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ScienceDirect
The nervous system learns new associations while maintaining

memories over long periods, exhibiting a balance between

flexibility and stability. Recent experiments reveal that neuronal

representations of learned sensorimotor tasks continually

change over days and weeks, even after animals have achieved

expert behavioral performance. How is learned information

stored to allow consistent behavior despite ongoing changes in

neuronal activity? What functions could ongoing

reconfiguration serve? We highlight recent experimental

evidence for such representational drift in sensorimotor

systems, and discuss how this fits into a framework of

distributed population codes. We identify recent theoretical

work that suggests computational roles for drift and argue that

the recurrent and distributed nature of sensorimotor

representations permits drift while limiting disruptive effects.

We propose that representational drift may create error signals

between interconnected brain regions that can be used to keep

neural codes consistent in the presence of continual change.

These concepts suggest experimental and theoretical

approaches to studying both learning and maintenance of

distributed and adaptive population codes.
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Introduction
Heraclitus of Ephesus is quoted as saying that one cannot

step into the same river twice.* Accordingly, our brains

continually renew their molecular and cellular compo-

nents, and the neuronal substrates of our experiences and

memories are subject to continual turnover [1–3]. Such
* Plato, Cratylus, 360 B.C.E.
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turnover could occur without changing the relationship

between neuronal activation and the external world.

However, recent experiments reveal continual reorgani-

zation of neuronal responses in circuits essential for

specific tasks, even when tasks are fully learned [4��,5–8].

This apparent instability challenges the view that syn-

aptic connectivity and individual neuronal responses

correlate directly with memory. Can we reconcile stable

behavior with apparent instability in behavior-related

neuronal activity? Experimental examples of stability

and instability in neuronal representations have been

extensively reviewed previously [9–11]. In this review,

we focus on recent and established theoretical models

that address this problem, including potential func-

tional roles of continual circuit reconfiguration. We

suggest experimental and theoretical strategies to study

how and why brain circuits continually evolve during

stable behavior.

Experiments find consistent population
patterns in the presence of single-neuron drift
Recent experiments have found that neuronal representa-

tions of familiar environments and learned tasks reconfigure

or ‘drift’ over time [4��,6–8]. Here we take ‘representations’

to mean neural activity that is correlated with task-related

stimuli, actions, and cognitive variables. Representations

could include, for example, single-cell receptive fields in

sensory areas, or population activity vectors that guide

behavior.Weusetheterm‘representationaldrift’ todescribe

ongoing changes in these representations that occur without

obvious changes in behavior.

We will highlight one recent example to illustrate repre-

sentational drift. Driscoll and colleagues [4��] designed

a sensorimotor task in a virtual reality environment,

in which a mouse was trained to navigate a T-maze

(Figure 1a). For each trial, the mouse was presented with

a visual cue, which instructed it whether to turn left or

right at the end of the maze to receive a reward. Mice

performed this task at greater than 90% accuracy for

weeks. Using chronic two-photon calcium imaging, the

authors monitored the activity of large groups of individ-

ual neurons in the PPC, which is known to be required for

solving the task [4��,12]. Neurons tended to be transiently

active during task trials, with different neurons active at

different parts of the trial. This forms a sequence of

neuronal activity across the population that tiles the task

(Figure 1b, diagonal panels). We refer to this activity

sequence as a representation of the task.
Current Opinion in Neurobiology 2019, 58:141–147

mailto:timothy.oleary@eng.cam.ac.uk
https://doi.org/10.1016/j.conb.2019.08.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.conb.2019.08.005&domain=pdf
http://www.sciencedirect.com/science/journal/09594388


