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Abstract

Over days and weeks, neural activity representing an an-
imal’s position and movement in sensorimotor cortex has
been found to continually recon�gure or ‘dri�’ during re-
peated trials of learned tasks, with no obvious change in
behavior. �is challenges classical theories which assume
stable engrams underlie stable behavior. However, it is
not known whether this dri� occurs systematically, allow-
ing downstream circuits to extract consistent information.
We show that dri� is systematically constrained far above
chance, facilitating a linear weighted readout of behavioural
variables. However, a signi�cant component of dri� con-
tinually degrades a �xed readout, implying that dri� is not
con�ned to a null coding space. We calculate the amount
of plasticity required to compensate dri� independently of
any learning rule, and �nd that this is within physiologically
achievable bounds. We demonstrate that a simple, biologi-
cally plausible local learning rule can achieve these bounds,
accurately decoding behavior over many days.

Keywords: neural plasticity, parietal cortex, population
coding, spatial navigation, computational model, learning
and memory

Introduction and Results

A core principle in neuroscience is that behavioral vari-
ables are represented in neural activity. Such representations
must be maintained to retain learned skills and memories.
However, recent work has challenged the idea of long-lasting
neural codes [1]. In our recent work [2], we found that neural
activity-behavior relationships in individual posterior pari-
etal cortex (PPC) neurons continually changed over many
days during a repeated virtual navigation task. Similar ‘rep-
resentational dri�’ has been shown in other neocortical areas
and hippocampus [3–5]. Importantly, these studies showed
that representational dri� is observed in brain areas essential
for performing the task long a�er the task has been learned.

�ese experimental observations raise the major ques-
tion of whether dri�ing representations are fundamentally at
odds with the storage of stable memories of behavioral vari-

ables (e.g. 6, 7). �eoretical work has proposed that a con-
sistent readout of a representation can be achieved if dri�
in neural activity pa�erns occurs in dimensions of popula-
tion activity that are orthogonal to coding dimensions - in
a ‘null coding space’ [8–11]. �is can be facilitated by neu-
ral representations that consist of low-dimensional dynamics
distributed over many neurons [12–16]. Redundancy could
therefore permit substantial recon�guration of tuning in sin-
gle cells without disrupting neural codes [9, 17–20]. How-
ever, the extent to which dri� is con�ned in such a null cod-
ing space remains an open question.

Purely random dri�, as would occur if synaptic strengths
and other circuit parameters follow independent random
walks, would eventually disrupt a population code. Several
studies have provided evidence that cortical synaptic weights
and synaptic connections exhibit statistics that are consis-
tent with a purely random process [21–23]. Indeed, our pre-
vious experimental �ndings reveal that dri� includes cells
that lose representations of task relevant variables, suggest-
ing that some component of dri� a�ects coding dimensions
[2].

Together, these observations raise fundamental questions
that have not been directly addressed with experimental data,
and which we address here. First, to what extent can ongoing
dri� in task representations be con�ned to a null coding space
over extended periods while maintaining an accurate readout
of behavioural variables in a biologically plausible way? Sec-
ond, how might we estimate how much additional ongoing
plasticity (if any) would be required to maintain a stable read-
out of behavioural variables, irrespective of speci�c learning
rules? �ird, is such an estimate of ongoing plasticity biolog-
ically feasible for typical levels of connectivity, and typical
rates of change observed in synaptic strengths? Fourth, can a
local, biologically plausible plasticity mechanism tune read-
out weights to identify a maximally stable coding subspace
and compensate any residual dri� away from this subspace?

We addressed these questions by modelling and analysing
data from (author?) [2]. �is dataset consists of optical
recordings of calcium activity in populations of hundreds of
neurons in Posterior Parietal Cortex (PPC) during repeated
trials of a virtual reality T-maze task (1a). Mice were trained
to associate a visual cue at the start of the maze with turn-
ing le� or right at a T-junction. Behavioral performance and
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FIG. 1. Neural population coding of spa-
tial navigation recon�gures over time in a
virtual-reality maze task (a) Mice were trained
to use visual cues to navigate to a reward in
a virtual-reality maze; neural population activ-
ity was recorded using Ca2+ imaging [2]. (b)
(Reprinted from [2]) Neurons in PPC (vertical
axes) �re at various regions in the maze (hori-
zontal axes). Over days to weeks, individual neu-
rons change their tuning, recon�guring the popu-
lation code. �is occurs even at steady-state be-
havioral performance (a�er learning). (c) Each
plot shows how location-averaged normalized ac-
tivity changes for single cells over weeks. Miss-
ing days are interpolated to the nearest available
sessions, and both le� and right turns are com-
bined. Neurons show diverse changes in tuning
over days, including instability, relocation, long-
term stability, gain/loss of selectivity, and inter-
mi�ent responsiveness.

kinematic variables were stable over time with some per-
session variability (mouse 4 exhibited a slight decrease in for-
ward speed; Fig. 2-S1). Full experimental details can be found
in the original study.

Previous studies identi�ed planning and choice-based
roles for PPC in the T-maze task [24], and stable decoding
of such binary variables was explored in [2]. However, in
primates PPC has traditionally been viewed as containing
continuous motor-related representations [25–27], and re-
cent work [28, 29] has con�rmed that PPC has an equally
motor-like role in spatial navigation in rodents [30]. It is
therefore important revisit these data in the context of con-
tinuous kinematics encoding.

