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As an adaptive system, the brain must retain a faithful representation of the world while continuously
integrating new information. Recent experiments have measured population activity in cortical and
hippocampal circuits over many days, and found that patterns of neural activity associated with �xed
behavioral variables and percepts change dramatically over time. Such “representational drift” raises the
question of how malleable population codes can interact coherently with stable long-term representations
that are found in other circuits, and with relatively rigid topographic mappings of peripheral sensory
and motor signals. We explore how known plasticity mechanisms can allow single neurons to reliably
read out an evolving population code without external error feedback. We �nd that interactions between
Hebbian learning and single-cell homeostasis can exploit redundancy in a distributed population code to
compensate for gradual changes in tuning. Recurrent feedback of partially stabilized readouts could allow a
pool of readout cells to further correct inconsistencies introduced by representational drift. This shows how
relatively simple, known mechanisms can stabilize neural tuning in the short term, and provides a plausible
explanation for how plastic neural codes remain integrated with consolidated, long-term representations.

The cellular and molecular components of the brain change
continually. In addition to synaptic turnover (1), ongoing re-
con�guration of the tuning properties of single neurons has
been seen in parietal (2), frontal (3), visual (4, 5), and olfactory
(6) cortices, and the hippocampus (7, 8). Remarkably, the “rep-
resentational drift” (9) observed in these studies occurs with-
out any obvious change in behavior or task performance. Rec-
onciling dynamic reorganization of neural activity with stable
circuit-level properties remains a major open challenge (9, 10).
Furthermore, not all circuits in the brain show such proli�c re-
con�guration, including populations in primary sensory and
motor cortices (11–13). How might populations with stable and
drifting neural tuning communicate reliably? Put another way,
how can an internally consistent ‘readout’ of neural represen-
tations survive changes in the tuning of individual cells?

These recent, widespread observations suggest that neural
circuits can preserve learned associations at the population
level while allowing the functional role of individual neurons
to change (14–16). Such preservation is made possible by re-
dundancy in population codes, because a distributed readout
allows changes in the tuning of individual neurons to be o�set
by changes in others. However, this kind of stability is not auto-
matic: changes in tuning must either be constrained in speci�c
ways (e.g. 17, 18), or corrective plasticity needs to adapt the
readout (19). Thus, while there are proposals for what might
be required to maintain population codes dynamically, there
are few suggestions as to how this might be implemented with
known cellular mechanisms and without recourse to external
reference signals that re-calibrate population activity to behav-
ioral events and stimuli.

In this paper we show that the readout of continuous behav-
ioral variables can be made resilient to ongoing drift as it oc-

curs in a volatile encoding population. Such resilience can allow
highly plastic circuits to interact reliably with more rigid repre-
sentations. In principle, this permits compartmentalization of
rapid learning to specialized circuits, such as the hippocampus,
without entailing a loss of coherence with more stable repre-
sentations elsewhere in the brain.

We provide a simple hierarchy of mechanisms that can tether
stable and unstable representations using simple circuit archi-
tectures and well known plasticity mechanisms, Hebbian learn-
ing and homeostatic plasticity. Homeostasis is a feature of
all biological systems, and examples of homeostatic plasticity
in the nervous system are pervasive (e.g. 20, 21 for reviews).
Broadly, homeostatic plasticity is a negative feedback process
that maintains physiological properties such as average �ring
rates (e.g. 22, 23), neuronal variability (e.g. 24), distributions of
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synaptic strengths (e.g. 25, 26), and population-level statistics
(e.g. 27, 28).

Hebbian plasticity complements homeostatic plasticity by
strengthening connectivity between cells that undergo corre-
lated �ring, further reinforcing correlations (29, 30). Pairwise
correlations in a population provide local bases for a so-called
task manifold in which task-related neural activity resides (31).
Moreover, neural representations of continuous variables typ-
ically exhibit bump-like single cell tuning that tiles variables
redundlantly across a population (2, 7). We show how these
features can be maintained to form a drifting population. We
then show how Hebbian and homeostatic mechanisms can co-
operate to allow a readout to track encoded variables despite
drift, resulting in a readout that ‘self-heals’. Our �ndings thus
emphasize a role for Hebbian plasticity in maintaining associa-
tions, as opposed to learning new ones.

Finally, we show how evolving representations can be
tracked over substantially longer periods of time if a readout
population encodes a stable predictive model of the variables
being represented in a plastic, drifting population. Our assump-
tions thus take into account, and may reconcile, evidence that
certain circuits and sub-populations maintain stable responses,
while others, presumably those that learn continually, exhibit
drift (32).

Background

We brie�y review representational drift and important recent
work related to the ideas in this manuscript. Representational
drift refers to ongoing changes in neural responses during a
habitual task that are not associated with behavioural change
(9). For example, in Driscoll et al. (2) mice navigated to one
of two endpoints in a T-shaped maze (Fig. 1a), based on a vi-
sual cue. Population activity in Posterior Parietal Cortex (PPC)
was recorded over several weeks using �uorescence calcium
imaging. Neurons in PPC were tuned to the animal’s past, cur-
rent, and planned behavior. Gradually, the tuning of individual
cells changed: neurons could change the location in the maze
in which they �red, or become disengaged from the task (Fig.
1b). The neural population code eventually recon�gured com-
pletely (Fig. 1c). However, neural tunings continued to tile the
task, indicating stable task information at the population level.
These features of drift have been observed throughout the brain
(4, 5, 8). The cause for such ongoing change remains unknown.
It may re�ect continual learning and adaptation that is not di-
rectly related to the task being assayed, or unavoidable biolog-
ical turnover in neural connections.

Previous work shows how downstream readouts could track
gradual drift using external error feedback to re-learn how to
interpret an evolving neural code, e.g. during ongoing rehearsal
(19). Indeed, simulations con�rm that learning in the presence
of noise can lead to a steady state, in which drift is balanced by
error feedback (33–36). Previous studies have shown that stable
functional connectivity could be maintained despite synaptic
turnover (33, 37, 38). More recent work has also found that dis-
crete representations can be stabilized using neural assemblies
that exhibit robust, all-or-nothing reactivation (39, 40).