142 Computational neuroscience

Figure 1

(a) (b)
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Coding of spatial navigation in posterior parietal cortex (PPC) drifts

over days (adapted from Driscoll et al. [4��]). (a) Driscoll et al. [4��]
placed mice in a virtual reality environment, and required that subject

remember visual cues to navigate to a target. Population activity was

recorded with single-neuron resolution over days using calcium

fluorescence imaging. (b) Raster plots showing average calcium

signals from several hundred PPC neurons imaged over multiple days,

with task location on the horizontal axis. Each row corresponds to a

neuron, and trial-averaged activity is represented by color. Location

dependent activation drifted slowly over days: single neurons gained

and lost location sensitivity or changed their tuning. Sorting cells by

activation on any given day reveals a different population coding of

maze location for that day.
Crucially, Driscoll and colleagues found that the PPC

representation was not stable over multiple days and

weeks. As shown in each row of Figure 1b, the same

neurons exhibited markedly different activation patterns

on different days. The most common change was that

neurons had altered levels of activity and thus exited or

entered the population representation. Less frequently,

cells exhibited changes in selectivity. Over weeks, the

task-related activity in PPC had nearly entirely reconfi-

gured, but on any given day a subset of the population

could be identified that tiled the task (Figure 1b, diag-

onals). Each animal’s task performance remained consis-

tently high and behavior was not measurably altered by

representational drift.

Similar types of drift have been reported in a number of

brain areas, including the hippocampus and sensory and

motor parts of neocortex [6–8,13]. In addition, there is

widespread evidence for surprising degrees of structural

plasticity in dendritic spines [7,[14�,15],[14�,15]]. For

example, in the hippocampus, all dendritic spines are

expected to turn over in the period of several weeks [7].

Such dramatic synapse turnover suggests that circuits are

continually rewiring even though animals can maintain

stable task performance and memories. We emphasize
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that drift is not observed in all brain areas and for all tasks

[14�,15]. Nevertheless, the finding of representational

drift raises profound questions about how behavior is

learned and controlled in neural circuits, and what con-

stitutes a memory of such learned behavior.

Distributed population codes can
accommodate representational drift
Representational drift might appear problematic for long-

term encoding of memories and associations. However,

redundant representations may allow some level of drift

without disrupting behavior. Even in simple nervous

systems, the existence of circuit configurations with

different anatomical connectivity or physiological profiles

but similar overall function is well documented [16].

Redundancy is often considered to be a biological neces-

sity because brains must be robust to failure in individual

neurons and to environmental perturbations. The brain

may therefore achieve robustness via degeneracy, where

high-dimensional representations preserve behavior

while allowing for a vast number of equivalent circuit

configurations to be realized [17]. There is considerable

evidence that the brain employs high-dimensional

representations of inherently low dimensional tasks

[18–20,21��]. A low dimensional task can be represented

in higher dimensional population activity in a variety of

configurations. To illustrate, we can explore the neuronal

population representation of the task from Driscoll et al.
by applying dimensionality reduction to PPC population

activity. In this example an unsupervised dimensionality-

reduction algorithm [22,23] is used to find 2D projections

of population activity that preserve nearest-neighbor

structure in population activity. Without knowing the

details of the task or observed location, this algorithm

identifies a ‘T-shaped’ cloud of population activity states

(Figure 2a). Each point in the cloud corresponds to the

population activity at a single time bin in the trial, and

collectively the cloud of points maps out the animal’s

navigational trajectories during the task. Although inter-

nally consistent neuronal representations can be identi-

fied (Figure 2b), the way that single neurons encode such

representations changes over time.

The low-dimensional structure extracted in Figure 2a

sits in a much higher dimensional space of population

activity. There are potentially many degrees of freedom

for this structure to move around in population activity

space while retaining the topology and local structure of

the T shape. Such movement could accommodate differ-

ent contributions from different neurons across time, or

changes in single-cell tuning.