Previous analyses showed that PPC neurons activated at
speci�c locations in the maze on each day. When peak acti-
vation is plo�ed as a function of (linearized) maze location,
the recorded population tiles the maze, as shown in Figure 1b.
However, maintaining the same ordering in the same popu-
lation of neurons revealed a loss of sequential activity over
days to weeks (top row of 1b). Nonetheless, a di�erent sub-
set of neurons could always be found to tile the maze in these
later experimental sessions. In all cases, the same gradual loss
of ordered activation was observed (second and third rows,
1b). Figure 1c shows that PPC neurons gain or lose selectiv-
ity and occasionally change tuning locations. Together, these
data show that PPC neurons form a continually recon�gur-
ing representation of a �xed, learned task.

PPC representations facilitate a linear readout

We asked whether precise task information can be ex-
tracted from this population of neurons, despite the continual
activity recon�guration evident in these data. We began by
��ing a linear decoder for each task variable of interest (ani-
mal location, heading, and velocity) for each day. �is model
has the form x(t)=M>z(t), where x(t) is the time-binned esti-
mate of position, velocity or heading (view angle) in the vir-
tual maze, M is a vector of weights, and z(t) is the normalized
time-binned calcium �uorescence (Methods).

Example decoding results for two mice are shown in Fig.
2a, and summaries of decoding performance for four mice in
Fig. 2b. Position, speed, and view angle can each be recov-
ered with a separate linear model. �e average mean absolute
decoding error for all animals included in the analysis was
47.2 cm ±8.8 cm (mean ±1 standard deviation) for position,
9.6 cm/s ±2.2 cm/s for speed, and 13.8◦±4.0◦ for view angle
(Methods).

We chose a linear decoder speci�cally because it can be
interpreted biologically as a single ‘readout’ neuron that re-
ceives input from a few hundred PPC neurons, and whose ac-
tivity approximates a linear weighted sum. �e fact that a lin-
ear decoder recovers behavioral variables to reasonable accu-
racy suggests that brain areas with su�ciently dense connec-
tivity to PPC can extract this information via simple weighted
sums.

�e number of PPC neurons recorded is a subset of the to-
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FIG. 2. A linear decoder can extract kinematic information from PPC population activity on a single day. (a) Example decoding performance for
a single session for mice 4 and 5. Grey denotes held-out test data; colors denote the prediction for the corresponding kinematic variable. (b) Summary of
the decoding performance on single days; each point denotes one mouse. Error bars denote one standard deviation over all sessions that had at least N=200
high-con�dence PPC neurons for each mouse. (Mouse 2 is excluded due to an insu�cient number of isolated neurons). Chance level is ∼1.5 m for forward
position, and varies across subjects for forward velocity (∼0.2-0.25 m/s) and head direction (∼20-30 deg). (c) Extrapolation of the performance of the static
linear decoder for decoding position as a function of the number of PPC neurons, done via Gaussian process regression (Methods). Red “×” marks denote
data; solid black line denotes the inferred mean of the GP. Shaded regions re�ect ±1.96σ Gaussian estimates of the 95th and 5th percentiles. (d) Same as panel
(c), but where the neurons have been ranked such that the “best” subset of size 1≤K ≤N is chosen, selected by greedy search based on explained variance
(Methods).

tal PPC population. To assess whether additional neurons
might improve decoding accuracy, we evaluated decoding
performance of randomly drawn subsets of recorded neu-
rons (Fig. 2c). Extrapolation of the decoding performance
suggested that be�er performance might be possible with a
larger population of randomly sampled PPC neurons than we
recorded.

It is possible that a random sample of neurons misses the
‘best’ subset of cells for decoding task variables. When we
restricted to optimal subsets of neurons we found that per-
formance improved rapidly up to ∼30 neurons and saturated
at ∼30% (50-100 neurons) of the neurons recorded (Fig. 2d).
On a given day task variables could be decoded well with
relatively few (∼10) neurons. However, the identity of the
neurons in this optimal subset changed over days. For all sub-
jects, no more than 1% of cells were consistently ranked in the
top 10%, an no more than 13% in the top 50%. We con�rmed
that this instability was not due to under-regularization in
training (Methods).

Of the neurons with strong location tuning, the previous
study [2] found that 60% changed their location tuning over
two weeks and a total of 80% changed over the 30 day pe-
riod examined. We �nd that even the small remaining ‘stable’
subset of neurons exhibited daily variations in their Signal-
to-Noise Ratio (SNR) with respect to task decoding, consis-
tent with other studies [31]. For example, no more than 8%
of neurons that were in the top 25% in terms of tuning-peak
stability were also consistently in the top 25% in terms of SNR
for all days. If a neuron becomes relatively less reliable, then
the weight assigned may become inappropriate for decoding.

�is a�ects our analyses, and would also physiologically af-
fect a downstream neuron with �xed synaptic weights.

