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Abstract

Large-scale neural recording methods now allow us to observe large populations of identified

single neurons simultaneously, opening a window into neural population dynamics in living

organisms. However, distilling such large-scale recordings to build theories of emergent col-

lective dynamics remains a fundamental statistical challenge. The neural field models of Wil-

son, Cowan, and colleagues remain the mainstay of mathematical population modeling

owing to their interpretable, mechanistic parameters and amenability to mathematical analy-

sis. Inspired by recent advances in biochemical modeling, we develop a method based on

moment closure to interpret neural field models as latent state-space point-process models,

making them amenable to statistical inference. With this approach we can infer the intrinsic

states of neurons, such as active and refractory, solely from spiking activity in large popula-

tions. After validating this approach with synthetic data, we apply it to high-density recordings

of spiking activity in the developing mouse retina. This confirms the essential role of a long

lasting refractory state in shaping spatiotemporal properties of neonatal retinal waves. This

conceptual and methodological advance opens up new theoretical connections between

mathematical theory and point-process state-space models in neural data analysis.

Author summary

Developing statistical tools to connect single-neuron activity to emergent collective

dynamics is vital for building interpretable models of neural activity. Neural field models

relate single-neuron activity to emergent collective dynamics in neural populations, but

integrating them with data remains challenging. Recently, latent state-space models have

emerged as a powerful tool for constructing phenomenological models of neural popula-

tion activity. The advent of high-density multi-electrode array recordings now enables us

to examine large-scale collective neural activity. We show that classical neural field

approaches can yield latent state-space equations and demonstrate that this enables infer-

ence of the intrinsic states of neurons from recorded spike trains in large populations.
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Introduction

Neurons communicate using electrical impulses, or spikes. Understanding the dynamics and

physiology of collective spiking in large networks of neurons is a central challenge in modern

neuroscience, with immense translational and clinical potential. Modern technologies such

as high-density multi-electrode arrays (HDMEA) enable the simultaneous recording of the

electrical activity of thousands of interconnected neurons, promising invaluable insights

into neural dynamics at the network level. However, the resulting data is high-dimensional

and frequently exhibits complex, non-linear dynamics, presenting formidable statistical

challenges.

Due to the complexity of the data, most analyses of neuronal population activity take a

descriptive approach, adopting methods from statistical signal processing such as state-space

models (SSM; [1–7]) or autoregressive generalized-linear point-process models (PP-GLM; [8–

11]). Such methods capture the population statistics of the system, but fail to provide mecha-

nistic explanations of the underlying neural dynamics. While this phenomenological descrip-

tion is valuable and can aid many investigations, the inability to relate microscopic single-

neuron properties to emergent collective dynamics limits the scope of these models to extract

biological insights from these large population recordings.

Connecting single-neuron dynamics with population behavior has been the central focus of

research within the theoretical neuroscience community over the last four decades. Neural

field models [12–15] have been crucial in understanding how macroscopic firing dynamics in

populations of neurons emerge from the microscopic state of individual neurons. Such models

have found diverse applications including working memory (see [16] for a review), epilepsy

(e.g. [17–20]), and hallucinations (e.g. [21–23]), and have been successfully related to neuroim-

aging data such as Electroencepelography (EEG; [24–26]), Magnetoencephelography (MEG;

[24]), Electromyography (EMG; [27]), and Functional Magnetic Resonance Imaging (fMRI;

[25]), which measure average signals from millions of neurons. Nevertheless, using neural-

field models to model HDMEA spiking data directly remains an open statistical problem:

HDMEA recordings provide sufficient detail to allow modeling of individual neurons, yet the

large number of neurons present prevents the adoption of standard approaches to non-linear

data assimilation such as likelihood free inference.

In this paper, we bridge the data-model divide by developing a statistical framework for

Bayesian modeling in neural field models. We build on recent advances in stochastic spatio-

temporal modeling, in particular a recent result by Schnoerr et al. [28] which showed that a

spatiotemporal agent-based model of reaction-diffusion type, similar to the ones underpinning

many neural field models, can be approximated as a spatiotemporal point process associated

with an intensity (i.e. density) field that evolves in time. Subsequently, Rule and Sanguinetti

[29] illustrated a moment-closure approach for mapping stochastic models of neuronal spiking

onto latent state-space models, preserving the essential coarse-timescale dynamics. Here, we

demonstrate that a similar approach can yield state-space models for neural fields derived

directly from a mechanistic microscopic description. This enables us to leverage large-scale

spatiotemporal inference techniques [30, 31] to efficiently estimate an approximate likelihood,

providing a measure of fit of the model to the data that can be exploited for data assimilation.

Our approach is in spirit similar to latent variable models such as the Poisson Linear Dynam-

ical System (PLDS; [5, 32, 33]), with the important difference that the latent variables reflects

non-linear neural field dynamics that emerge directly from a stochastic description of single-

neuron activity [34–36].

We apply this approach to HDMEA recordings of spontaneous activity from ganglion cells

in the developing mouse retina [37], showing that the calibrated model effectively captures the
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non-linear excitable phenomenon of coordinated, wave-like patterns of spiking [38] that have

been considered in both discrete [39] and continuous neural-field models before [40].

Results

High level description of the approach

We would like to explain large-scale spatiotemporal spiking activity in terms of the intrinsic

states of the participating neurons, which we cannot observe directly. Latent state-space mod-

els (SSMs) solve this problem by describing how the unobserved states of neurons relate to

spiking observations, and predict how these latent states evolve in time. In this framework, one

estimates a distribution over latent states from observations, and uses a forward model to pre-

dict how this distribution evolves in time, refining the latent-state estimate with new observa-

tions as they become available. This process is often called ‘data assimilation’. However, in

order to achieve statistical tractability, SSMs posit simple (typically linear) latent dynamics,

which cannot be easily related to underlying neuronal mechanisms. Emergent large-scale spa-

tiotemporal phenomena such as traveling waves typically involve multiple, coupled popula-

tions of neurons and nonlinear excitatory dynamics, both of which are difficult to incorporate

into conventional state-space models.

Fortunately, mathematical neuroscience has developed methods for describing such

dynamics using neural field models. Neural field models map microscopic dynamics to

coarse-grained descriptions of how population firing rates evolve. This provides an alternative

route to constructing latent state-space models for large-scale spatiotemporal spiking datasets.