Interestingly, such high dimensional representations

have other, less obvious benefits. A recent study by

Raman and colleagues [24] showed that networks with

excess connectivity can learn more rapidly and to a higher

asymptotic performance on tasks of fixed complexity, as
www.sciencedirect.com
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Figure 2
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Internal representations have unconstrained degrees of freedom that allow drift. (a) Nonlinear dimensionality reduction of population activity

recovers the low-dimensional structure of the T-maze in [4��] (Figure 1a). Each point represents a single time-point of population activity, and is

colored according to location in the maze. (b) Point clouds illustrate low-dimensional projections of neural activity as in (a). Although unsupervised

dimensionality-reduction methods can recover the task structure on each day, the way in which this structure is encoded in the population can

change over days to weeks. (c) Left: Neural populations can encode information in relative firing rates and correlations, illustrated here as a

sensory variable encoded in the sum of two neural signals (y1 + y2). Points represent neural activity during a repeated presentation of the same

stimulus. Variability orthogonal to this coding axis does not disrupt coding, but could appear as drift in experiments if it occurred on slow

timescales. Right: Such distributed codes may be hard to read-out from recorded subpopulations (e.g. y1 or y2 alone; black), especially if they

entail correlations between brain areas. (d) Left: External covariates may exhibit context-dependent relationships. Each point here reflects a neural

population state at a given time-point. The relationship between directions x1 and x2 changes depending on context (cyan versus red). Middle:

Internally, this can be represented a mixture model, in which different subspaces are allocated to encode each context, and the representations

are linearly-separable (gray plane). Right: The expanded representation contains two orthogonal subspaces that each encode a separate, context-

dependent relationship. This dimensionality expansions increases the degrees of freedom in internal representations, thereby increasing

opportunities for drift.
quantified by the number of parameters required to

specify a fixed mapping of inputs to outputs. This study

shows that a high-dimensional representation of a lower

dimensional task can be advantageous for learning,

irrespective of the learning rule at work.

A notable idea that emerges from the high-dimensional

encoding of low-dimensional tasks is that of a ‘null space’.

The null space is a subspace of population activity that is

orthogonal toa low-dimensional task representation[25,26].

This is illustrated in Figure 2c, which depicts how popula-

tion activity in two subpopulations, y1 and y2, might co-vary
www.sciencedirect.com 
in a population that encodes a specific feature, x. If we

suppose that the feature is encoded in the sum of the

activity, y1 + y2, then tight tuning with respect to x can

coexist with a large variation in a null direction

(the y1 � y2 direction).Subpopulations may appear variable,

even if the global representation is well constrained. For

example, recent work has suggested that the population

code in V1 is structured, with distributed representations

having lower variance than individual neurons [27��].

The null-space concept has been used to explain how

a single neuronal population can represent multiple
Current Opinion in Neurobiology 2019, 58:141–147
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behavioral contexts, for example motor planning and

execution [28,26,29]. To illustrate this, Figure 2d depicts

samples of activity from a single population during two

different behavioral contexts. Behavioral variables, x1 and
x2, have different relationships to each other in each

context (left panel). A high-dimensional representation

in neuronal activity, zi allows these contexts to occupy

different parts of population activity space (middle

panel). By examining subspaces of the population activ-

ity, one could observe correlates of task variables in one

context, but not the other (right panel). This implies that

neuronal activity could drift in directions unrelated to

encoding or task performance [25,30]. If the dimension-

ality of population activity is much higher than the

dimensionality of the task, even random drift will lie

mostly within this ‘null space’. Thus, high-dimensional

population representations can tolerate drift and allow

multiple circuit configurations to lead to similar outputs.

Further evidence of distributed and redundant popula-

tion representations has emerged from recent work

highlighting the distributed nature of sensorimotor infor-

mation [31]. In particular, recent studies have shown that

motor outputs influence sensory encoding [32,33��].
Moreover, recent reports show that stimulus, action,

and cognitive variables are distributed throughout

sensory and motor areas, often in overlapping representa-

tions. Reports of this type are too numerous to list here

(but see for example [31,34–36]).

The presence of widely-distributed representations thus

necessitates understanding drift at a wider neuronal

population level, even across brain areas, than is typically

examined in experiments. This wider examination will be

essential to understand the scale of drift in the represen-

tations relative to the global population representation,

including to correctly identify coding dimensions of

distributed activity.