Our work extends these results as follows. Rather than us-
ing external learning signals (19, 33–35), we show that drift
can be tracked using internally generated signals. We allow
the functional role of neurons in an encoding population to re-
con�gure completely, rather than just the synaptic connectivity

(33, 37, 38). Previous work has explored how to stabilize point
attractors using neuronal assemblies, both with stable (39, 41)
and drifting (40) single-cell tunings. Key insights in this pre-
vious work include the idea that random reactivation or sys-
tematic replay of circuit states can reinforce existing point at-
tractors. However, to plausibly account for stable readout of
drifting sensorimotor information and other continuous vari-
ables observed experimentally (2, 7, 42), we require a mecha-
nism that can track a continuous manifold, rather than point
attractors.

Our other main contribution is to relate these somewhat ab-
stract and general ideas to a concrete observations and relevant
assumptions about the nature of drift. Representational drift is
far from random (19) and this fact can be exploited to derive sta-
ble readouts. Speci�cally, the topology and coarse geometry of
drifting sensorimotor representations appear to be consistent
over time, while their embedding in population activity con-
tinually changes (2, 7, 43, 44). Thus the statistical structure of
external variables is preserved, but not their neuron-wise en-
coding. Notably, brain-machine interface decoders routinely
confront this, and apply online recalibration and transfer learn-
ing to track drift in (e.g. 45; 46 for review). We argue that neural
circuits may do something similar to maintain ‘calibration’ be-
tween relatively stable circuits and highly plastic circuits. Early
sensory or late motor populations that communicate directly
with sensory receptors or muscle �bers necessarily have a con-
sistent mapping between neural activity and signals in the ex-
ternal world. Such brain areas need to communicate with many
other brain areas, including circuits that continually learn and
adapt, and thus possess more malleable representations of be-
havioral variables.

Results

We �rst construct a model of representational drift, in which
homeostatic plasticity stabilizes the capacity of a “drifting” pop-
ulation to encode a continuous behavioural variable despite in-
stability in single-neuron tunings. We then derive plasticity
rules that allow single downstream neurons to stabilize their
own readout of this behavioural variable despite drifting activ-
ity. Finally, we extend these ideas to show how comparatively
stable neural populations that encode independent, predictive
models of behavioural variables can actively track and stabilize
a readout of drifting neural code.

A model for representational drift

We have previously used the data from Driscoll et al. (47) to
assess how much plasticity would be required to track drift in
a linear readout (19). However, these data contain gaps of sev-
eral days, and the number of high signal-to-noise units tracked
for over a month is limited. To explore continual, long-term
drift, we therefore construct a model inspired by the features of
representational drift seen in spatial navigation tasks (2, 7).

We focus on key properties of drift seen in experiments. In
both (2) and (7), neural populations encode continuous, low-
dimensional behavioral variables (e.g. location), and exhibit lo-
calized ‘bump-like’ tuning to these variables. Tuning curves
overlap, forming a redundant code. Over time, neurons change
their preferred tunings. Nevertheless, on each day there is al-
ways a complete ‘tiling’ of a behavioral variable, thus the ability
of the population to encode task information is conserved.
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Figure 1: A model for representational drift. (a)
Driscoll et al. (2) imaged population activity in PPC for
several weeks, after mice had learned to navigate a vir-
tual T-maze. Neuronal responses continued to change
even without overt learning. (b) Tunings were often sim-
ilar between days, but could change unexpectedly. Plots
show average �ring rates as a function of task pseudotime
(0=beginning, 1=complete) for select cells from (2). Tuning
curves from subsequent days are stacked vertically, from
day 1 up to day 32. Missing days (light gray) are inter-
polated. Peaks indicate that a cell �red preferentially at a
speci�c location (Methods: Data and analysis). (c) Neu-
ronal tunings tiled the task. Within each day, the mouse’s
behavior could be decoded from population activity (2, 19).
Plots show normalized tuning curves for 40 random cells,
stacked vertically. Cells are sorted by their preferred loca-
tion on day 1. By day 10, many cells have changed tun-
ing. Day 39 shows little trace of the original code. (d) We
model drift in a simulated rate network (Methods: Simu-
lated drift). An encoding population x(\ ) receives input
s(\ ) with low-dimensional structure, in this case a circu-
lar track with location \ . The encoding weights U driv-
ing the activations U>s(\ ) of this population drift, leading
to drifting activations. Homeostasis preserves bump-like
tuning curves. (e) As in the data (a-c), this model shows
stable tuning punctuated by large changes. (f) The neu-
ral code reorganizes, while continuing to tile the task. We
will examine strategies that a downstream readout could
use to update how it decodes x(\ ) to keep its own rep-
resentation y(\ ) stable. This readout is also modeled as
linear-nonlinear rate neurons, with decoding weights W.

To model this kind of drifting code, we consider a population
of # neurons that encode a behavioral variable, \ . We assume
\ lies on a low-dimensional manifold, and is encoded in the
vector of �ring rates in a neural population with tuning curves
x3 (\ )={G3,1 (\ ), .., G3,# (\ )}>. These tunings change over time
(day 3).

We abstract away some details seen the experimental data in
Fig. 1c. We focus on the slow component of drift, and model ex-
cess day-to-day tuning variability via a con�gurable parameter.
We assume uniform coverage of the encoded space, which can
be ensured by an appropriate choice of coordinates. We con-
sider populations of 100 units that encode \ , and whose tun-
ings evolve independently. Biologically, noise correlations and
�uctuating task engagement would limit redundancy, but this
would be o�set by the larger number of units available.

To model drift, we �rst have to model an encoding ‘feature’
population whose responses depend on \ , and from which it is
possible to construct bump-like tuning with a weighted readout
(Fig. 1d). To keep our assumptions general, we do not assume
that the encoding population has sparse, bump-like activity,
and simply de�ne a set of  random features (tuning curves),
sampled independently from a random Gaussian process on \ .
These features have an arbitrary but stable relationship to the
external world, from which it is possible to reconstruct \ by
choosing su�ciently large  :

s(\ )> = {B1 (\ ), .., B (\ )}
B8 (\ ) ∼ GP[0, Σ(\, \ ′)] .

(1)

In the above equations, Σ(\, \ ′) denotes the covariance between
the values of B (\ ) at two states \ and \ ′.