However, neural field models traditionally do not model statistical uncertainty in the popula-

tion states they describe, which makes it difficult to deploy them as statistical tools to infer the

unobserved, latent states of the neuronal populations. A model of statistical uncertainty is

important for describing the uncertainty in the estimated latent states (posterior variance), as

well as correlations between states or spatial regions. As we will illustrate, work over the past

decades to address noise and correlations in neural field models also provides the tools to

employ such models as latent SSMs in data-driven inference.

At a high level then, our approach follows the usual derivation of neural field models, start-

ing with an abstract description of single-neuron dynamics, and considers how population

averages evolve in time. Rather than deriving a neural-field equation for the population mean

rate, we instead derive two coupled equations for the mean and covariance of population

states. We interpret these two moments as a Gaussian-process estimate of the latent spatiotem-

poral activity, and derive updates for how this distribution evolves in time and how it predicts

spiking observations. This provides an interpretation of neural-field dynamics amenable to

state-space inference, which allows us to infer neural population states from spiking

observations.

Neural field models for refractoriness-mediated retinal waves

Although Wilson and Cowan [41, 42] considered refractoriness, most subsequent applications

consider only two states: neurons may be either actively spiking (A state), or quiescent (Q
state). In general, voltage and calcium gated conductances typically lead to refractory states,

which can be short following individual spikes, or longer after more intensive periods of activ-

ity. An excellent example of the importance of a refractory mechanism is found in the develop-

ing retina, where a slow afterhyperpolarization (sAHP) current mediates the long-timescale

refractory effects that strongly shapes the spatiotemporal dynamics of spontaneous retinal

waves [43]. To address this, we explicitly incorporate additional refractory (R) states into our

neural field model (e.g. [44, 45]; Fig 1). In the following, we first outline a non-spatial model
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for such system, before extending it to a spatial setting with spatial couplings. Finally, we

develop a Bayesian inference scheme for inferring latent states from observational data.

A stochastic three-state neural mass model

We now consider the neural field model with three states as a generic model of a spiking neu-

ron (Fig 1), where a neuron can be in either an actively spiking (A), refractory (R), or quiescent

(Q) state. We assume that the neurons can undergo the following four transitions:

Q!
rq
A Qþ A!

re Aþ A

A!
ra R R!

rr Q;
ð1Þ

i.e. quiescent neurons transition spontaneously to the active state; active neurons excite quies-

cent neurons; active neurons become refractory, and refractory neurons become quiescent.

The ρ(�) denote corresponding rate constants.

For illustration, we first consider the dynamics of a local (as opposed to spatially-extended)

population of neurons. In this case the state of the system is given by the non-negative number

counts Q, A and R of the respective neuron types (we slightly abuse notation here and use Q,

A, and R both as symbols for the neuron states and as variables counting the neurons in the

corresponding states; see Fig 2 for an illustration). The time evolution of the corresponding

probability distribution to be in a state (Q, A, R) at a certain time point is then given by a

master equation ([34, 44, 46]; Methods: Moment-closure for a single population). Due to the

nonlinear excitatory interaction Q + A! A + A in Eq (1), no analytic solutions to the master

equation are known. To get an approximate description of the dynamics, we employ the

Gaussian moment closure method which approximates the discrete neural counts (Q, A, R) by

continuous variables, and assumes a multivariate normal distribution (Fig 2B; [29, 34, 35, 47–

50]). This allows one to derive a closed set of ordinary differential equations for the mean and

covariance of the approximate process which can be solved efficiently numerically (Methods:

Moment-closure for a single population; Fig 2).

Fig 1. 3-state Quiescent-Active-Refractory (QAR) neural-field model. Cells in the developing retina are modeled as

having three activity states. Active cells (A; red) fire bursts of action potentials, before becoming refractory (R; green)

for an extended period of time. Quiescent (Q; blue) cells may burst spontaneously, or may be recruited into a wave by

other active cells. These three states are proposed to underlie critical multi-scale wave dynamics [43].

https://doi.org/10.1371/journal.pcbi.1007442.g001
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Applying this procedure to our system leads to the following evolution equations of the first

moments (mean concentrations):

@thQi ¼ rrq � rqa rqa ¼ rqhQi þ rehAQi

@thAi ¼ rqa � rar rar ¼ rahAi

@thRi ¼ rar � rrq rrq ¼ rrhRi;

ð2Þ

where the rate variables r(�)(�) describe the rates of the different transitions in Eq (1), and h�i

denotes expected-value with respect to the distribution over population states. Intuitively, Eq

(2) says that the mean number of neurons in each state evolves according to the difference

between the rate that neurons enter, and the rate that neurons leave, said state. For spontane-

ous (Poisson) state transitions, these rates are linear and depend only on the average number

of neurons in the starting state. The transition from Q to A, however, has both a spontaneous

and excito-excitatory component. The latter depends on the expected product of active and

quiescent cells hAQi, which is a second moment and can be expressed in terms of the covari-

ance: hAQi = hAihQi + SAQ. We obtain similar equations for the covariance of the system (Eq

6; Methods: Moment-closure for a single population). These can be solved jointly with Eq (2)

forward in time to give an approximation of the system’s dynamics.

Generalization to spatial (neural field) system

So far we have considered a single local population. We next extend our model to a two-

dimensional spatial system. In this case the mean concentrations become density or mean

fields (‘neural fields’) that depend on spatial coordinates x = (x1, x2), e.g. hQi becomes hQ(x)i.

Similarly, the covariances become two-point correlation functions. For example, SQA(x, x0)

denotes the covariance between the number of neurons in the quiescent state at location x and

the number of neurons in the active state at location x0 (see Methods: Extension to spatial sys-
tem for details).