Representational drift may be inevitable in
distributed, adaptive circuits
Representational drift is sometimes considered as a

passive, noise-driven process. However, it could also

reflect other ongoing processes such as learning. In typical

lab experiments, a specific task of interest and its associ-

ated representations are studied, but the same population

of neurons is likely used for other aspects of the subject’s

life. Thus, over the course of an experiment, animals

likely learn many new associations and have new experi-

ences, which must be incorporated into the neuronal

populations being studied [37,38]. To prevent new asso-

ciations from disrupting previously learned associations,

the brain may need to re-encode them.

In the work of Driscoll et al., these ideas were explored by

training mice to learn new sensorimotor associations after

they had already learned earlier associations. Interestingly,
Current Opinion in Neurobiology 2019, 58:141–147 
they found that the same neurons appeared to be used

for the representations of previously learned associations

and for the development of new associations during

learning. This finding demonstrates that representational

drift could indeed reflect new learning and suggests that a

neuronal population can simultaneously be utilized for

learning and memory. This idea of drift as ongoing learning

is consistent with recent theoretical work that predicts a

highly plastic subset of neurons attuned to population

activity [39].

Even in the absence of explicit learning, neuronal repre-

sentations continually adapt to encode information

efficiently [40]. As sensory representations adjust, down-

stream areas must also adjust either their connectivity or

internal representations to remain consistent. Efficient

coding is not limited to sensory functions: even sensory

areas learn to anticipate motor output [41], and one might

expect networks to track shifts in environmental statis-

tics, including evolving cognitive and memory effects.

These factors contribute to the neural ‘environment’

being in perpetual flux. Drift may therefore be an

expected consequence of ongoing refinement and

consolidation.

Predictive coding and internal error signals
could detect and correct drift
Regardless of the sources of drift, neuronal representa-

tions must remain within the subspace of equivalent

representations in order to preserve behaviors and learned

associations (depicted in Figure 3a as a surface). Over

time, changes in neuronal representations are expected to

accumulate, eventually leading to disruptive effects that

cannot be accommodated by redundancy. Therefore,

some continual corrective action is needed to constrain

neuronal representations on long timescales. In many

situations, external stimuli could provide this corrective

feedback. For example, in the work from Driscoll et al.,
the mouse was rewarded after each correct trial, which

could serve as an external signal to update the subspace

of adequate neuronal representations for behavior. In

addition, other mechanisms for maintaining coherent

representations could also be used, including off-line

rehearsal [42] and reactivation of cell assemblies [43].

In the absence of external learning cues, we propose that

internal error signals exchanged between recurrently

connected brain regions could maintain consistency

in distributed representations. For example, spatial navi-

gation requires consistent representations throughout

sensory, association, and motor regions. A change in

representation in any one area could disrupt consistency

in representations with other regions. Plasticity in the

other regions could then be used to compensate for this

change such that representations distributed across brain

regions would drift in a consistent manner (Figure 3b).
www.sciencedirect.com
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Figure 3

(a)

(b)
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Local changes in recurrent networks have global effects, and global

processes can compensate. (a) The curved surfaces represent

network configurations suitable for a given sensorimotor task, that is,

neural connections and tunings that generate a consistent behavior.

Each axis represents different circuit parameters. Ongoing processes

that disrupt performance must be corrected via error feedback (middle

panel) to maintain overall sensorimotor accuracy. (Right panel)

continual circuit reconfiguration is possible in principle in the space of

feasible circuit configurations. (b) Colored dots represent projections

of neural population activity onto task-relevant dimensions at various

time-points. Activity is illustrated in three hypothetical areas, depicting

a feed-forward transformation of a stimulus input into a motor output.

(top) If the representation in one area changes (e.g. rotation of an

internal sensory representation, Ds, curved black arrow), downstream

areas must also compensate to avoid errors (e.g. motor errors, Dm,

curved gray arrows). (bottom) Although the original perturbation was

localized, compensation can be distributed over many areas. Each

downstream area can adjust how it interprets its input. This is

illustrated here as curved arrows, which denote a compensatory

rotation that partially corrects the original perturbation. The distributed

adjustment in neural tuning may appear as drift to experiments that

examine only a local subpopulation.
This concept fits within the framework of predictive