Representational dri� is systematic and signi�cantly
degrades a �xed readout

Naively ��ing a linear model to data from any given day
shows that behavioural variables are encoded in a way that
permits a simple readout, but there is no guarantee that this
readout will survive long-term dri� in the neural code. To il-
lustrate this we compared the decoding performance of mod-
els ��ed on a given day with decoders optimized on data from
earlier or later days. We restricted this analysis to those neu-
rons that were identi�ed with high con�dence on all days
considered. We found that decoding performance decreased
as the separation between days grew (Fig 3a). �is is unsur-
prising given the extent of recon�guration reported in the
original study [2] and depicted in Fig 1. Furthermore, because
task-related PPC activity is distributed over many neurons,
many di�erent linear decoders can achieve similar error rates
due to the degeneracy in the representation [8, 12, 18]. Since
the directions in population activity used for inter-area com-
munication might di�er from the directions that maximally
encode stimulus information in the local population [19, 32],
single-day decoders might overlook a long-term stable sub-
space used for encoding and communication. �is motivates
the question of whether a dri�-invariant linear decoder exists
and whether its existence is biologically plausible.

To address this, we tested the performance of a single lin-
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FIG. 3. Single-day decoders generalize
poorly to previous and subsequent days, but
multi-day decoders exist with good perfor-
mance. (a) Blue: % increase in error over the op-
timal decoder for the testing day (mouse 3, 136
neurons; mouse 4, 166 neurons). Red: Mean ab-
solute error for decoders trained on a single day
(‘0’) and tested on past/future days. (b) Fixed de-
coders M for multiple days d ∈1 . . . D (‘concate-
nated decoders’) are �t to concatenated excerpts
from several sessions. �e inset equation re�ects
the objective function to be minimized (Methods).
Due to redundancy in the neural code, many de-
coders can perform well on a single day. Although
the single-day optimal decoders vary, a stable
subspace with good performance can exist. (c)
Concatenated decoders (cyan) perform slightly
but signi�cantly worse than single-day decoders
(ochre; Mann-Whitney U test, p<0.01). �ey also
perform be�er than expected if neural codes were
unrelated across days (permutation tests; red).
Plots show the mean absolute decoding error as
a percent of the chance-level error (points: me-
dian, whiskers: 5th-95th%). Chance-level error
was estimated by shu�ing kinematics traces rel-
ative to neural time-series (mean of 100 sam-
ples). For the permutation tests, 100 random sam-
ples were drawn with the neuronal identities ran-
domly permuted. (d) Plots show the rate at which
concatenated-decoder accuracy (normalized R2)
degrades as the number of days increase. Con-
catenated decoders (black) degrade more slowly
than expected for random dri� (ochre). Shaded
regions re�ect the inner 95% of the data (gener-
ated by resampling for the null model). �e null
model statistics are matched to the within- and
between-day variance and sparsity of the experi-
mental data for each animal (Methods).

ear decoder optimized across data from multiple days. We
concatenated data from di�erent days using the same sub-
set of PPC neurons (Fig. 3b). In all four subjects, we found
that such �xed multiple-day linear ‘concatenated’ decoders
could recover accurate task variable information despite on-
going changes in PPC neuron tuning. However, the average
performance of the multiple-day decoders was signi�cantly
worse than single-day linear decoders for each day (Fig. 3c).

�e existence of a �xed, approximate decoder implies a de-
generate representation of task variables in the population
activity of PPC neurons. In other words, there is a family of
linear decoders that can recover behavioral variables while
allowing weights to vary in some region of weight space. �is
situation is illustrated in Figure 3b, which depicts regions of
good performance of single-day linear decoders as ellipsoids.
�e existence of an approximate concatenated decoder im-
plies that these ellipsoids intersect over several days for some
allowable level of error in the decoder. For a su�ciently re-
dundant neural code, one might expect to �nd an invariant
decoder for some speci�ed level of accuracy even if the un-
derlying code dri�s. However, there are many qualitative
ways in which dri� can occur in a neural code: it could resem-
ble a random walk, as some studies suggest [21–23], or there
could be a systematic component. Is the accuracy we observe

in the concatenated decoder expected for a random walk? In
all subjects, we found that a concatenated decoder performed
substantially be�er on experimental data than on randomly
dri�ing synthetic data with matched sparseness and matched
within/between-session variability (Fig. 3d). �is suggests
that the dri� in the neural data is not purely random.

We further investigated the dynamics of dri� by quantify-
ing the direction of changes in neural variability over time
(Fig. 4c,d, Methods). We found that dri� is indeed aligned
above chance to within-session neural population variabil-
ity. �is suggests that the biological mechanisms underlying
dri� are in part systematic and constrained by a requirement
to keep a consistent population code over time. In compar-
ison, the projection of dri� onto behavior-coding directions
was small, but still above chance. �is is consistent with the
hypothesis that ongoing compensation might be needed for
a long-term stable readout.

To quantify the systematic nature of dri� further, we mod-
i�ed the null model to make dri� partially systematic by con-
straining the null-model dri� within a low rank subspace
(Fig. 4-S1). �is re�ects a scenario in which only a few
components of the population code change over time. We
found that the performance of a concatenated decoder for
low-rank dri� be�er approximated experimental data. For
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dashed line: 95% Monte-Carlo sample). Each box re�ects the distribution over all maze locations, with all consecutive pairs of sessions combined.

three of the four mice we could match concatenated decoder
performance when the dimension of the dri� process was
constrained within a range of 14-26, a relatively small frac-
tion (around 20%) of the components of the full population.