By replacing the mean concentrations and covariances accordingly in Eqs (2) and (6), we

obtain spatial evolution equations for these space-dependent quantities. The terms arising

from the linear transitions in Eq (1) (i.e. rrq, raq and the first term in rqa in Eq 2) do not intro-

duce any spatial coupling and hence do not need to be modified (note also that neurons do not

Fig 2. Summarizing estimated neural state as population moments. (A) The activity within a local spatial region (encircled, left)

can be summarized by the fraction of cells (represented by colored dots) in the quiescent (blue), active (red), and refractory (green)

states (Q, A, R; right). (B) An estimate of the population state can be summarized as a probability distribution Pr(Q, A, R) over the

possible proportions of neurons in each state. A Gaussian moment-closure approximates this distribution as Gaussian, with given

mean and covariance (orange crosshairs).

https://doi.org/10.1371/journal.pcbi.1007442.g002
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diffuse or move otherwise, which is why we do not obtain a dynamic term in the resulting

equations). The nonlinear excitatory interaction Q + A! A + A in Eq (1), however, introduces

a coupling which we need to specify further in a spatial setting. We assume that each quiescent

neuron experiences an excitatory drive from nearby active neurons, and that the interaction

strength can be described as a function of distance ||Δx|| by a Gaussian interaction kernel:

kðDxÞ / exp ð� jjDxjj2=2s2
eÞ; ð3Þ

where σe the standard deviation determining the length scale of the interaction, which decays

exponentially as a function of distance squared. This kernel introduces a spatial coupling

between the neurons, which could be mediated by synaptic interactions, diffusing neurotrans-

mitters, gap junction coupling, or combinations thereof. With this coupling, the transition rate

(compare to Eq (2)) from the quiescent to active state at position x becomes the following inte-

gral:

rqaðxÞ ¼ rqhQðxÞi þ re

Z

kðx � x0ÞhQðxÞAðx0Þidx0; ð4Þ

where the integral runs over the whole volume of the system (Methods: Extension to spatial
system).

We thus obtain a ‘second-order’ neural field in terms of the mean fields and two-point cor-

relation functions. We simulated the spatially-extended system by sampling. Fig 3 shows that

it is indeed capable of producing multi-scale wave-like phenomena similar to the waves

observed in the retina (Methods: Sampling from the model).

Neural field models as latent-variable state-space models

The equations for the mean fields and correlations can be integrated forward in time and used

as a state-space model to explain population spiking activity (Fig 4; Methods: Bayesian filter-
ing). In extracellular recordings, we do not directly observe the intensity functions hQ(x)i,

hA(x)i, and hR(x)i. Instead, we observe the spikes that active neurons emit, or in the case of

developmental retinal waves recorded via a HDMEA setup, we observe the spikes of retinal

ganglion cells which are driven by latent wave activity. The spiking intensity should hence

Fig 3. Spatial 3-state neural-field model exhibits self-organized multi-scale wave phenomena. Simulated example

states at selected time-points on a [0, 1]2 unit interval using a 20 × 20 grid with effective population density of ρ = 50

cells per unit area, and rate parameters σ = 0.075, ρa = 0.4, ρr = 3.2 × 10−3, ρe = 0.028, and ρq = 0.25 (Methods: Sampling
from the model). As, for instance, in neonatal retinal waves, spontaneous excitation of quiescent cells (blue) lead to

propagating waves of activity (red), which establish localized patches in which cells are refractory (green) to subsequent

wave propagation. Over time, this leads to diverse patterns of waves at a range of spatial scales.

https://doi.org/10.1371/journal.pcbi.1007442.g003
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depend on the density A(x) of active neurons. Here, we assume that neural firing is a Poisson

process conditioned on the number of active neurons, which allows us to write the likelihood

of point (i.e. spike) observations in terms of A(x) ([10, 11, 51]; Methods: Point-process mea-
surement likelihood).

The combination of this Poisson-process observation model with the state-space model

derived in previous sections describes how hidden neural field states evolve in time and how

these states drive neuronal spiking. Given spatiotemporal spiking data, the latent neural field

states and correlations can then be inferred using a sequential Bayesian filtering algorithm.

The latter uses the neural field model to predict how latent states evolve, and updates this esti-

mate at each time point based on the observed neuronal spiking (Methods: Bayesian filtering).
This provides estimates of the unobserved physiological states of the neurons.

We verified that this approach works using simulated data. We first simulated observations

from the neural field equations (Fig 3; Methods: Sampling from the model), which generated

waves qualitatively similar to those seen in the developing retina. We then sampled spiking as

a conditionally-Poisson process driven by the number of active neurons in each location, with

a baseline rate of β = 0 and gain of γ = 15 spikes/second per simulation area. We then applied

Bayesian filtering to these spiking samples in order to recover a Gaussian estimate of the latent

neural field states (Methods: Bayesian filtering). Fig 5 illustrates the latent states recovered via

filtering using the known ground-truth model parameters, and shows that filtering can recover

latent neural field states from the spiking observations. Overall, this indicates that moment-

closure of stochastic neural field equations can yield state-space models suitable for state infer-

ence from spiking data. In the next section, we illustrate this approach applied to waves

recorded from the developing retina.

State inference in developmental retinal waves

Having developed an interpretation of neural field equations as a latent-variable state-space

model, we next applied this model to the analysis of spatiotemporal spiking data from sponta-

neous traveling wave activity occurring in the neonatal vertebrate retina (e.g. Fig 6; [37–39,

52–55]).

Fig 4. Hidden Markov model for latent neural fields. For all time-points T, state transition parameters θ = (ρq, ρa, ρr,
ρe, σ) dictate the evolution of a multivariate Gaussian model μ, S of latent fields Q, A, R. The observation model (β, γ)

is a linear map with adjustable gain and threshold, and reflects how field A couples to firing intensity λ. Point-process

observations (spikes) y are Poisson with intensity λ.

https://doi.org/10.1371/journal.pcbi.1007442.g004
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During retinal development, the cell types that participate in wave generation change [37,

52, 54], but the three-state model globally describes dynamics in the inner retina at all develop-

mental stages (Fig 6). The Active (A) state describes a sustained bursting state, such as the

depolarization characteristic of starburst amacrine cells (Fig 6a) during acetylcholine-mediated

early-stage (Stage 2) waves between P0 and P9 [54, 55], and late-stage (Stage 3) glutamate-

dependent waves [54, 56]. For example, Fig 6c and 6d illustrates spontaneous retinal wave

activity recorded from a postnatal day 6 mouse pup (Stage 2). In addition, at least for choliner-

gic waves, the slow refractory state R is essential for restricting wave propagation into previ-

ously active areas [57]. We note that the multi-scale wave activity exhibited in the three-state

neural field model (e.g. Fig 3) recapitulates the phenomenology of retinal wave activity

explored in the discrete three-state model of Hennig et al. [43].

Using RGC spikes recorded with a 4,096-electrode HDMEA (Fig 6), we demonstrate the

practicality of latent-state inference using heuristic rate parameters and illustrate an example

of inference for a retinal wave dataset from postnatal day 11 (Stage 3; Fig 7). For retinal wave

inference, we normalize the model by population-size (Methods: System-size scaling) so that

the gain and bias do not depend on the local neuronal population size.

The state inference (‘data assimilation’) procedure uses new observations to correct for pre-

diction errors. Because of this, many different model parameters may give similar state esti-

mates. Nevertheless, it is important that the rate parameters approximately match the data.