We next de�ne an encoding of \ driven by these fea-
tures with a drifting weight matrix U3={u3,1, .., u3,# }, where
u>
3,8
={D3,8,1, .., D3,8, } re�ects the encoding weights for unit

G3,8 (\ ) on day 3 . Each weight D3,8, 9 evolves as a discrete-time

Ornstein-Uhlenbeck (OU) process, taking a new value on each
day (Methods: Simulated drift). The �ring rate of each encoding
unit is given as a nonlinear function of the synaptic activation
03,8 (\ ) = u>

3,8
s(\ ):

G3,8 (\ ) = q [W8 03,8 (\ ) + V8 ], (2)

where W8 and V8 are vectors that set the sensitivity and thresh-
old of each unit. To model the nonlinear response of the readout
and prevent negative �ring rates, we use an exponential non-
linearity q (·) = exp(·).

In this model, the mean �ring-rate and population sparsity
of the readout can be tuned by varying the sensitivity W and
threshold V in Eq. (2), respectively. In the brain, these single cell
properties are regulated by homeostasis (24). Stabilizing mean
rates 〈G3,8 (\ )〉\ ≈ `0 ensures that neurons remain active. Sta-
bilizing rate variability var\ [G3,8 (\ )] ≈ f2

0 controls population
code sparsity, ensuring that x3 (\ ) carries information about \
(48). This is achieved by adapting the bias V8 and gain W8 of each
unit G3,8 (\ ) based on the errors n`, nf between the statistics of
neural activity and the homeostatic targets `0, f0:

ΔW ∝ Yf = f0 − fG
ΔV ∝ Y` = `0 − `G

(3)

Fig. 1 shows that this model qualitatively matches the drift seen
in vivo (2). Tuning is typically stable, with intermittent changes
(Fig. 1e). This occurs because the homeostatic regulation in
Eq. (3) adjusts neuronal sensitivity and threshold to achieve a
localized, bump-like tuning curve at the location of peak synap-
tic activation, \0. Changes in tuning arise when the drifting
weight matrix causes the encoding neuron to be driven more
strongly at a new value of \ . The simulated population code
recon�gures gradually and completely over a period of time
equivalent to several weeks in the experimental data (Fig. 1f).
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Hebbian homeostasis improves readout stability without
external error feedback

Neural population codes are often redundant, with multiple
units responding to similar task features. Distributed readouts
of redundant codes can therefore be robust to small changes in
the tuning of individual cells. We explored the consequences of
using such a readout as an internal error signal to retrain synap-
tic weights in a readout population, thereby compensating for
gradual changes in a representation without external feedback.
This re-encodes a learned readout function y(\ ) in terms of the
new neural code x3 (\ ) on each “day” and improves the tun-
ing stability of neurons that are driven by unstable population
codes, even in single neurons. We �rst sketch an example of
this plasticity, and then explore why this works.

Using our drifting population code as input, we model a
readout population of " neurons with tuning curves y3 (\ ) =
{~3,1 (\ ), .., ~3," (\ )}> (Fig. 1d). We model this decoder as a
linear-nonlinear function, using decoding weights W and bi-
ases (thresholds) b (leaving dependence on the day 3 implicit):

y(\ ) = q [W>x(\ ) + b] . (4)

On each simulated “day”, we re-train the decoding weights us-
ing an unsupervised Hebbian learning rule (c.f. 49). This poten-
tiates weights F8, 9 whose input G 9 (\ ) correlates with the post-
synaptic �ring rate ~8 (\ ). We modulate the learning rate by an
estimate of the homeostatic error in �ring-rate variability (X̃).
Thresholds are similarly adapted based on the homeostatic er-
ror in mean-rate (Ṽ). We include a small baseline amount of
weight decay “d” and a larger amount of weight decay “2” that
is modulated by X̃ . For a single readout neuron~ (\ ), the weights
and biases evolve as:

Δw ∝ X̃
[
〈x(\ )~ (\ )>〉\ − 2w

]
− dw

Δ1 ∝ Ṽ 〈x(\ )〉\
(5)

We apply Eq. (5) for 100 iterations on each simulated “day”, sam-
pling all \ on each iteration. We assume that the timescale

of Hebbian and homeostatic plasticity is no faster than the
timescale of representational drift. The error terms X̃ , Ṽ are
leaky integrators of instantaneous errors (Eq. (3)) for each cell,
Yf , Y` , respectively: X̃C+1 = 0.5 X̃C + Yf (analogously for Ṽ , Y` ).
For the readout y(\ ), the homeostatic targets (`0, f0) are set to
the �ring-rate statistics in the initial, trained state (before drift
has occurred). Eq. (5) therefore acts homeostatically. Rather
than scale weights uniformly, it adjusts the component of the
weights most correlated with the postsynaptic output, y(\ ).
Plasticity occurs only when homeostatic constraints are vio-
lated. Further discussion of this learning rule is given in Meth-
ods: Synaptic learning rules.

To test whether the readout can tolerate complete recon�g-
uration in the encoding population, we change encoding fea-
tures one at a time. For each change, we select a new, ran-
dom set of encoding weights u8 and apply homeostatic com-
pensation to stabilize the mean and variability of G8 (\ ). Eq. (5)
is then applied to update the decoding weights of the readout
cell. This procedure is applied 200 times, corresponding to two
complete recon�gurations of the encoding population of#=100
cells (Methods: Single-neuron readout).

With �xed weights, drift reduces the readout’s �ring rate
without changing its tuning (Fig. 2a),. This is because the ini-
tial tuning of the readout requires coincident activation of spe-
ci�c inputs to �re for its preferred \0. Drift gradually destroys
this correlated drive, and is unlikely to spontaneously create
a similar conjunction of features for some other \ . For small
amounts of drift, homeostasis Eq. (3) can stabilize the readout
by compensating for the reduction in drive (Fig. 2b). Eventu-
ally, however, no trace of the original encoding remains. At this
point, a new (random) \ will begin to drive the readout more
strongly. Homeostasis adjusts the sensitivity of the readout to
form a new, bump-like tuning curve at this location.