Biologically achievable rates of plasticity can compensate
dri�

Together, these analyses show that the observed dynam-
ics of dri� favor a �xed linear readout above what would be
expected for random dri�. However, our results also show
that a substantial component of dri� cannot be con�ned to
the null space of a �xed downstream linear readout. We
asked how much ongoing weight change would be needed to
achieve the performance of single-day decoders while min-
imizing day-to-day changes in decoding weights. We �rst
approached this without assuming a speci�c plasticity rule,
by simultaneously optimizing linear decoders for all recorded
days while penalizing the magnitude of weight change be-
tween sessions (Fig. 4a, Methods). By varying the magnitude
of the weight change penalty we interpolated between the
concatenated decoder (no weight changes) and the single-
day decoders (optimal weights for each day). �e result of
this is shown in Figure 4b. Performance improves rapidly

once small weight changes are permi�ed (∼12-25% per ses-
sion). �us, relatively modest amounts of synaptic plasticity
might su�ce to keep encoding consistent with changes in
representation, provided a mechanism exists to implement
appropriate weight changes.

A biologically plausible local learning rule can compensate
dri�

�e results in Figure 4b suggest that modest amounts of
synaptic plasticity could compensate for dri�, but do not sug-
gest a biologically plausible mechanism for this compensa-
tion. Could neurons track slow recon�guration using locally
available signals in practice? To test this, we used an adaptive
linear neuron model based on the least mean square learning
(LMS) rule [33, 34] (Methods). �is algorithm is biologically
plausible because it only requires each synapse to access its
current weight and recent prediction error (Fig. 5a, Methods).

Fig. 5b shows that this online learning rule achieved de-
coding performance comparable to the o�ine constrained
decoders. Over the timespan of the data, LMS allows a lin-
ear decoder to track representational dri� observed (Fig. 5c),
exhibiting weight changes of ∼10%/day across all animals
(learning rate 4 × 10−4/sample, Fig. 5-S1). �ese results sug-
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gest that small weight changes could track representational
dri� in practice. In contrast, we found that LMS struggled
to match the unconstrained dri� of the null model explored
in Figure 3d. Calibrating the LMS learning rate on the null
model to match the mean performance seen on the true data
required an average weight change of 93% per day. In com-
parison, matching the average percent weight change per day
of 10%, the null model produced a normalized mean-squared-
error of 1.3σ 2 (averaged over all mice), worse than chance.
�is further indicates that dri� is highly structured, facilitat-
ing online compensation with a local learning rule.

We stress that modelling assumptions mean that these re-
sults are necessarily a proxy for the rates of synaptic plas-
ticity that are observed in vivo. Nonetheless, we believe
these calculations are conservative. We were restricted to
a sample of ∼100-200 neurons, at least an order of magni-
tude less than the typical number of inputs to a pyramidal
cell in cortex. �e per-synapse magnitude of plasticity nec-
essarily increases when smaller subsets are used for a read-
out (Fig. 5-S2). One would therefore expect lower rates of
plasticity for larger populations. Indeed, when we combined
neurons across mice into a large synthetic population (1238
cells), we found that the plasticity required to achieve target
error asymptotes at less than 4% per day (Fig. 5-S3). Together,
these results show a conservatively achievable bound on the
rate of plasticity required to compensate dri� in a biologically
plausible model.

Discussion

Several theories have been proposed for how stable be-
havior could be maintained despite ongoing changes in con-
nectivity and neural activity. Here, we found that represen-
tational dri� occurred in both coding and non-coding sub-
spaces. On a timescale of a few days, redundancy in the neu-
ral population could accommodate a signi�cant component
of dri�, assuming a biological mechanism exists for estab-
lishing appropriate readout weights. Simulations suggested
that the existence of this approximately stable subspace were
not simply a result of population redundancy, since random
di�usive dri� quickly degraded a downstream readout. Dri�
being con�ned to a low-dimensional subspace is one scenario
that could give rise to this, although we do not exclude other
possibilities. Nevertheless, a non-negligible component of
dri� resides outside the null space of a linear encoding sub-
space, implying that dri� will eventually destroy any �xed-
weight readout.

However, we showed that this destructive component of
dri� could be compensated with small and biologically realis-
tic changes in synaptic weights, independently of any speci�c
learning rule. Furthermore, we provided an example of a sim-
ple and biologically plausible learning rule that can achieve
such compensation over long timescales with modest rates
of plasticity. If our modeling results are taken literally, this
would suggest that a single unit with connections to ∼100
PPC neurons can accurately decode task information with
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modest changes in synaptic weights over many days. �is
provides a concrete and quantitative analysis of the impli-
cations of dri� on synaptic plasticity and connectivity. To-
gether, our �ndings provide some of the �rst evidence from
experimental data that representational dri� could be com-
patible with long-term memories of learned behavioral asso-
ciations.

A natural question is whether a long-term stable subspace
is supported by an unobserved subset of neurons that have
stable tuning [35]. We do not exclude this possibility because
we measured a subset of the neural population. However,
over multiple samples from di�erent animals our analyses
consistently suggest that dri� will recon�gure the code en-
tirely over months. Speci�cally, we found that past reliabil-
ity in single cells is no guarantee of future stability. �is,
combined with an abundance of highly-informative cells on
a single day, contributes to poor (�xed) decoder generaliza-
tion, because previously reliable cells eventually drop out
or change their tuning. Consistent with this, studies have
shown that connectivity in mammalian cortex is surpris-
ingly dynamic. Connections between neurons change on a
timescale of hours to days with a small number of stable con-
nections [3, 36–38].