The rate of excitation (ρe) should be fast, and the rate at which active cells become refractory

(ρa) should match the typical wave duration. Likewise, it is important that the recovery rate ρr
matches the inter-wave interval timescale. In Fig 7, model parameters were set based on

observed timescales, and then adjusted such that the simulated model dynamics match those

recovered during state inference (ρe = 10, ρa = 1.8 ρr = 0.1, and σ = 0.1). These parameters were

Fig 5. Filtering recovers latent states in ground-truth simulated data. Spatially averaged state occupancy (blue, red, and green: Q,

A, and R) (vertical axis) is plotted over time (horizontal axis). Solid lines represent true values sampled from the model, and shaded

regions represent the 95% confidence interval estimated by filtering. The active (A) state density has been scaled by ×25 for

visualization. Colored plots (below) show the qualitative spatial organization of quiescent (blue), active (red), and refractory (green)

neurons. Model parameters are the same as Fig 3, with the exception of the spatial resolution, which has been reduced to 9 × 9.

https://doi.org/10.1371/journal.pcbi.1007442.g005
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held fixed during subsequent state inference. The interaction radius σ = 0.15 and excitation

strength ρe interact to determine how excitable the system is and how quickly waves propagate.

The overall excitability should be small enough so that the system is stable, and does not pre-

dict wave events in the absence of spiking observations. As in Lansdell et al. [40], lateral inter-

actions in our model reflect an effective coupling that combines both excitatory synaptic

interactions and the putative effect of diffusing excitatory neurotransmitters, which has been

shown to promote late-stage glutamatergic wave propagation [53].

The moment-closure system does not accurately approximate the rare and abrupt nature of

wave initiation. We therefore model spontaneous wave-initiation events as an extrinsic noise

source, and set the spontaneous excitation rate ρq to zero in the neural field model that defines

our latent state-space. The Poisson noise was re-scaled to reflect an effective population size of

16 neurons/mm2, significantly smaller than the true population density [58]. However, due to

the recurrent architecture and correlated neuronal firing, the effective population size is

expected to be smaller than the true population size. Equivalently, this amounts to assuming

supra-Poisson scaling of fluctuations for the neural population responsible for retinal waves.

Bayesian filtering recovers the expected features of the retinal waves (Fig 7): the excito-

excitatory transition Q + A! A + A and the onset of refractoriness A! R are rapid compared

to the slow refractory dynamics, and therefore the A state is briefly occupied and mediates an

effective Q! R transition during wave events. The second-order structure provided by the

covariance is essential, as it allows us to model posterior variance (shaded regions in Fig 7),

Fig 6. Retinal waves recorded via high-density multi-electrode arrays. (A) Spontaneous retinal waves are generated in the inner

retina via laterally interacting bipolar (blue) and amacrine (red) cells, depending on the developmental age. These waves activate

retinal ganglion cells (yellow), the output cells of the retina. Electrical activity is recorded from the neonatal mouse retina via a

64 × 64-electrode array with 42 μm spacing. (B) Average spiking rate recorded across the retina (the central region devoid of

recorded spikes is the optic disc). This example was recorded on postnatal day 6. (C) Spikes were binned at 100 ms resolution, and

assigned to 10 × 10 spatial regions for analysis. Spiking activity on each electrode was segmented into “up” states (during wave

activity) and “down” states (quiescent) using a two-state hidden Markov model with Poisson observations. In this example, most

waves and inter-wave intervals lasted between one and ten seconds. (D) Example wave event, traveling across multiple spatial

regions and lasting for a duration of 16-20 seconds.

https://doi.org/10.1371/journal.pcbi.1007442.g006
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while also capturing strong anti-correlations due to the conservation of reacting agents, and

the effect of correlated fluctuations on the evolution of the means. Furthermore, spatial corre-

lations allow localized RGC spiking events to be interpreted as evidence of regional (spatially-

extended) latent neuronal activity.

Open challenges in model identification

So far, we have demonstrated good recovery of states when the true rate parameters are known

(Fig 5), and shown that plausible latent-states can be inferred from neural point-process data-

sets using a priori initialized parameters (Fig 7). A natural question then is whether one can

use the Bayesian state-space framework to estimate a posterior likelihood on the rate parame-

ter values, and infer model parameters directly from data. Presently, model inference remains

challenging for four reasons: under-constrained parameters, computational complexity,

numerical stability, and non-convexity in the joint posterior. It is worth reviewing these chal-

lenges as they relate to important open problems in machine learning and data assimilation.

First, the effective population size, the typical fraction of units in quiescent vs. refractory

states, and the gain parameter mapping latent activations to spiking, are all important to

Fig 7. State inference via filtering: Retinal datasets. We apply a calibrated model to spiking observations from retinal waves

(postnatal day 11) to infer latent neural-field states. In all plots, red, green, and blue indicate (normalized) densities of active,

refractory, and quiescent cells. (top) Solid lines indicate inferred spatial means, and shaded regions the 95% confidence bound. The

the A state has been scaled-up by ×5. Example time slices are shown in the colored plots below. Dark regions indicate areas absent

from the recording. Summary statistics are shown on the right, with power spectra (averaged over all included regions and states)

indicating periodic*5 waves/min, and the typical fraction of Q/A/R states, pooled over all times and regions, summarized in

histograms below. (bottom) Forward simulation of the calibrated model without data recapitulates the retinal wave activity. Solid

lines indicate sampled spatial means. Colored plots show example time slices. Wave frequency is comparable to the data (*5 waves/

min), and occupancy statistics are similar. The model was initialized with 70% of cells quiescent and 30% refractory, with a 25 s

burn-in to remove initial transients.

https://doi.org/10.1371/journal.pcbi.1007442.g007

Neural field models for latent state inference

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007442 November 4, 2019 10 / 23

https://doi.org/10.1371/journal.pcbi.1007442.g007
https://doi.org/10.1371/journal.pcbi.1007442


setting appropriate rates, and are not accessible from observation of RGC spiking alone.