Fig. 2c shows the consequences of Hebbian homeostasis (Eq.
5). Drift in the encoding x(\ ) decreases the excitatory drive
to the readout, activating Hebbian learning. Because small
amounts of drift have minimal e�ect on tuning, the readout’s
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Figure 2: Homeostatic Hebbian plasticity enables sta-
ble readout from unstable populations. (a) Simulated
drift in a redundant population causes a loss of excitabil-
ity, but little change in tuning, to a downstream linear-
nonlinear readout neuron. Since the cell is selective to
a conjunction of features, it loses excitatory drive when
some of its inputs change. Since most drift is orthogo-
nal to this readout, however, the preferred tuning \0 does
not change. The right-most plot shows that the excitabil-
ity diminishes as a larger fraction of inputs change. Two
complete recon�gurations of an encoding population of
100 cells is shown. (b) Homeostatic adjustments to in-
crease the readout’s sensitivity can compensate for small
amounts of drift. As more inputs recon�gure, the cell com-
pensates for loss of excitatory drive by increasing sensi-
tivity (“gain”, W ). However, the readout changes to a new,
random location once a substantial fraction of inputs have
recon�gured (right). This phenomenon is the same as the
model for tuning curve drift in the encoding population
(c.f. Fig. 1e). (c) Hebbian homeostasis increases neuronal
variability by potentiating synaptic inputs that are corre-
lated with post-synaptic activity, or depressing those same
synapses when neuronal variability is too high. This re-
sults in the neuron re-learning how to decode its own tun-
ing curve from the shifting population code, supporting
a stable readout despite complete recon�guration (right).
(Methods: Single-neuron readout)
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own output provides a self-supervised teaching signal. It re-
learns the decoding weights for inputs that have changed due
to drift. Applying Hebbian homeostasis periodically improves
stability, despite multiple complete recon�gurations of the en-
coding population. In e�ect, the readout’s initial tuning curve
is transported to a new set of weights that estimate the same
function from an entirely di�erent input (for further discussion
see Supplement: Weight �ltering). In the long term the repre-
sentation degrades, for reasons we dissect in the next section.

Hebbian homeostasis with network interactions

In the remainder of the manuscript, we show how Hebbian
homeostatic principles combine with population-level interac-
tions to make readouts more robust to drift. Generally, a mech-
anism for tracking drift in a neural population should exhibit
three features:

I The readout should use redundancy to mitigate error
caused by drift.

II The readout should use its own activity as a training signal
to update its decoding weights.

III The correlations in input-driven activity in the readout
neurons should be homeostatically preserved.

We explore three types of recurrent population dynamics that
could support this: (1) Population �ring-rate normalization; (2)
Recurrent dynamics in the form of predictive feedback; (3) Re-
current dynamics in the form of a linear-nonlinear map. Fig.
5 summarizes the impact of each of these scenarios on a non-
linear population readout, and we discuss each in depth in the
following subsections.

Population competition with unsupervised Hebbian
learning

In Fig. 2c, we saw that Hebbian homeostasis improved stabil-
ity in the short term. Eq. (5) acts as an unsupervised learning
rule, and pulls the readout ~ (\ ) towards a family of bump-like
tuning curves that tile \ (36). Under these dynamics, only drift
Δx(\ ) that changes the peak of ~ (\ ) to some new, nearby \ ′0
can persist. All other modes of drift are rejected. If the encod-
ing population is much larger than the dimension of \ , there
is large null space in which drift does not change the preferred
tuning. However, in the long run Hebbian homeostasis drives
the neural population toward a steady-state which forgets the
initial tuning (Fig. 5c). This is because Hebbian learning is bi-
ased towards a few salient \0 that capture directions in x(\ )
with the greatest variability (30, 50, 51).

Models of unsupervised Hebbian learning address this by in-
troducing competition among a population of readout neurons
(50, 51). Such rules can track the full covariance structure of
the encoding population, and lead to a readout population of
bump-like tuning curves that tile the space \ (52–55). In line
with this, we incorporate response normalization into a readout
population (56). This serves as a fast-acting form of �ring-rate
homeostasis in Eq. (3), causing neurons to compete to remain
active and encouraging diverse tunings (54, 57).

Because it is implemented via inhibitory circuit dynamics, we
assume that this normalization acts quickly relative to plastic-
ity, and model it by dividing the rates by the average �ring rate
across the population. If y5 (\ ) is the forward (unnormalized)

readout from Eq. (4), we de�ne the normalized readout y= (\ ) by
dividing out the average population rate, 〈y5 (\ )〉M, and multi-
plying by a target mean rate `? :

y= (\ ) = `? · y5 (\ )/〈y5 (\ )〉M . (6)

We found that response normalization improves readout stabil-
ity (Fig. 5d). However, it does not constrain individual readout
neurons to any speci�c preferred \0. The readout thus remains
sensitive to noise and perturbations, which in the long run can
cause neurons to swap preferred tunings (Fig. 5d; Methods:
Population simulations).

Error-correcting recurrent dynamics

The error-correction mechanisms explored so far use redun-
dancy and feedback to reduce errors caused by incremental
drift. However, there is no communication between di�erent
readouts ~8 (\ ) to ensure that the correlation structure of the
readout population is preserved. In the remainder of the pa-
per, we explore how a readout with a stable internal model for
the correlation structure of y(\ ) might maintain communica-
tion with a drifting population code.

Where might such a stable internal model exist in the brain?
The dramatic representational drift observed in e.g. the hip-
pocampus (7, 58) and parietal cortex (2) is not universal. Rela-
tively stable tuning has been found in the striatum (59) and mo-
tor cortex (60–62). Indeed, perineuronal nets are believed limit
structural plasticity in some mature networks (63), and sta-
ble connections can coexist with synaptic turnover (14). Drift
in areas closer to the sensorimotor periphery is dominated by
changes in excitability, which tends not to a�ect tuning pref-
erence of individual cells (3, 5). Thus, many circuits in the
brain develop and maintain reliable population representations
of sensory and motor variables. Moreover, such neural popula-
tions can compute prediction errors based on learned internal
models (64), and experiments �nd that neural population activ-
ity recapitulates (65) and predicts (66) input statistics. Together,
these �ndings suggest that many brain circuits can support rel-
atively stable predictive models of the various latent variables
that are used by the brain to represent the external world.

We therefore asked whether such a stable model of a be-
havioural variable could take the form of a predictive �lter that
tracks an unstable, drifting representation of that same vari-
able. To incorporate this in our existing framework, we assume
that the readout y(\ ) contains a model of the “world” (\ ) in its
recurrent connections, which change much more slowly than
x(\ ). These recurrent connections generate internal prediction
errors. We propose that these same error signals provide error-
correction to improve the stability of neural population codes
in the presence of drift.