We stress that the kind of recon�guration observed in PPC
is not seen in all parts of the brain; primary sensory and mo-
tor cortices can show remarkable stability in neural repre-
sentations over time [? ]gallego2020long). However, even
if stable representations exist elsewhere in the brain, PPC
still must communicate with these areas. We suggest that a
component of ongoing plasticity maintains congruent repre-
sentations across di�erent neural circuits. Such maintenance
would be important in a distributed, adaptive system like the
brain, in which multiple areas learn in parallel. How this is
achieved is the subject of intense debate [39]. We hypothe-
size that neural circuits have continual access to two kinds
of error signals. One kind should re�ect mismatch between
internal representations and external task variables, and an-
other should re�ect prediction mismatch between one neural
circuit and another. Our study therefore motivates new ex-
periments to search for neural correlates of error feedback
between areas, and suggests further theoretical work to ex-
plore the consequences of such feedback.
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Methods

Data acquisition �e behavioral and two-photon calcium
imaging data analyzed here was provided by the Harvey lab.
Details regarding the experimental subjects and methods are
provided in [2].
Virtual reality task Details of the virtual reality envi-

ronment, training protocol, and �xed association navigation
task are described in [2]. In brief, virtual reality environ-
ments were constructed and operated using the MATLAB-
based ViRMEn so�ware (Virtual Reality Mouse Engine) [24].
Data were obtained from mice that had completed the 4-8
week training program for the two-alternative forced choice
T-maze task. �e length of the virtual reality maze was �xed
to have a total length of 4.5 m. �e cues were pa�erns on the
walls (black with white dots or white with black dots), and
were followed by a gray striped ‘cue recall’ segment (2.25 m
long) that was identical across trial types.
Data preparation and pre-processing Raw Ca2+ �uores-

cence videos (sample rate=5.3 Hz) were corrected for mo-
tion artefacts, and individual sources of Ca2+ �uorescence
were identi�ed and extracted [2]. Processed data consisted
of normalized Ca2+ �uorescence transients (“∆F/F ”) and be-
havioral variables (mouse position, view angle, and velocity).
Inter-trial intervals (ITIs) were removed for all subsequent
analyses. For o�ine decoding, we considered only correct
trials, and all signals were centered to zero-mean on each trial
as a pre-processing step.

When considering sequences of days, we restricted analy-
sis to units that were continuously tracked over all days. For
�gures 3 and 4, we use the following data: M1: 7 sessions, 15
days, 101 neurons; M3: 10 sessions, 13 days, 114 neurons; M4:
10 sessions, 11 days, 146 neurons; M5: 7 sessions, 7 days, 112
neurons. We allowed up to two-day recording gaps between
consecutive sessions from the same mouse.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Decoding analyses

We decoded kinematics time-series x={x1, ..., xT } with T
time-points from the vector of instantaneous neural popula-
tion activity z={z1, .., zT }, using a linear decoder with a �xed
set of weights M , i.e. x̂ = M>z. We used the ordinary least-
squares (OLS) solution for M , which minimizes the squared
(L2) prediction error ε=‖x−M>z‖2 over all time-points. For
the ‘same-day’ analyses, we optimize a separate Md for each
day d (Fig. 2), restricting analysis to sessions with at least
200 identi�ed units. We assessed decoding performance us-
ing 10-fold cross-validation, and report the mean absolute er-
ror, de�ned as 〈| x−x̂ |〉. Here, | . | denotes the element-wise
absolute value, and 〈.〉 denotes expectation.

Best K-Subset Ranking For Fig. 2d, we ranked cells in or-
der of explained variance using a greedy algorithm. Start-
ing with the most predictive cell, we iteratively added the
next cell that minimized the MSE under ten-fold cross-
validated linear decoding. To accelerate this procedure, we
pre-computed the mean and covariance structure for training
and testing datasets. MSE �ts and decoding performance can
be computed directly from these summary statistics, acceler-
ating the several thousand evaluations required for greedy
selection. We added L2 regularization to this analysis by
adding a constant λI to the covariance matrix of the neural
data. �e optimal regularization strength (λ = 10−4 to 10−3)
slightly reduced decoding error, but did not alter the ranking
of cells.

Extrapolation via GP regression To qualitatively assess
whether decoding performance saturates with the available
number of recorded neurons, we computed decoding perfor-
mance on a sequence of random subsets of the population
of various sizes (Fig. 2c,d). Results for all analyses are re-
ported as the mean over 20 randomly-drawn neuronal sub-
populations, and over all sessions that had at least N=150
units. Gaussian process (GP) regression was implemented in
Python, using a combination of a Matérn kernel and an ad-
ditive white noise kernel. Kernel parameters were optimized
via maximum likelihood (Scikit-learn, [40]).

Concatenated and constrained analyses For both the con-
catenated (Fig. 3b,e) and constrained analyses (Fig. 4a,b), we
used the set of identi�ed neurons included in all sessions con-
sidered. In the concatenated analyses, we solved for a single
decoder Mc for all days:

ε =
n∑

d=1
‖xd −M>c zd ‖

2, (1)

where ε denotes the quadratic objective function to be min-
imized. In the constrained analysis, we optimized a series of
di�erent weights M={M1, ..,MD } for each day d∈1..D, and
added an adjustable L2 penalty λ on the change in weights
across days. �is problem reduces to the ‘same-day’ analy-
sis for λ=0, and approaches the concatenated decoder as λ

approaches 1:

ε = (1 − λ)
n∑

d=1
‖xd−M>d zd ‖

2 + λ
n−1∑
d=1
‖Md+1−Md ‖

2. (2)

For the purposes of the constrained analysis, missing days
were ignored and the remaining days treated as if they were
contiguous. Two sessions were missing from the 10 and 14-
day spans for mice 3 and 4, respectively (Fig. 4b). Figure
3c also shows the expected performance of a concatenated
decoder for completely unrelated neural codes. To assess this,
we permuted neuronal identities within individual sessions,
so that each day uses a di�erent ”code”.