Recovering a physiologically realistic model would require direct measurement or appropriate

physiological priors on these parameters. In effect, many equivalent systems can explain the

observed RGC spiking activity, a phenomenon that has been termed “sloppiness” in biological

systems [59, 60]. Indeed, Hennig et al. [61] show that developmental waves are robust to phar-

macological perturbations, suggesting that the retina itself can use different configurations to

achieve similar wave patterns. Second, although state inference is computationally feasible,

parameter inference requires many thousands of state-inference evaluations. A Matlab imple-

mentation of state-inference running on a 2.9 GHz 8-core Xeon CPU can process *85 sam-

ples/s for a 3-state system on a 10 × 10 spatial basis. For a thirty-minute recording of retinal

wave activity, state inference is feasible, but repeated state inference for parameter inference is

impractical. Third, model likelihood must be computed recursively, and is subject to loss of

numerical accuracy due to back-propagation through time [62–64]. In other words, small

errors in the past can have large effects in the future owing to the nonlinear and excitable

nature of the system. Fourth and finally, the overall likelihood surface need not be convex, and

may contain multiple local optima. Additionally, regions of parameters space can exhibit van-

ishing gradient for one or model parameters. This can occur when the value of one parameter

makes others irrelevant. For example, if the excito-excitatory interaction ρe is set to a low

value, the interaction radius σe for excitation becomes irrelevant since the overall excitation is

negligible.

Overall, parameter inference via Bayesian filtering presents a formidable technical chal-

lenge. Presently, it seems that traditional methods, based on mathematical expertise and

matching observable physical quantities (e.g. wavefront speed, c.f. [40]), remain the best-avail-

able approach to model estimation. Despite these challenges, the innovation presented here, of

applying moment-closure methods for data assimilation, is important per se, because it pro-

vides a snapshot of the activity of unobserved states which can greatly aid scientific investiga-

tion. The state-space formulation of neural field models enables Bayesian state inference from

candidate neural field models, and opens the possibility of likelihood-based parameter infer-

ence in the future.

Discussion

In this work, we showed that classical neural-field models, which capture the activity of large,

interacting neural populations, can be interpreted as state-space models, where we can explic-

itly model microscopic, intrinsic dynamics of the neurons. This is achieved by interpreting a

second-order neural field model as defining equations on the first two moments of a latent-

variable process, which is coupled to spiking observations. In the state-space model interpreta-

tion, latent neural field states can be recovered from Bayesian filtering. This allows inferring

the internal states of neuronal populations in large networks based solely on recorded spiking

activity, information that can experimentally only be obtained with whole cell recordings.

We demonstrated successful state inference for simulated data, where the correct model

and parameters were known. Next, we applied the model to large-scale recordings of develop-

mental retinal waves. Here the correct latent-state model is unknown, but a relatively simple

three-state model with slow refractoriness is well-motivated by experimental observations

[57]. Previous works [39, 57, 65, 66] predict that activity-dependent refractoriness is important

for restricting the spatial spreading of waves. Intuitively, one should expect the refractory time

constant to be a highly sensitive parameter: very long refractory constants will impede the for-

mation of waves, while short constants might lead to interference phenomena. These intui-

tions were borne out empirically by our simulation studies; additionally, we observed that long
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refractory constants led to ineffective data assimilation, as the model prior is too dissimilar

from the data it is trained upon. In contrast to phenomenological latent state-space models,

the latent states here are motivated by an (albeit simplified) description of single-neuron

dynamics, and the state-space equations arise directly from considering the evolution of collec-

tive activity as a stochastic process.

In the example explored here, we use Gaussian moment-closure to arrive at a second-order

approximation of the distribution of latent states and their evolution. In principle, other distri-

butional assumptions may also be used to close the moment expansion. Other mathematical

approaches that yield second-order models could also be employed, for example the linear

noise approximation [67], or defining a second cumulant in terms of the departure of the

model from Poisson statistics [35]. The approach applied here to a three-state system can gen-

erally be applied to systems composed of linear and quadratic state transitions. Importantly,

systems with only linear and pairwise (quadratic) interactions can be viewed as a locally-qua-

dratic approximation of a more general smooth nonlinear system [68], and Gaussian moment

closure therefore provides a general approach to deriving approximate state-space models in

neural population dynamics.

The state-space interpretation of neural field models opens up future work to leverage the

algorithmic tools of SSM estimation for data assimilation with spiking point-process datasets.

However, challenges remain regarding the retinal waves explored here, and future work is

needed to address these challenges. Model likelihood estimation is especially challenging.

Despite this, the connection between neural-field models and state-space models derived here

will allow neural field modeling to incorporate future advances in estimating recursive, nonlin-

ear, spatiotemporal models. We also emphasize that some of the numerical challenges inherent

to high-dimensional spatially extended neural field models do not apply to simpler, low-

dimensional neural mass models, and the moment-closure framework may therefore provide

a practical avenue to parameter inference in such models.

In summary, this report connects neural field models, which are grounded in models of sto-

chastic population dynamics, to latent state-space models for population spiking activity. This

connection opens up new approaches to fitting neural field models to spiking data. We expect

that this interpretation is a step toward the design of coarse-grained models of neural activity

that have physically interpretable parameters, have physically measurable states, and retain an

explicit connection between microscopic activity and emergent collective dynamics. Such

models will be essential for building models of collective dynamics that can predict the effects

of manipulations on single-cells on emergent population activity.

Materials and methods

Data acquisition and preparation

Example retinal wave datasets are taken from Maccione et al. [37]. Spikes were binned at 100

ms resolution for analysis. Spikes were further binned into regions on a 20 × 20 spatial grid.

For the three-state model, this resulted in a 1200-dimensional spatiotemporal system, which

provided an acceptable trade-off between spatial resolution and numerical tractability.

Spiking activity in each region was segmented into wave-like and quiescent states using a

two-state hidden Markov model with a Poisson observations. To address heterogeneity in the

Retinal Ganglion Cell (RGC) outputs, the observation model was adapted to each spatial

region based on firing rates. Background activity was used to establish per-region biases,

defined as the mean activity in a region during quiescent periods. The scaling between latent

states and firing rate (gain) was adjusted locally based on the mean firing rate during wave
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events. The overall (global) gain for the observation model was then adjusted so that no wave

events exhibited a fraction of cells in the active (A) state greater than one.

Moment-closure for a single population

To develop a state-space formalism for inference and data assimilation in neural field models,

we begin with a master equation approach. This approach has been used before to analyze vari-

ous stochastic neural population models, often as a starting point to derive ordinary differen-

tial equations for the moments of the distribution of population states, as we do here [34–36,

44, 46, 69]. In our case, we examine a three-state system of the kind proposed in Buice and

Cowan [44, 45], and use a Gaussian moment-closure approach similar to Bressloff [34].