We consider two kinds of recurrent dynamics. Both of these
models are abstract, as we are not primarily concerned with
the architecture of the predictive model, only its overall behav-
ior. We �rst consider a network that uses inhibitory feedback to
cancel the predictable aspects of its input, in line with models of
predictive coding (67–69). We then consider a linear-nonlinear
mapping that provides a prediction of y(\ ) from a partially cor-
rupted readout.
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Figure 3: Self-healing in a nonlinear rate network.
Each plot shows (left) a population readout y(\ ) from a
drifting code x(\ ) of #=100 cells; (middle) a schematic
of the readout dynamics; and (right) a plot of readout
tuning after applying each learning rule if 60% of the en-
coding cells were to change to a new tuning (Methods:
Population simulations). (a) Drift degrades a readout with
�xed weights. Drift is gradual, with g=100. The simu-
lated time frame corresponds to 10 complete recon�gura-
tions. (b) Homeostasis increases sensitivity to compensate
for loss of drive, but cannot stabilize tuning (f2: �ring-
rate variance, f2

0 : target variance, nf : homeostatic error,
ΔW : gain adjustment). (c) Hebbian homeostasis (Eq. 5)
restores drive using the readout’s output as a training sig-
nal. Error correction is biased toward \ that drive more
variability in the encoding population. (ΔW: weight up-
dates) (d) Response normalization (Eq. 6) stabilizes the
population statistics, but readout neurons can swap pre-
ferred tunings. (ŷ: normalized response). (e) A recurrent
linear-nonlinear map (Eq. 8) pools information over the
population, improving error correction (y5 : feed-forward
estimates, A: recurrent weights). (f) Predictive coding
(Eq. 7) corrects errors via negative feedback (g indicates
dynamics in time). All simulations added 5% daily vari-
ability to x(\ ) , and applied 1% daily drift to the decoding
weights W. Supplemental �gure S2 evaluates readout sta-
bility for larger amounts of variability and readout-weight
drift; Supplemental �gure S3 quanti�es readout stability
for each scenario.

Recurrent feedback of prediction errors

Some theories propose that neural populations retain a latent
state that is used to predict future inputs (67–69). This predic-
tion is compared to incoming information to generate a pre-
diction error, which is fed back through recurrent interactions
to update the latent state. This is depicted in the schematic
in (Fig. 5f). Here, we assume that the network contains a la-
tent state “z” and predicts the readout’s activity, ŷ = q (z), with
�ring-rate nonlinearity q as de�ned previously. Inputs provide
a feed-forward estimate y5 (\ ), which is corrupted by drift. The
prediction error is the di�erence between y5 (\ ) and ŷ. The dy-
namics of z are chosen as:

gI ¤z = −z + A? [y5 − ŷ] . (7)

We set the weight matrix A? to the covariance of the activa-
tions z = W>x during initial training (motivation for this choice
is in Supplement: Predictive coding as inference). In making this
choice, we assume that part of the circuit can learn and retain
the covariance of z. This could in principle be achieved via Heb-
bian learning (49, 50, 70; Methods: Learning recurrent weights).

Assuming that a circuit can realise the dynamics in Eq. (7),
the readout ŷ will be driven to match the forward predictions
y5 . We assume that this converges rapidly relative to the
timescale at which y5 (\ ) varies. This improves the tracking of
a drifting population code when combined with Hebbian home-
ostasis and response normalization (Fig. 5e). The readout con-
tinuously re-aligns its �xed internal model with the activity in
the encoding population. We brie�y discuss intuition behind
why one should generally expect this to work.

The recurrent weights, A? , determine which directions in
population-activity space receive stronger feedback. Feedback
through larger eigenmodes of A? is ampli�ed, and these modes
are rapidly driven to track y5 . Due to the choice of A? as the
covariance of z, the dominant modes re�ect directions in pop-
ulation activity that encode \ . Conversely, minor eigenmodes

are weakly in�uenced by y5 . This removes directions in popu-
lation activity that are unrelated to \ , thereby correcting errors
in the readout activity caused by drift.

In summary, Eq. (7) captures qualitative dynamics implied by
theories of predictive coding. If neural populations update in-
ternal states based on prediction errors, then only errors related
to tracking variations in \ should be corrected aggressively.
This causes the readout to ignore “o� manifold” activity in ŷ(\ )
caused by drift. However, other models of recurrent dynamics
also work, as we explore next.

Low-dimensional manifold dynamics

Recurrent dynamics with a manifold of �xed-point solutions
(distributed over \ ) could also support error correction. We
model this by training the readout to make a prediction ŷ of
its own activity based on the feed-forward activity y5 , via a
linear-nonlinear map, (c.f. 71):

ŷ[C + 1] ← q
(
A>A y5 [C] + v

)
, (8)

with timestep, C , and recurrent weights and biases AA and v,
respectively (Methods: Learning recurrent weights). We chose
this discrete-time mapping for computational expediency, and
Eq. (8) was applied once for each input~5 (\ ) alongside response
normalization. In simulations, the recurrent mapping is also
e�ective at correcting errors caused by drift, improving readout
stability (Fig. 5f).

We brie�y address some caveats that apply to both models
of recurrent dynamics. The combination of recurrent dynamics
and Hebbian learning is potentially destabilizing, because lean-
ing can transfer biased predictions into the decoding weights.
Empirically, we �nd that homeostasis (Eq. 3) prevents this,
but must be strong enough to counteract all destabilizing in-
�uences. Additionally, when the underlying \ has continuous
symmetries, drift can occur along these symmetries. This is ev-
idenced by a gradual, di�usive rotation of the code for e.g. a
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circular environment. Other manifolds, like the T-shaped maze
in (2), have no continuous symmetries and are not susceptible to
this e�ect (Supplemental Figure S5). Overall, these simulations
illustrate that internal models can constrain network activity.
This provides ongoing error correction, preserves neuronal cor-
relations, and allows neural populations to tolerate substantial
recon�guration of the inputs that drive them.

Discussion

In this work, we derived principles that can allow stable and
plastic representations to coexist in the brain. These self-
healing codes have a hierarchy of components, each of which
facilitates a stable readout of a plastic representation: (I) Single-
cell tuning properties (bump-like tuning, redundant tiling of
encoded variables) that make population codes robust to small
amounts of drift; (II) Populations that use their own output as a
training signal to update decoding weights, and (III) Circuit in-
teractions that track evolving population statistics using stable
internal models. All of these components are biologically plau-
sible, some corresponding to single-cell plasticity mechanisms
(Hebbian and homeostatic plasticity), others corresponding to
circuit architectures (response normalization, recurrence) and
others corresponding to higher-level functions that whole cir-
cuits appear to implement (internal models). As such, these
components may exist to a greater or lesser degree in di�erent
circuits.

