a peak in their generalized
susceptibility. This is a correlate of criticality in Ising spin models. Eigenvalues below 10−5 are
truncated, and the largest and smallest eigenvalues are in red; (2) Important parameters in the leading
FIM eigenvector align with individual hidden units, and become sparse for larger hidden layers. The
eigenvector is displayed separately for the weights (matrix), and the visible (vertical) and hidden
(horizontal) biases; (3) The average sensitivity of each parameter over all FIM eigenvectors, shown
here as the square root of the FIM diagonal, also shows sparsity, indicating that beyond a certain size
additional hidden units contribute little to model accuracy. Data is shown as in column 2; (4) Variance
of the hidden unit activation as a function of stimulus energy. In larger models, units with sensitive
parameters contribute to encoding low energy, less informative patterns. (b) The average sensitivity
of each parameter, measured by the trace of the FIM, normalized by hidden-layer size, decreases as
hidden-layer size grows. (c) Hidden unit projective fields from a model with 37 visible and 60 hidden
units, ordered by relative sensitivity (rank indicated above each image). More important units (ranks
1-8) encode spatially simple features such as localized patches, while the least important ones (ranks
53-60) have complex features.
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the external world should (approximately) optimize representational cost (Eq. 4; so-called "free-energy"236

minimization [12,13,30,31]). These modelling results raise the question of whether statistical criticality237

is a natural outcome of this optimization, and whether it can be interpreted as an adaptive strategy to238

represent stimuli with variable bitrates in a stochastic neural code.239

3. Discussion240

Understanding neural population codes in the context of communications theory is challenging,241

since stochastic spiking channels differ in many aspects from the communications channels studied242

in engineering. In this work, we used restricted Boltzmann machines to study optimal encoding in243

stochastic spiking channels. Analogously to sensory systems, such models learn to encode the latent244

causes of natural images in terms of a stochastic binary representation. Although different stimuli245

require different number of bits to encode, the number of hidden units available for this representation246

is fixed, and different parts of the encoding space exhibit more channel noise than others.247

Under these constraints, RBMs learned to represent higher bitrate stimuli by suppressing248

variability, which mirrors the behavior of in vivo neural populations [32]. Surprisingly, we found that249

high-information stimuli were often associated with lower energy code-words, a result which may250

connect to the synergy-by-silence observed in the retina [33]. This coding strategy can be explained by251

a competitive allocation of encoding space in a stochastic channel. Noise is largest when neurons are252

close to firing threshold, and so the noisiest parts of activity space exhibit intermediate firing rates. To253

handle higher bitrates it is necessary to signal reliably, and also to avoid overlapping with these noisy254

parts of the coding space. Suppressing firing in a selective population of cells is one way to achieve255

this.256

A central prediction of this coding strategy is that common (low information) stimuli are associated257

with less precise (more noisy) encoding. It would be interesting to revisit data recorded from sensory258

systems such as the retina, to see if the effective stimulus bitrate predicts the observed neuronal259

variability. This result also highlights that that the fundamental unit of "neural coding" is not a specific260

pattern of spiking activity per se. We found that many stimuli can be encoded by a large volume of261

equivalent spiking population codewords. The equivalence between different evoked spiking patterns262

ensures robust representations despite noise.263

We found that variability suppression corresponded to the emergence of Zipf’s law in the spiking264

population statistics. We explored this further, since criticality in neural codes has been the subject of265

intense debate. We found that statistical criticality was not inherited from the stimulus distribution.266

Criticality was also not an epiphenomenon arising from any of the more common-place theories that267

have been put forth. Instead, the emergence of Zipf’s law was a signature of the underlying system268

lying close to a phase transition, and this regime correlated with the emergence of optimal encoding269

strategies.270

Spiking systems can also exhibit statistical criticality in the sparse, large-network limit [9]. In271

contrast, the statistical criticality observed here emerges abruptly at a finite optimal model size, which272

depends on the data being encoded (Fig. 4), and correlates with the channel learning to modulate273

variability based on stimulus bitrate. This association of critical statistics with the modulation of bitrate274

is connected to Aitchison et al. [20], which notes that that 1/ f power-law statistics arise whenever275

data are generated from hidden underlying causes. If the observed code-words arise from a mixture of276

different explanations, it can cause the overall distribution to exhibit scale-free statistics corresponding277

to Zipf’s law. Our modelling work reveals a specific example of this phenomenon in systems that278

encode the external world. Here, we found that the bitrate of the underlying stimulus is the underlying,279

unobserved variable, and that statistical criticality signifies an adaptive strategy for handling variable280

bitrates in a stochastic spiking channel.281

Theoretical work predicts that critical 1/ f statistics might be common in large latent-variable282

models like the RBM [34,35]. These existing results, however, were derived in the limit of an infinite283