Null model

We developed a null model to assess whether the perfor-
mance of the concatenated decoder was consistent with ran-
dom dri�. For this, we matched the amount of day-to-day
dri� based on the rate at which single-day decoders degrade.
We also sampled neural states from the true data in order to
preserve sparsity and correlation statistics. �e null model
related neural activity to a ’fake’ observable readout (e.g.
mouse position) via an arbitrary linear mapping. �e null
model changed from day to day, re�ecting dri� in the neural
code. �e �delity of single day and across day decoders in
inferring a readout from the null model was matched to the
true data.

For each animal we take the matrix z ∈ Rn×d of mean-
centered neural activity on day one, where n represents the
number of recorded neurons and d represents the number of
datapoints. We relate this matrix to pseudo-observations of
mouse position z via a null model of the form zr=M

>
r z+ϵr ,

where M>r , ϵr ∈ R
1×n . Note that r indexes days. �e vector

ϵr is generated as scaled i.i.d. Gaussian noise. We scale ϵr
such that the accuracy of a linear decoder trained on the data
(z, xr ) matches the average (over days) accuracy of a single-
day decoder trained on the true data.

Next, we consider the choice of the randomly-dri�ing
readout, Mr . On day one, M1 is generated as a vector of uni-
form random variables on [0, 1]. GivenMr , we desire anMr+1
that satis�es

• ‖Mr+1‖2 = ‖Mr ‖2.

• �e expected coe�cient of multiple correlation of
xr+1 = M>r+1z against the predictive model M>r z (be-
tween day R2) matches the average (over days) of the
equivalent statistic generated from the true data.

To do this, we �rst generate a candidate ∆M ′r ∈ Rn×1 as a vec-
tor of i.i.d. white noise. �e components of ∆M ′r orthogonal
and parallel to Mr are then scaled so that Mr+1 = Mr + ∆Mr
satis�es the constraints above.

In Figure 4-S1, a modi�cation of the null model that con-
�ned inter-day model dri� to a prede�ned subspace was
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used. Before simulating the null model over days, we ran-
domly chose k orthogonal basis vectors, representing a k-
dimensional subspace. We then searched for a candidate
∆M ′r , on each inter-day interval, that was representable as
a weighted sum of these basis vectors. �is requirement was
in addition to those previously posed. Finding such a ∆M ′r
corresponds to solving a quadratically-constrained quadratic
program. �is is non-convex, and thus a solution will not
necessarily be found. However, solutions were always found
in practice. We used unit Gaussian random variables as our
initial guesses for each component of ∆M ′r , before solving the
quadratic program using the IPOPT toolbox [41].

Dri� alignment

We examine how much dri� aligns with noise correla-
tions verses directions of neural activity that vary with the
task (”behavior-coding directions”). We de�ne an alignment
statistic ρ that re�ects how much dri� projects onto a given
subspace (i.e. noise vs. behavior). We normalize ρ so that 0
re�ects chance-level alignment and 1 re�ects perfect align-
ment of the dri� with the largest eigenvector of a given sub-
space (e.g. the principal eigenvector of the noise covariance).

Let z(x) denote the neural population activity, where x re-
�ects a normalized measure of maze location, akin to trial
pseudotime. De�ne dri� ∆µz (x) as the change in the mean
neural activity µz (x) across days. We examine how much
dri� aligns with noise correlations verses directions of neural
activity that vary with task pseudotime (dz(x)/dx ).

To measure the alignment of a dri� vector ∆µ with the
distribution of inter-trial variability (i.e. noise), we consider
the trial-averaged mean µ and covariance Σ of the neural ac-
tivity (log calcium-�uorescence signals �ltered between 0.03
and .3 Hz and z-scored), conditioned on trial location and the
current/previous cue direction. We use the mean squared
magnitude of the dot product between the change in trial-
conditioned means between days (∆µ), with the directions of
inter-trial variability (∆z=z− 〈z〉) on the �rst day, which is
summarized by the product ∆µ>Σ∆µ:〈

|∆µ>∆z |2
〉
=

〈
∆µ>∆z∆z>∆µ

〉
= ∆µ>

〈
∆z∆z>

〉
∆µ

= ∆µ>Σ∆µ .

(3)

To compare pairs of sessions with di�erent amounts of
dri� and variability, we normalize the dri� vector to unit
length, and normalize the trial-conditioned covariance by its
largest eigenvalue λmax:

ϕ2
trial =

∆µ>Σ∆µ

|∆µ |2 · λmax
(4)

�e statistic ϕtrial equals 1 if the dri� aligns perfectly with
the direction of largest inter-trial variability, and can be in-
terpreted as the fraction of dri� explained by the directions
of noise correlations.