Hebbian plasticity is synonymous with learning novel associ-
ations in much of contemporary neuroscience. Our �ndings ar-
gue for a complementary hypothesis that Hebbian mechanisms
can also reinforce learned associations in the face of ongoing
change, in other words, prevent spurious learning. This view
is compatible with the observation that Hebbian plasticity is a
positive feedback process, where existing correlations become
strengthened, in turn promoting correlated activity (72). Ab-
stractly, positive feedback is required for hysteresis, which is a
key ingredient of any memory retention mechanism, biological
or otherwise, because it rejects external disturbances by rein-
forcing internal states.

Homeostasis, by contrast, is typically seen as antidote to pos-
sible runaway Hebbian plasticity (72). However, this idea is
problematic due to the relatively slow timescale at which home-
ostasis acts (73). Our �ndings posit a richer role for homeostatic
(negative) feedback in maintaining and distributing responsive-
ness in a population. This is achieved by regulating the mean
and the variance of neural activity (24).

We considered two populations: a drifting population that
encodes a behavioral variable, and another that extracts a drift-
resilient readout. This could re�ect communication between
stable and plastic components of the brain, or the interaction
between stable and plastic neurons within the same circuit.
This is consistent with experiments that �nd consolidated sta-
ble representations (12, 16), or with the view that neural popu-
lations contain a mixture of stable and unstable cells (74).

By itself, Hebbian homeostasis preserves population codes in
the face of drift over a much longer timescale than the lifetime
of a code with �xed readout (Fig. 2). Even though this mech-
anism ultimately corrupts a learned tuning, the time horizon
over which the code is preserved may be adequate in a bio-
logical setting, particularly in situations where there are inter-
mittent opportunities to reinforce associations behaviourally.

However, in the absence of external feedback, extending the
lifetime of this code still further required us to make additional
assumptions about circuit structures that remain to be tested
experimentally.

We found that a readout population can use an internal
model to maintain a consistent interpretation of an unstable
encoding population. Such internal models are widely hypoth-
esized to exist in various guises (64, 66, 67, 69). We did not ad-
dress how these internal models are learned initially, nor how
they might be updated. By setting �xed recurrent weights, we
are also assuming that population responses in some circuits
are not subject to drift. This may be reasonable, given that func-
tional connectivity and population tuning in some circuits and
subpopulations is found to be stable (11–13).

The recurrent architectures we studied here are reminiscent
of mechanisms that attenuate forgetting via replay (e.g. 75, 76).
The internal models must be occasionally re-activated through
rehearsal or replay to detect and correct inconsistencies caused
by drift. If this process occurs infrequently, drift becomes large,
and the error correction will fail.

The brain supports both stable and volatile representations,
typically associated with memory retention and learning, re-
spectively. Arti�cial neural networks have so far failed to imi-
tate this, and su�er from catastrophic forgetting wherein new
learning erases previously learned representation (77). Broadly,
most proposed strategies mitigate this by segregating stable and
unstable representations into distinct subspaces of the possible
synaptic weight changes (c.f. 18). These learning rules there-
fore prevent disruptive drift in the �rst place. The mechanisms
explored here do not restrict changes in weights or activity: the
encoding population is free to recon�gure its encoding arbitrar-
ily. However, any change in the code leads to a complemen-
tary change in how that code is read out. Further exploration
of these principles may clarify how the brain can be simulta-
neously plastic and stable, and provide clues to how to build
arti�cial networks that share these properties.

Materials and Methods

Data and analysis

Data shown in Fig. 1b,c were taken from Driscoll et al. (2), and are
available online at at Dryad (47). Examples of tuning curve drift were
taken from mouse four, which tracked a sub-population of cells for
over a month using calcium �uorescence imaging. Normalized log-
�uorescence signals (ln[G/〈G〉]) were �ltered between 0.3 and 3 Hz (4th

Butterworth, forward-backward �ltering), and individual trial runs
through the T maze were extracted. We aligned traces from select cells
based on task pseudotime (0: start, 1: reward). On each day, we aver-
aged log-�uorescence over all trials and exponentiated to generate the
average tuning curves shown in Fig. 1b. For Fig. 1c, a random sub-
population of forty cells was sorted based on their peak �ring location
on the �rst day. For further details, see (2, 19).

Simulated drift

We modeled drift as a discrete-time Ornstein-Uhlenbeck (OU) random
walk on encoding weights U, with time constant g (in days) and per-
day noise variance U . We set the noise variance to U=2/g to achieve
unit steady-state variance. Encoding weights for each day are sampled
as:

D3+1,8, 9 = D3,8, 9
√

1 − U + b
√
U, b∼N(0, 1) . (9)

These drifting weights propagate the information about \ available
in the features s(\ ) (Eq. 1) to the encoding units x(\ ), in a way that
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changes randomly over time.
This random walk in encoding-weight space preserves the popula-

tion code statistics on average: It preserves the geometry of \ in the
correlations of aC (\ ), and the average amount of information about
\ encoded in the population activations (Supplement: Stability of en-
coded information). This implies that the di�culty of reading out a
given tuning curve ~ (\ ) (in terms of the L2 norm of the decoding
weights, ‖w9 ‖2) should remain roughly constant over time. This as-
sumption, that x(\ ) encodes a stable representation for \ in an unsta-
ble way, underlies much of the robustness we observe. We discuss this
further in Methods: Synaptic learning rules.

Because the marginal distribution of the encoding weights on each
day is Gaussian, U3 ∼ N(0, �# ), the synaptic activations a3 (\ ) =

U>
3

s(\ ) are samples from a Gaussian process on \ , with covariance
inherited from s(\ ) (Supplement: Gaussian-process tuning curves). In
numerical experiments, we sampled the synaptic activation functions
a3 (\ ) from this Gaussian process directly. We simulated \ ∈ [0, 1)
over a discrete grid with 60 bins, sampling synaptic activations from
a zero-mean Gaussian process on \ with a spatially-low-pass squared-
exponential kernel (f = 0.1). The gain and threshold (Eq. 2) for
each encoding unit was homeostatically adjusted for a target mean-
rate of `0 = 5 and rate variance of f2

0 = 25 (in arbitrary units). This
was achieved by running Eq. (3) for 50 iterations with rates [W = 0.1,
[V = 0.2 for the gain and bias homeostasis, respectively.