(or at least very large) number of hidden units. In contrast, we found that criticality emerges in small284
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models—but only if there are enough latent units to accurately encode the stimulus distribution. The285

result of Mastromatteo et al. (2011) [34] in particular shows that most large random spin models lie286

close to a phase transition, simply by chance. If statistical criticality is, in a sense, the default, this287

implies that there is something interesting about models that do not exhibit statistical criticality. We288

found that the absence of criticality was a symptom of a model being too small to properly explain the289

stimulus distribution, and corresponded to an inability to vary the channel bandwidth as needed. More290

generally, departure from 1/ f statistics may reveal important clues about physiological constraints on,291

or the operating regime of, stochastic spiking channels.292

In conclusion, we found that statistical machine learning models of spiking communication293

employ variability-suppression as an optimal encoding strategy. This is a very general phenomenon294

that must occur if a noisy channel with a fixed number of unit is to communicate stimuli with variable295

bitrates. We also found that this strategy correlates with statistical criticality. These statistical signatures296

may be useful in identifying optimal model sizes in machine learning, and may provide clues about297

the operating regime of biological neural networks. Our findings might also relate to work that finds298

emergent critical statistics at an optimal layer depth in deep neural networks [36,37]. It remains to be299

seen whether the variability suppression observed here corresponds to the structure of the neural code300

in vivo.301

4. Materials and Methods302

4.1. Datasets303

Images from the CIFAR-10 [38] data set were converted to gray scale, and binarized around304

the median pixel intensity. 90,000 randomly-selected circular patches of different radii were used as305

training data (Fig. 1a).306

4.2. Restricted Boltzmann Machines307

RBMs were fit using one-step contrastive divergence (CD1) [10,39] implemented in Theano308

(github.com/martinosorb/rbm_utils) on NVIDIA GeForce GTX 980 GPUs. The learning rate was reduced309

in stages: 0.2, 0.1, 0.05, 0.01, 5 · 10−3, 10−3. 8 epochs were trained at each rate with mini-batch size 4.310

To estimate model energies, 350,000 states were sampled via 500 chains of Gibbs sampling, keeping311

one sample every 150 steps.312

4.3. Energy and entropy313

In the RBM, hidden-layer entropy conditioned on stimulus v can be calculated in closed form as:

Hh|v = ∑
i=1..Nh

g(ai
h|v)− ai

h|v f (ai
h|v),

where Nh is the number of hidden units, ah|v=v>W+Bh is the stimulus-conditioned hidden-layer
activation vector, f (x)=1/(1+e−x) is the sigmoid function, and g(x)= log(1+ex). The expected
conditional energy 〈Eh〉h|v is computed via sampling, where each individual Eh is computed, up to a
constant, as:

Eh = −Bhh− ∑
i=1..Nv

g(Wih + Bi
v) + const.,

where Nv is the number of visible units, Bv is the vector of visible biases and Wi is the row of the314

weight matrix associated with the ith visible unit. Energies are normalized using the energy of the315

lowest-energy (most frequent) pattern, estimated by sampling.316
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4.4. Fisher Information317

The Fisher information matrix (FIM, Eq. 6) is a positive semidefinite matrix that defines the
curvature of a metric on the manifold of parameters, and indicates the sensitivity of the model to
parameter changes. Divergence of an eigenvalue of the FIM indicates an abrupt change in the model
distribution, i.e. a phase transition. The FIM generalizes susceptibility and specific heat, physical
quantities that diverge at critical points. For a vector ~w in parameter space, we define sensitivity as

S(~w) =
√
~wT F~w.