Random dri� can still align with some directions by
chance, and the mean squared dot-product between two
randomly-orientedD-dimensional unit vectors scales as 1/D.
Accounting for the contribution from each dimension of Σ,
the expected chance alignment is therefore ϕ2

0 = tr(Σ)/(D ·
λmax). We normalize the alignment coe�cient ρnoise such that
it is 0 for randomly oriented vectors, and 1 if the dri� aligns
perfectly with the direction of largest variability:

ρnoise =
ϕtrial − ϕ0

1 − ϕ0
(5)

We de�ne a similar alignment statistic ρcoding to assess how
dri� aligns with directions of neural variability that encode
location. We consider the root-mean-squared dot product be-
tween the dri� ∆µ, and the directions of neural activity (z)
that vary with location (x ) on a given trial, i.e. ∇xz(x):〈

|∆µ>∇xz(x)|
2〉 = 〈

∆µ>[∇xz(x)][∇xz(x)]
>∆µ

〉
= ∆µ>

〈
[∇xz(x)][∇xz(x)]

>
〉
∆µ

= ∆µ>
[
Σ∇ + µ∇µ

>
∇

]
∆µ

(6)

In contrast to the trial-to-trial variability statistic, this statis-
tic depends on the second moment Σ∇ + µ∇µ

>
∇

, where
∇xz(x)∼N(µ∇, Σ∇). We de�ne a normalized ϕ2

coding and
ρcoding similarly to ϕ2

trial and ρnoise. For the alignment of
dri� with behavior, we observed ρcoding=0.11–0.24 (µ=0.15,
σ=0.03), which was signi�cantly above chance for all mice.
In contrast, the 95th percentile for chance alignment (i.e.
random dri�) ranged from 0.06–0.10 (µ=0.07, σ=0.02). Dri�
aligned substantially more with noise correlations, with
ρ=0.29–0.43 (µ=0.36, σ=0.04).

Online LMS algorithm

�e Least Mean-Squares (LMS) algorithm is an online ap-
proach to training and updating a linear decoder, and cor-
responds to stochastic gradient-descent (Fig. 4a). �e algo-
rithm was originally introduced in [33, 34, 42]. Brie�y, LMS
computes a prediction error for an a�ne decoder (i.e. a lin-
ear decoder with a constant o�set feature or bias parameter)
at every time-point, which is then used to update the decod-
ing weights. We analyzed twelve contiguous sessions from
mouse 4 (144 units in common), and initialized the decoder
by training on the �rst two sessions using OLS.

By varying the learning rate, we obtained a trade-o� (Fig.
4b) between the rate of weight changes and the decoding er-
ror, with the most rapid learning rates exceeding the perfor-
mance of o�ine (static) decoders. In Fig. 4d, we selected an
example with a learning rate of η=4×10−4. To provide a con-
tinuous visualization of the rate of weight change in Fig. 4d,
we used a sliding di�erence with a duration matching the
average session length. �is was normalized by the average
weight magnitude to report percent weight change per day.
In all other statistics, per-day weight change is assessed as
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the di�erence in weights at the end of each session, divided
by the days between the sessions.

DATA AND CODE AVAILABILITY

Datasets recorded in Driscoll et al. [2] are available upon
request from CDH. �e analysis code generated during this
study are available on Github at github.com/michaelerule/
Loback et al.
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Supplemental Figures

Fig. 2-S1: Behavioral stability

It is possible that changes in population codes relate to
systematic changes in behavior over time. As described in
Driscoll et al. (2017), these experiments were performed only
a�er mice achieved asymptotic performance in speed and ac-
curacy on the task. Nevertheless, details of behavior are im-
portant.

Across all mice and behavioral variables, there was a
statistically-signi�cant di�erence in means between 91%
pairs of sessions (p<0.05; Bonferroni multiple-comparison
correction for a 0.05 false discovery rate (FDR)). However, the
average e�ect size (∆µ/σ , i.e. Cohen’s d) was small, at 10–
16% per animal. We could also partially predict the recording
session based on 10-second kinematics trajectories (position,
velocity, head-direction). Under cross-validation, kinematics
could predict the recording session 9–17% above chance. We

used a linear decoder to predict an indicator vector with a
1 in the session corresponding to the given kinematics tra-
jectory, and 0 otherwise. �e predicted session was assessed
as the session with the largest predicted value under cross-
validation, and chance level assessed by permuting session
identities.

Most of this predictive power came from di�erences in the
forward movement in the initial portion of the T-maze. Much
of this appeared to be daily variability, rather than dri� (Fig.
2-S1). We found a small but signi�cant systematic decrease
in forward velocity in mouse 4 (Pearson correlation between
recording day and median forward velocity of -0.9, two-tailed
p<0.05).

�is suggests that each mouse exhibited small but de-
tectable daily variability in their behavior. Most variabil-
ity was unsystematic, and therefore unrelated to the slow
changes in neural codes studied here. We expect changes in
forward speed in mouse 4 to contribute to apparent dri� in
some cells. However, the results presented here generalize
across mice 1, 3, and 5, which exhibited stable behavior.