The master equation describes how the joint probability distribution of neural population

states (in our example the active, quiescent and refractory states) evolves in time. However,

modelling this full distribution is computationally prohibitive for a spatially-extended system,

since the number of possible states scales exponentially with the number of neural populations.

Instead, we approximate the time evolution of the moments of this distribution.

In principle, an infinite number of moments are needed to describe the full population

activity. To limit this complexity, we consider only the first two moments (mean and covari-

ance), and use a moment-closure approach to close the series expansion of network interac-

tions in terms of higher moments ([47–50]; for applications to neuroscience see [29, 34–36, 69,

70]). Using this strategy, we obtain a second-order neural field model that describes how the

mean and covariance of population spiking evolve in time, and recapitulates spatiotemporal

phenomena when sampled.

We may describe the number of neurons in each state in terms of a probability distribution

Pr(Q, A, R) (Fig 2A), where we slightly abuse notation and use Q, A, and R both as symbols for

the neuron states and as variables counting the neurons in the corresponding states, i.e. non-

negative integers. The time evolution of this probability distribution captures stochastic popu-

lation dynamics, and is represented by a master equation that describes the change in density

for a given state {Q, A, R} when neurons change states. Accordingly, the master equation

describes the change in probability of a given state {Q, A, R} in terms of the probability of

entering, minus the probability of leaving the state:

@t Pr ðQ;A;RÞ ¼ Pr ðQ;Aþ 1;R � 1ÞraðAþ 1Þ ðtransition A! RÞ

þPr ðQ � 1;A;Rþ 1ÞrrðRþ 1Þ ðtransition R! QÞ

þPr ðQþ 1;A � 1;RÞ½rq þ reðA � 1Þ�ðQþ 1Þ ðQ! A and Aþ Q! Aþ AÞ

� Pr ðQ;A;RÞ½ðreAþ rqÞQþ raAþ rrR� ðoutgoing transitionsÞ

ð5Þ

Even in this simplified non-spatial scenario, no analytic solutions are known for the master

equation. However, from Eq (5) one can derive equations for the mean and covariance of the

process.

The approach, generally, is to consider expectations of individual states, e.g. hQi (first

moments, i.e. means), or hQAi (second moments), taken with respect to the probability distri-

bution Pr(Q, A, R) described by the master Eq (5). Differentiating these moments in time, and

substituting in the time-evolution of the probability density as given by the master equation,

yields expressions for the time-evolution of the moments. However, in general these expres-

sions will depend on higher moments and are therefore not closed.

For our system, the nonlinear excitatory interaction Q + A! A + A couples the evolution

of the means to the covariance SAQ, and the evolution of the covariance is coupled to the third

moment, and so on. The moment equations are therefore not closed, and require an infinite
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number of moments to describe the evolution of the mean and covariance. To address this

complexity, we approximate Pr(Q, A, R) with a multivariate normal distribution at each time-

point (Fig 2B), thereby replacing counts of neurons with continuous variables. This Gaussian

moment-closure approximation sets all cumulants beyond the variance to zero, yielding an

expression for the third moment in terms of the mean and covariance, leading to closed ordi-

nary differential equations for the means and covariances [47–50].

For our model with transitions given in Eq (1) this leads to the system of ODEs for the

mean values given in Eq (2) in the main text. For the evolution of the covariance we obtain

@tS ¼ JSþ SJT þ Snoise;

Snoise ¼

rqa þ rrq � rqa � rrq

� rqa rqa þ rar � rar

� rrq � rar rar þ rqa

2

6
6
6
6
6
4

3

7
7
7
7
7
5

J ¼

� rq � rehAi � rehQi rr

rq þ rehAi rehQi � ra 0

0 ra � rr

2

6
6
6
6
6
4

3

7
7
7
7
7
5

ð6Þ

where J is the Jacobian of the equations for the deterministic means in Eq (2), and the Snoise

fluctuations are Poisson and therefore proportional to the mean reaction rates (Eq 2). Intui-

tively, the Jacobian terms J describe how the covariance of the state distribution ‘stretches’ or

‘shrinks’ along with the deterministic evolution of the means, and the additional Snoise reflects

added uncertainty due to the fact that state transitions are stochastic. Each state experiences

Poisson fluctuations with variance equal to the mean transition rates, due to the sum of transi-

tions into and away from the state. Because the number of neurons is conserved, a positive

fluctuation into one state implies a negative fluctuation away from another, yielding off-diago-

nal anticorrelations in the noise.

Together, Eqs (2) and (6) provide approximate equations for the evolution of the first two

moments of the master equation (Eq 5), expressed in terms of ordinary differential equations

governing the mean and covariance of a multivariate Gaussian distribution. Here, we have

illustrated equations for a 3-state system, but the approach is general and can be applied to any

system with spontaneous and pairwise state transitions.

Extension to spatial system

To extend the moment Eqs (2) and (6) to a neural field system, we consider a population of

neurons at each spatial location. In this spatially-extended case, we denote the intensity

fields as Q, A, and R, which are now vectors with spatial indices (or, in the spatially-continuous

case: scalar functions of coordinates x). In the spatially-extended system, active (A) neurons

can excite nearby quiescent (Q) neurons. We model the excitatory influence of active cells as

a weighted sum over active neurons in a local neighborhood, defined by a coupling kernel

K(Δx) that depends on distance (Eq 4). To simplify the derivations that follow, denote the
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convolution integral in Eq (4) as a linear operator K such that

KA ¼ KðDxÞ � AðxÞ: ð7Þ

In this notation, one can think of K as a matrix that defines excitatory coupling between

nearby spatial regions. Using the notation of Eq (7), the rate that active cells excite quiescent

ones is given by the product

reðKAÞ �Q ¼ reDiag ðKAQ
>Þ; ð8Þ

where � denotes element-wise (in the spatially-continuous case: function) multiplication. For

the time evolution of the first moment (mean intensity) of Q in the spatial system, one there-

fore considers the expectation hKAQ>i, as opposed to hAQi in the non-spatial system. Since K

is a linear operator, and the extension of the Gaussian state-space model over the spatial

domain x is a Gaussian process, the second moment of the nonlocal interactions KA with Q

can be obtained in the same way as one obtains the correlation for a linear transformation of a

multivariate Gaussian variable:

hKAQ>i ¼ KhAQ>i

¼ KðSA;Q þ hAihQi
>
Þ:

ð9Þ

The resulting equations for the spatial means are similar to the nonspatial system (Eq 2),

with the exception that we now include spatial coupling in the rate at which quiescent cells

enter the active state:

rqa ¼ rqhQi þ reDiag ½hKAQ
>i�

¼ rqhQi þ reDiag ½KðSA;Q þ KhAihQi>Þ�

¼ rqhQi þ re½Diag ðKSA;QÞ þ KhAi � hQi�:

ð10Þ

The numbers of neurons in the quiescent verses active states are typically anti-correlated,

because a neuron entering the active state implies that one has left the quiescent state. There-

fore, the expected number of interactions between quiescent and active neurons is typically

smaller than what one might expect from the deterministic mean field alone. The influence of

correlations Diag(KSA,Q) on the excitation is therefore important for stabilizing the excitatory

dynamics.