The distribution of parameter sensitivity has in itself attracted interest [27,28]. For directions
corresponding to eigenvectors of the Fisher information, the sensitivity is the square root of the
corresponding eigenvalue. For changes in the kth parameter, Sk =

√
Fkk. In the case of RBMs (Eq. 2),

we can consider the definition of the FIM (Eq. 6) with the biases and weights being possible values of
φ. Expanding the derivatives, one gets to FIM entries of the form

Fwij ,wkl=〈vihjvkhl〉−〈vihj〉〈vkhl〉

Fwij ,bv
k
=〈vihjvk〉−〈vihj〉〈vk〉

Fwij ,bh
k
=〈vihjhk〉−〈vihj〉〈hk〉

Fbv
i ,bh

k
=〈vihk〉−〈vi〉〈hk〉

Fbv
i ,bv

k
=〈vivk〉−〈vi〉〈vk〉

Fbh
i ,bh

k
=〈hihk〉−〈hi〉〈hk〉,

where the brackets indicate averaging over the distribution Pr(v, h); these can be computed by
sampling. The FIM diagonal summarizes the importance of individual units, and can be computed
from locally-available variances and covariances:

Fbv
i ,bv

i
= σ2

vi
, Fbh

i ,bh
i
= σ2

hi
, Fwij ,wij = 〈v

2
i h2

j 〉 − 〈vihj〉2.

Free energy in RBMs318

We review the derivation of free energy in the context of RBMs [12]. Consider the problem of
approximating a data distribution Pv with a model distribution Qφ

v parameterized by φ. In a latent
variable model, one identifies a distribution on latent factors Qφ

h , as well as a mapping from latent
factors to data patterns Qφ

v|h. The latent variables approximate the distribution over the data, i.e.

Qφ
v=∑

h
Qφ

h,v=∑
h

Qφ

v|hQφ
h .

Such a model model can be optimized by minimizing the negative log-likelihood of data given model
parameters:

argmin
θ

[
−∑

v
Pv log Qφ

v

]
= argmin

θ

[
−∑

v
Pv log ∑

h
Qφ

h,v

]
.

Jensen’s inequality provides an upper bound on the negative log-likelihood that can be easier to
minimize. This minimization is equivalent to minimizing the KL divergence from the model to the
data distribution:

−∑
v

Pv log ∑
h

Qφ
h,v = −∑

v
Pv log ∑

h
Qφ

h|v
Qφ

h,v

Qφ

h|v

≤∑
v

Pv

−∑
h

Qφ

h|v log
Qφ

h,v

Qφ

h|v


︸ ︷︷ ︸

Eφ
v

.
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This connects to the free-energy equation derived by Hinton et al. [12], which highlights the relationship
between conditional distributions Qφ

h|v and the visible pattern energies Ev=− log Pv. When free energy

is minimized over the data distribution, the model energies Eφ
v approximate the data energies and:

Eφ
v = −∑

h
Qφ

h|v log
Qφ

h,v

Qφ

h|v

= −∑
h

Qφ

h|v log Qφ
h,v︸ ︷︷ ︸〈

Eφ
h,v

〉
h|v

+∑
h

Qφ

h|v log Qφ

h|v︸ ︷︷ ︸
−Hφ

h|v

This relation is derived by Hinton et al. [12], equation 5, from the perspective of minimizing319

communication cost, and in analogy to the Helmholtz free-energy from thermodynamics. This brief320

derivation illustrates the free-energy relationship in the context of minimizing an upper-bound on the321

negative log-likelihood of a latent-variable model.322
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The following abbreviations are used in this manuscript:333

334

RBM Restricted Boltzmann Machine
FIM Fisher Information Matrix
v "Visible stimulus" pattern, the input to a neural sensory "encoder"
h "Hidden activation" pattern of stimulus-driven binary neural activity (interpreted as spiking)
W The weight matrix for an RBM mapping visible activations to hidden-unit drive
Bh The biases on the hidden units for an RBM
Bv The biases on the visible units for an RBM
φ Parameters {W, Bh, Bv} associated with an RBM model
E "Energy", defined here as negative log-probability
H "Entropy", in the Shannon sense
Eh,v The log-probability of simultaneously observing stimulus v and neural pattern h
Hh|v The entropy of the distribution of neural patterns h evoked by stimulus v
VE Set of input stimuli with similar energy (log-probability i.e. bitrate)
Tc The critical temperature of an RBM interpreted as an Ising spin model
β Inverse temperature
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