To show that the readout can track drift despite complete recon�g-
uration of the neural code, we replace gradual drift in all features with
abrupt changes in single features in Fig. 2. For this, we re-sampled the
weights for single encoding units one-at-a-time from a standard nor-
mal distribution. Self-healing plasticity rules were run each time 5 out
of the 100 encoding features changed. Supplemental Fig. S1 con�rms
that abrupt drift in a few units is equivalent to gradual drift in all units.
Unless otherwise stated, all other results are based on an OU model of
encoding drift.

We modeled excess variability in the encoding population that was
unrelated to cumulative drift. This scenario resembles the drift ob-
served in vivo (9; Supplemental Fig. S4). We sampled a unique “per-
day” synaptic activation 0̃3,8 (\ ) for each of the encoding units, from
the same Gaussian process on \ used to generate the drifting activa-
tion functions 03,8 (\ ). We mixed these two functions with a parameter
A = 0.05 such that the encoding variability was preserved (i.e. 5% of
the variance in synaptic activation is related to random variability):

0′
3,8
(\ ) = 03,8 (\ )

√
1 − A + 0̃3,8 (\ )

√
A . (10)

Supplemental Fig. S2a shows that the readout can tolerate up to 30%
excess variability with modest loss of stability. Supplemental Fig. S4
shows that neuronal recordings from Driscoll et al. (47) are consistent
with 30% excess variability, and that the qualitative conclusions of this
paper hold for this larger amount of day-to-day variability (Supple-
ment: Calibrating the model to data).

We also applied drift on the decoding synapses W. This is modeled
similarly to Eq. (10), with the parameter = controlling the percentage
of variance in synapse weight that changes randomly at the start of
each each day:

F ′
3,8, 9

= F3,8, 9
√

1 − = + f3 · b
√
= b∼N(0, 1) . (11)

where f3 is the empirical standard-deviation of the the decoding
weights on day 3 . Unless otherwise stated, we use = = 1%. Larger val-
ues of drift on the decoding weights is destabilizing for Hebbian home-
ostasis (with or without response normalization), but readouts with
stable internal recurrent dynamics can tolerate larger (∼ 8%) amounts
of readout-weight drift (Supplemental Fig. S2b).

Synaptic learning rules

The learning rule in Eq. (5) is classical unsupervised Hebbian learn-
ing, which is broadly believed to be biologically plausible (49, 50, 70).

However, it has one idiosyncrasy that should be justi�ed: The rates
of learning and weight decay are modulated by a homeostatic error
in �ring-rate variability. The simplest interpretation of Eq. (5) is a
premise or ansatz: learning rates should be modulated by homeostatic
errors. This is a prediction that will need to be experimentally con-
�rmed. Such a learning might be generically useful, since it pauses
learning when �ring-rate statistics achieve a useful dynamic range for
encoding information. The fact that weight decay is proportional to
learning rate is also biologically plausible, since each cells has �nite
resources to maintain synapses.
�@. (5) may also emerge naturally from the interaction between

homeostasis and learning rules in certain scenarios. When Hebbian
learning is interpreted as a supervised learning rule, it is assumed that
other inputs bias the spiking activity ~ of a neuron toward a target ~∗.
This alters the correlations between presynaptic inputs x and post-
synaptic spiking. Hebbian learning rules, especially temporally asym-
metric ones based on spike timing (78), adjust readout weights w to po-
tentiate inputs that correlate with this target. In the absence of external
learning signals, homeostatic regulation implies a surrogate training
signal ~̃∗. This ~̃∗ is biased toward a target mean-rate and selectivity.
For example, recurrent inhibition could regulate both population �r-
ing rate and population-code sparsity. This could restrict postsynaptic
spiking, causing Hebbian learning to adjust readout weights to achieve
the desired statistics. Cells may also adjust their sensitivity and thresh-
old homeostatically. Hebbian learning could then act to adjust incom-
ing synaptic weights to achieve the target �ring-rate statistics, but in
a way that is more strongly correlated with synaptic inputs.

In Supplement: Hebbian homeostasis as an emergent property, we
verify the intuition that Eq. (5) should arise through emergent interac-
tions between homeostasis and Hebbian learning in a simpli�ed, linear
model. In the remainder of this section, we use a linear readout to il-
lustrate why one should expect Eq. (5) to be stabilizing.

The decoder’s job is to generate a stable readout from the drift-
ing code x(\ ). This is a regression problem: the decoding weights
W should map x(\ ) to a target y(\ ). Since small amounts of drift are
akin to noise, W should be regularized to improve robustness. The
L2-regularized linear least-squares solution for W is:

W = [ΣG + d2I]−1ΣG~ . (12)

The regularization d2I corresponds to the assumption that drift will
corrupt the activity of x(\ ) by an amount Δx ∼ N(0, d2I).

Can drift be tracked by re-inferring W on each day? We lack the
ground-truth covariance Σ3G~ to re-train W, but could estimate it from
decoded activity y3 (\ ):

Σ̂3G~ = 〈x3 (\ )y3 (\ )>〉\ (13)

Since y3 (\ ) is decoded from x3 (\ ) through weights W3 , the estimated
covariance is Σ̂3G~ = Σ3GW3 , where Σ3G = 〈x3 (\ )x3 (\ )>〉\ is the covari-
ance of the inputs x3 (\ ). The regularized least-squares weight update
is therefore:

W3+1 = [Σ3G + d2I]−1Σ3GW3 . (14)

This update can be interpreted as recursive Bayesian �ltering of the
weights (Supplement: Weight �ltering).