To extend the equations for the second moment to the neural field case, we consider the

effect of spatial couplings on the Jacobian (Eq 6). The spontaneous first-order reactions remain

local, and so the linear contributions are similar to the non-spatial case. However, nonlocal

interaction terms emerge in the nonlinear contribution to the Jacobian:

Jnonlinear ¼ re

zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{
Gradient in Q

zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{
Gradient in A

� DiagðKhAiÞ � DiagðhQiKÞ 0

DiagðKhAiÞ DiagðhQiKÞ 0

0 0 0

2

6
6
6
6
6
4

3

7
7
7
7
7
5

;

ð11Þ

where here the “Diag” operation refers to constructing a diagonal matrix from a vector. Intui-

tively, the first column of Eq (11) reflects the fact that the availability of quiescent cells
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modulates the excitatory effect of active cells, and the second column reflects the fact that the

density active of neurons in nearby spatial volumes contribute to the rate at which quiescent

cells become active.

Basis projection

The continuous neural field equations are simulated by projection onto a finite spatial basis B.

Each basis element is an integral over a spatial volume. Means for each basis element are

defined as an integral over this volume, and correlations are defined as a double integral. For

example, consider the number of quiescent neurons associated with the ith basis function Bi,
which we will denote as Qi. The mean hQii and covariance Sij

QA between the quiescent and

active states are given by the projections:

hQii ¼

Z

BiðxÞQðxÞ dx

Sij
QA ¼

ZZ

BiðxÞBjðx
0ÞSQAðx; x

0Þ dx dx0;

ð12Þ

where x and x0 range over spatial coordinates as in Eqs (3) and (4). When selecting a basis B,

assumptions must be made about the minimum spatial scale to model. A natural choice is the

radius of lateral (i.e. spatially nonlocal) interactions in the model σe (Eq 3), since structure

below this scale is attenuated by the averaging over many nearby neurons in the dendritic

inputs.

Sampling from the model

For ground-truth simulations, we sample from a hybrid stochastic model derived from a Lan-

gevin approximation to the three-state neural field equation. In this approximation, the deter-

ministic evolution of the state is given by the mean-field equations (Eq (2) for a local system,

Eq (10) for the neural field system), and the stochastic noise arising from Poisson state transi-

tions is approximated as Gaussian as given by second-order terms (i.e. Snoise in Eq (6); see also

[50, 71]). Spontaneous wave initiation events are too rare to approximate as Gaussian, and

instead are sampled as Poisson (shot) noise, giving us a hybrid stochastic model:

rqðtÞ � Poisson ðrq � dtÞ � dðtÞ; ð13Þ

where δ(t) is a Dirac delta (impulse). To avoid uniform spontaneous excitation, the excito-

excitatory reaction rate is adjusted by a small finite threshold ϑ, i.e. rqa max(0, rqa − ϑ) in Eq

(10). For our simulations (e.g. Fig 3), we let ϑ = 8 × 10−3. For the non-spatial system, the hybrid

stochastic differential equation is:

dQ

dA

dR

2

6
6
6
6
6
4

3

7
7
7
7
7
5

¼

� rqðtÞ 0 rr

rqðtÞ � ra 0

0 ra � rr

2

6
6
6
6
6
4

3

7
7
7
7
7
5

Q

A

R

2

6
6
6
6
6
4

3

7
7
7
7
7
5

þ re

� QA

QA

0

2

6
6
6
6
6
4

3

7
7
7
7
7
5

0

B
B
B
B
B
@

1

C
C
C
C
C
A

dt þ S1=2

noisedW; ð14Þ

where Snoise is the fluctuation noise covariance as in Eq (6) (with ρq excluded, as it is addressed

by the shot noise, Eq 13), and dW is the derivative of a multidimensional standard Wiener pro-

cess, i.e. a spherical (white) Gaussian noise source. The deterministic component of (14) equa-

tion can be compared to Eq (2) for the means of the non-spatial system in the moment-closure

system (without the covariance terms).
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The stochastic differential equation for the spatial system is similar, consisting to a collec-

tion of local populations coupled through the spatial interaction kernel (Eqs 3 and 4), and fol-

lows the same derivation used when extending the moment-closure to the spatial case

(Methods: Extension to spatial system, Eqs 7–10). When applying the Euler-Maruyama method

method to the spatiotemporal implementation, fluctuations were scaled by
ffiffiffiffiffiffiffiffiffiffiffiffi
Dt Dx
p

, where

Δx is the volume of the spatial basis functions used to approximate the spatial system (see

Methods: System-size scaling for further detail). The Euler-Maruyama algorithm samples noise

from a Gaussian distribution, and can therefore create negative intensities due to discretization

error. We addressed this issue by using the complex Langevin equation [72], which accommo-

dates transient negative states.

Point-process measurement likelihood

Similarly to generalized linear point-process models for neural spiking [10, 11, 51], we model

spikes as a Poisson process conditioned on a latent intensity function λ(x, t), which character-

ises the probability of finding a certain number of spikes k in a small spatiotemporal interval

Δx × Δt as:

Pr
Z t0þDt

t0

Z x0þDx

x0

yðx; tÞ dx dt ¼ k

 !

� Poisson k;
Z t0þDt

t0

Z x0þDx

x0

lðx; tÞ dx dt

 !

: ð15Þ

In (15), y(x, t) denotes the experimentally-observed spiking output, and is a sum over Dirac

delta distributions corresponding to each spike with an associated time ti and spatial location

xi, i.e. y(x, t) = ∑i21..N δ(xi)δ(ti). We use a linear Poisson likelihood for which the point-process

intensity function

lðx; tÞ ¼ gðxÞAðx; tÞ þ bðxÞ ð16Þ

depends linearly on the number of active neurons A(x, t) with spatially-varying gain γ(x) and

bias β(x). In other words, the observed firing intensity in a given spatiotemporal volume

should be proportional to the number of active neurons, with some additional offset or bias β
to capture background spiking unrelated to the neural-field dynamics.