Figure 4-S1, concatenated decoder performance depends on
the rank of the dri�

Figure 5-S1, online learning with LMS: additional subjects

We present an example of the LMS decoding algorithm on
mouse 4 in the main text. We show similar results here for
mice 1, 3, and 5. We observed inter-day weight changes of
7.6-10.4%, consistent with observed rates of change in the vol-
ume of dendritic spines in other studies. We used a learning
rate of 4−4 1/sample, which led to error rates within 5 − 15%
of the concatenated decoder (depending on the random se-
lection of training and testing trials used for validation)

Figure 5-S2: �e plasticity level required to track dri� varies
with population sizeFigure 5-S3: Extrapolation to larger populations

We saw in Figure 5-S2 that the amount of synaptic plastic-
ity required to track a given error decreases for larger popula-
tions. In this study, we examine recorded populations of∼100
neurons. Typically, the number of inputs to a given neurons
is much larger than this, on the order of thousands. �e ∼10%
weight change per day reported by LMS could therefore be
an over-estimate of the amount of plasticity required. To ad-
dress this, we extend the LMS analysis to larger populations
by combining neurons from di�erent mice. �is procedure
destroys population correlations, and requires aligning activ-
ity from di�erent mice. Despite this, the pooled populations
yields a useful study of how plasticity scales with population
size.

To align data from di�erent mice, we matched trials based
on the current and previous trial cue, and converted the neu-
ral time-series into location-based pseudotime, representing
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FIG. 6. *
Figure 2—�gure supplement 1: Statistics of forward motion show small daily variations. Each mouse’s velocity in the initial

(forward) segment of the ‘T’ maze varies slightly between days. Across days, behavior is broadly similar. Di�erences in means (black lines),
although minuscule, are o�en statistically signi�cant. Systematic dri�-like trends appear absent from mice 1 and 3. A statistically
signi�cant trend is present for mouse 4 (p<0.05). We show only forward velocity here, as other kinematics variables exhibited less

variability.

the fraction of the maze completed between 0 and 100%. �is
allowed us to register neuronal signals from di�erent trials
on di�erent mice. We constructed a synthetic population of
1238 cells, covering a six-session-long recording period. We

allowed up to two-day recording gaps between consecutive
sessions from the same mouse. We found that larger popula-
tions could achieve the same performance as ∼100 cells with
a ∼4% weight change per day.
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FIG. 7. *
Figure 4—�gure supplement 1: su�ciently low-rank dri� resembles the data in terms of the performance of a concatenated

decoder. Here, we further explore the null model introduced in Figure 3d. As in Figure 3d, we simulated random dri� in the neural
readout. We matched the null model to the statistics of neural activity, the within-day decoding accuracy, and the performance degradation

when generalizing between days. In these simulations, we explore the scenario that the dri� may be con�ned to a (randomly-selected)
low-dimensional subspace. We evaluated a range of dimensionalities for the dri� subspace (horizontal axes), and evaluated the

performance of a concatenated decoder on simulated data. While unconstrained dri� prevents the identi�cation of a concatenated decoder
with good performance (Fig. 3d), su�ciently constrained dri� does not. In these simulations, we found that constraining dri� to a subspace

of rank 14-26 (red vertical lines) led to similar performance as the data (dashed horizontal lines) in all subjects except for mouse 5. We
speculate that this is because Mouse 5 had limited data and poor generalization of single-day decoders over time, but other scenarios are

possible. Black traces re�ect the mean over 20 random simulations, and shaded regions re�ect one standard deviation.
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FIG. 8. *
Figure 5—�gure supplement 1; LMS results for mice 1, 3, 4, and 5. Results of applying the online LMS algorithm with a learning rate
of 4 × 10−4/sample. Errors re�ect the mean absolute error over ten minute intervals. LMS (black) achieves errors comparable to an o�ine
decoder trained on all sessions (”concatenated”, blue), and outperforms a �xed decoder trained on the initial day (red). Only times within a

trial were used for training. We present two spans of time from Mouse 3, re�ecting two largely non-overlapping populations of tracked
neurons on non-overlapping spans of days.
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FIG. 9. *
Figure 5—�gure supplement 2; Smaller populations require more plasticity to achieve target error levels. �ese plots show the
daily weight changes required to track dri� when decoding forward positions as a function of population size for mice 3 and 4. Smaller

populations require more plasticity. �e target error (M3: 0.68 m, M4: 0.48 m) was set based on the performance of LMS on the full
population (M3: 114 neurons, M4: 134 neurons). For each sub-population size, 50 random sub-populations were drawn, and the learning
rate was optimized to achieve the target error level. Shaded regions re�ect the inner 95th percentile over all sampled sub-populations.

Weight change was assessed as the weight change between the end of consecutive sessions and normalized by the overall average weight
magnitude.
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FIG. 10. *
Figure 5—�gure supplement 3; �e plasticity required to achieve a �xed error level decreases for larger populations. (a) Trial
pseudotime (% of trial complete; black) can be decoded from a synthetic pooled population (1238 cells) using the LMS algorithm (violet:

prediction). (b) Similarly to the single-subject results, LMS tracks changes in the population code over time. In this case, a learning rate of
8 × 10−4/sample achieved comparable error to a concatenated decoder. �e larger population permits be�er decoding error of ∼5%,
compared to the ∼15−20% error in forward position decoded from ∼100 neurons. (c) As population size increases, both the weight

magnitudes (le�) and the rates of weight change (middle) decrease. Small populations could not achieve the error rates possible using the
full population, even with very large learning rates. We therefore set the target error a bit higher, at 13% chance level. �is is comparable to
the error rates seen in individual mice using ∼100 cells. Overall, the required percentage weight change decreased for larger populations

(right).
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