coding, in which neural circuits learn to predict the

activity patterns in one another with the goal of minimiz-

ing internal prediction errors 44�,45]. In this framework,

one brain region might generate an error signal if the

input it receives from another region is different than

expected, such as due to drift in the input area. Such an

error signal could guide plasticity to maintain consistency

between representations across areas. Much work has

highlighted the concept of predictive coding and error

signals in the context of comparisons between internal

predictions and incoming sensory signals [33��,46].
www.sciencedirect.com 
However, to our knowledge, this concept has not been

explored in the context of extensive internal predictions

between brain regions. This will be an interesting area for

future research, in particular to identify if such error

signals exist and to test how these signals could be used

to maintain coherent representations across areas.

Possible computational uses of
representational drift
Drift and instability in neuronal representations could

serve important computational functions. Some insights

into these potential functions come from comparisons to

strategies used in machine learning. For example, a

common experimental finding is that some neurons go

from being highly active in a task- or behavior-relevant

manner to being silent on subsequent days. The transient

silencing of single neurons (e.g. [47�]) could be a neural

correlate of the ‘drop-out’ training strategy used to regu-

larize deep neural networks [48].

Recent work proposed that drift allows for ‘time-stamping’

of events, following the observation that different sets of

hippocampal place cells are active in an environment on

different days [5]. The set of active place cells conveys

information about not only the environment but also time.

Time-stamping could support episodic memory, disambig-

uating similar environmental contexts separated in time.

Accordingly, mutually-exclusive population representa-

tions of distinct memories is also observed on fast

timescales [49], and temporal context appears to be

involved in episodic memory at fast timescales [50]. This

connects, at an abstract level, to the recently proposed

machine-learning strategy ‘context-dependent gating’

[51�], which silences subsets of neurons in a context-

dependent manner in order to attenuate interference. If

time itself is an important contextual variable, then distinct

contextual representations could emerge naturally from

drifting representations.

Recent theoretical work has suggested that drift may

allow the brain to sample from a large space of possible

solutions [52]. In this case, learning and drift work

together to move toward optimal solutions while sampling

enough possibilities to avoid globally suboptimal local

solutions. In this case, drift could be a deliberate strategy

to sample the configuration landscape or a byproduct of

noisy and error-prone learning. Some theories indicate

that fluctuations are an expected feature of optimization

in noisy systems [25] and that drift may therefore support

stochastic reinforcement learning [53��].

Outlook
The brain is an adaptive system, and its structure there-

fore changes. While this has been appreciated in the

context of learning, recent experimental findings suggest

something stronger: some parts of the brain cannot remain

fixed, even in experimental paradigms designed to study
Current Opinion in Neurobiology 2019, 58:141–147
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stable behavior. A neuron that is several synaptic

connections away from a sensory input or motor output

is only weakly tethered to the external world. Neurons

that participate in abstract representations and high-level

behavioral plans are therefore free to reconfigure within

limits set by the degeneracy of the neural code at the

circuit level.

This realization suggests approaches for capturing invari-

ant structures in population activity that underlie stable

sensorimotor behavior. It also implies that internal feed-

back signals between brain areas are pervasive. This

provides a framework for theoretical models of neural

circuits and may help understand the logic of connectivity

in many brain areas. Integrating theories of collective

neural dynamics, learning, and predictive coding in dis-

tributed representations is therefore essential to under-

stand how sensorimotor representations evolve.

We propose experimental and theoretical shifts in how we

consider learning and memory. Rather than viewing

learning and memory as sequential, and potentially

discrete, events in separate circuits, we propose that it

is important to study them together to understand their

interaction. The brain is an interconnected network, and

changes in one area likely influence distant neuronal

populations. Globally coordinated plasticity may be

needed to preserve existing associations. In other words,

‘to stay the same, everything must change’.yExperiments

that track the interactions between brain regions will

therefore be essential to examine long-term neuronal

population dynamics during learning and memory as well

as during stable behavior. Such experiments will test

emerging theories of population codes and memory in

the presence of constant change, revealing how the brain

achieves one of its most essential functions — reorganiz-

ing with experience to guide future actions.
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