Bayesian filtering

Having established an approach to approximate the time-evolution of the moments of a neural

field system, we now discuss how Bayesian filtering allows us to incorporate observations in

the estimation of the latent states. Suppose we have measurements y0, . . ., yN of the latent state

x at time t0, . . ., tN, given by a measurement process Pr ðyijxtiÞ, which in our case is given by

the point-process likelihood (Eq 16). Bayesian filtering allows us to recursively estimate the fil-
tering distribution Pr ðxti jyi; . . . ; y0Þ at time ti, i.e. the posterior state probability at time ti given

the current and all previous observations. The procedure works by the following iterative

scheme: i) suppose we know the filtering distribution Pr ðxti jyi; . . . ; y0Þ at time ti. Solving the

model dynamics forward in time up to ti+1 gives the predictive distribution Pr(xt|yi, . . ., y0) for

all times ti< t� tt+1. ii) at the time ti+1 the measurement yi+1 needs to be taken into account

which can be done by means of the Bayesian update:

Pr ðxiþ1jyiþ1; . . . ; y0Þ ¼
Pr ðyiþ1jxiþ1ÞPr ðxiþ1jyi; . . . ; y0Þ

Pr ðyiþ1jyi; . . . ; y0Þ
; ð17Þ

where we have used the Markov property and Pr(yi+1|xi+1, yi, . . ., y0) = Pr(yi+1|xi+1) to obtain
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the right hand side. Eq (17) gives the filtering Pr ðxtiþ1
jyiþ1; . . . ; y0Þ at time ti+1 which serves as

the input of the next i step. Performing steps i) and ii) iteratively hence provides the filtering

distribution for all times t0� t� tn.

For our neural field model we must compute both steps approximately: to obtain the pre-

dictive distribution in step i) we integrate forward the differential equations for mean and

covariance derived from moment-closure (Eqs 2–6 and Methods: Extension to spatial system).

In practice, we convert the continuous-time model to discrete time. If F@t denotes the local lin-

earization of the mean dynamics in continuous time such that @t μ(t) = F@t μ(t), then the

approximated discrete-time forward operator is

FDt ¼ exp ðF@tDtÞ � I þ F@tDt: ð18Þ

We update the covariance using this discrete-time forward operator, combined with an

Euler integration step for the Poisson fluctuations. A small constant diagonal regularization

term Sreg can be added, if needed, to improve stability. The resulting equations read:

mtþDjt ¼ FDtmt

StþDjt ¼ FDtStFT
Dt þ S

noise
t � Dt þ Sreg:

ð19Þ

This form is similar to the update for a discrete-time Kalman filter [73, 74], the main differ-

ence being that the dynamics between observation times are taken from the nonlinear moment

equations.

Consider next the measurement update of step ii) in Eq (17). Since the Gaussian model for

the latent states x is not conjugate with the Poisson distribution for observations y, we approxi-

mate the posterior Pr(xi+1|yi+1, . . ., y0) using the Laplace approximation (c.f. [1, 32]). The

Laplace-approximated measurement update is computed using a Newton-Raphson algorithm.

The measurement update is constrained to avoid negative values in the latent fields by adding

a ε/x potential (compare to the log-barrier approach; [27]), which ensures that the objective

function gradient points away from this constraint boundary, where x is the intensity of any of

the three fields. The gradients and Hessian for the posterior measurement log-likelihood lnL
are

� lnL ¼ 1

2
ðx � mÞTS� 1ðx � mÞ þ vðgxþ bÞ � y ln ðgxþ bÞ

�
@ lnL
@x

¼ S� 1ðx � mÞ þ vg � y
g

gxþ b

� �

�
@

2 lnL
@x2

¼ S� 1 þ y
g

gxþ b

� �2

;

ð20Þ

where x is the latent state with prior mean μ and covariance S, and couples to point-process

observations y linearly with gain γ and bias β as in Eq (16). The parameter v = Δx2 � Δt is the

spatiotemporal volume of the basis function or spatial region over which the counts are

observed.

System-size scaling

For clarity, the derivations in this paper are presented for a population of neurons with a

known size, such that the fields Q(x), A(x), and R(x) have units of neurons. In practice, the

population size O of neurons is unknown, and it becomes expedient to work in normalized

intensities, where Q(x), A(x), and R(x) represent the fraction of neurons in a given state
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between 0 and 1, and are constrained such that Q(x) + A(x) + R(x) = 1. In this normalized

model for population size O, quadratic interaction parameters (like ρe) as well as the gain are

multiplied byO, to reflect the re-scaled population. In contrast, noise variance should be

divided by O to account for the fact that the coefficient of variation decreases as population

size increases. Although rescaling by O is well-defined for finite-sized populations, the infini-

tesimal neural-field limit for the second-order model is not. This is because, while the mean-

field equations scale with the population size OðOÞ, the standard deviation of Poisson fluctua-

tions scales with the square root of the population size Oð
ffiffiffiffi
O
p
Þ. The ratio of fluctuations to the

mean (coefficient of variation) therefore scales as Oð1=
ffiffiffiffi
O
p
Þ, which diverges as O! 0.

This divergence is not an issue in practice as all numerical simulations are implemented on

a set of basis functions with finite nonzero volumes, and each spatial region is therefore associ-

ated with finite nonzero population size. Even in the limit where fluctuations would begin to

diverge, one can treat the neural field equations as if defined over a continuous set of overlap-

ping basis functions with nonzero volume. Conceptually, this can be viewed as setting a mini-

mum spatial scale for the neural field equations, which is defined by spatial extent of each local

population. If the model is defined over a set of overlapping spatial regions, then these popula-

tions experience correlated fluctuations. Consider Poisson fluctuations as entering with some

rate-density σ2(x) per unit area. The observed noise variances and covariances, projected onto

basis functions Bi(x) and Bj(x), are:

Snoise
i;j ¼

Z

BiðxÞBjðxÞs
2ðxÞdx ð21Þ

If the neuronal population density is given as ρ(x) per unit area, then the effective popula-

tion size for a given basis function is:

Oi ¼

Z

BiðxÞrðxÞdx ð22Þ

If the population density is uniform, and if basis functions have a constant volume v, we

can write this more simply as O = vρ. In the system-size normalized model, the contributions

of basis function volume cancel and the noise variance should be scaled simply as 1/ρ.
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