Because x(\ ) continues to encode information about \ , we know
that variability in the decoded y(\ ) should be conserved. Each read-
out ~8 (\ ) homeostatically adjusts its sensitivity to maintain a target
variability f2

0 . As introduced earlier, this multiplies the �ring rate by
a factor W = f0/f1 = 1 + X , where X is a small parameter. and f1 is
the standard deviation of the readout’s �ring rate after drift but be-
fore normalization. Accounting for this in Eq. (14) and considering the
weight vector w for a single readout neuron yields:

w3+1 = [Σ3G + d2I]−1Σ3Gw · (1 + X). (15)

To translate this into a plausible learning rule, the solution Eq. (15)
can be obtained via gradient descent. Recall the loss function L(w)
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for optimizing regularized linear least-squares:

L(w) = 1
2 〈‖w

>x − y‖2〉 + 1
2d2‖w‖2 . (16)

Gradient descent −∇wL(w) on Eq. (16) implies the weight update

Δw ∝ 〈x(y −w>x)>〉 − d2w. (17)

After matching terms between Eqs. (12-15) and Eq. (17) and simplify-
ing, one �nds the following Hebbian learning rule:

Δw ∝ X 〈x3 (\ )~3 (\ )〉\ − d2w. (18)

Eq. (18) is equivalent to Eq. (5) for a certain regularization strength
d2 (now taking the form of weight decay). The optimal value of d2
depends on the rate of drift. Since drift drives homeostatic errors, it
follows that d2 ∝ X for small X . Here, we set d2 = X , corresponding to
2 = 1 in Eq. (18).

Single-neuron readout

In Fig. 2, we simulated a population of 100 encoding neurons x3 (\ )
that changed one at a time (Methods: Simulated drift). We initialized
a single readout ~ (\ ) = q [w>x(\ )] to decode a Gaussian bump ~0 (\ )
(f = 5% of the track length) from the activations x0 (\ ) on the �rst
day. We optimized this via gradient descent using a linear-nonlinear
Poisson loss function.

Δw ∝
〈
x0 (\ ) [y0 (\ ) − ~ (\ )]>

〉
\
− dAw, (19)

with regularizing weight decay dA = 10−4. In this deterministic �ring-
rate model, the Poisson error allows the squared-norm of the residuals
to be proportional to the rate. We simulated 200 time points of drift,
corresponding to two complete recon�gurations of the encoding pop-
ulation. After each encoding-unit change, we applied 100 iterations
of either naïve homeostasis (Fig. 2b; Eq. 3) or Hebbian homeostasis
(Fig. 2c; Eq. 5). For naïve homeostasis, the rates for gain and threshold
homeostasis were [V = 10−3 and [W = 10−5, respectively. For Hebbian
homeostasis, the rates were [V = 10−1 and [W = 10−3.

Homeostatic regulation requires averaging the statistics over time
(48). To model this, we calculated the parameter updates for the gain
and bias after replaying all \ and computing the mean and variance of
the activity for each neuron. Since the processes underlying cumula-
tive changes in synaptic strength are also slower than the timescale of
neural activity, weight updates were averaged over all \ on each iter-
ation. We applied additional weight decay with a rate d = 1× 10−4 for
regularization and stability, and set 2=1 in Eq. (5) such that the rate of
weight decay was also modulated by the online variability error X̃ .

Learning recurrent weights

For recurrent dynamics modeled as feedback in Eq. (7), supervised,
linear Hebbian learning implies that the recurrent weights should be
proportional to the covariance of the state variables z. To see this,
consider a linear Hebbian learning rule, where z has been entrained
by an external signal, and serves as both the presynaptic input and
postsynaptic output:

3
3C

A? = 〈zz>〉\ − UA? (20)

Where U is a weight decay term. This has a �xed point at A? =

〈zz>〉/U . In our simulations, we ensure that z is zero-mean such that
the second moment, 〈zz>〉, is equal to the covariance.

For the linear-nonlinear map model of recurrent dynamics Eq. (8),
neurons could learn AA by comparing a target y0 to the predicted yA
at the same time that the initial decoding weights W0 are learned. For
example, y0 could be an external (supervised) signal or the forward
predictions in Eq. (4) before drift occurs, and yA could arise though re-
current activity in response to y0. A temporally-asymmetric plasticity
rule could correlate the error between these signals with the recurrent

synaptic inputs to learn AA (78). This plasticity rule should update
weights in proportion to the correlations between synaptic input y>

5

and a prediction error y0 − yA :

ΔAA ∝
〈
y5 (y0 − yA )>

〉
\
− dAAA , (21)

where dA = 10−4 sets the amount of regularizing weight decay.
Eq. (8) is abstract, but captures the two core features of error correc-

tion through recurrent dynamics. It describes a population of readout
neurons that predict each-other’s activity through recurrent weights.
Eq. (21) states that these weights are adapted during initial learning
to minimize the error in this prediction. We assume AA is �xed once
learned.

Population simulations

In Fig. 5, we simulated an encoding population of 100 units. Drift was
simulated as described in Methods: Simulated drift, with g = 100. In
all scenarios, we simulated " = 60 readout cells tiling a circular \
divided into ! = 60 discrete bins. Learning and/or homeostasis was
applied every 5 iterations of simulated drift. The readout weights and
tuning curves were initialized similarly to the single-neuron case, but
with tuning curves tiling \ .

For the predictive coding simulations (Eq. 7), we simulated a second
inner loop to allow the network activity z to reach a steady state for
each input x(\ ). This loop ran for 100 iterations, with time constant of
gI = 100. The recurrent weights A? were initialized as the covariance
of the synaptic activations on the �rst day (ΣI where z(\ ) = W>x(\ ))
and held �xed over time. The �nal value ẑ was used to generate a train-
ing signal, ŷ = q (ẑ), to update the readout weights. For the recurrent
map, recurrent weights were learned initially using Eq. (21) and held
�xed through the simulations.

For both the linear-nonlinear map and the recurrent feedback mod-
els, weights were updated as in Eq. (5), where the output of the re-
current dynamics was used to compute homeostatic errors and as the
signal ŷ in Hebbian learning. For naïve homeostasis (Fig. 5b) and Heb-
bian homeostasis (with and without response normalization; Fig. 5cd),
learning rates were the same as in the single-neuron simulations (Fig.
2; Methods; Single-neuron readout). For the linear-nonlinear map (Fig
5e), learning rates were set to [W = 10−4 and [V = 10−1. For recurrent
feedback (Fig 5f), the learning rates were [W = 5 × 10−3 and [V = 5.
Learning rates for all scenarios were optimized via grid search.

Response normalization was added on top of Hebbian homeostasis
for Fig. 5d, and was also included in Fig. 5ef to ensure stability. The
population rate target `? for response normalization was set to the
average population activity in the initially trained state.

Di�erent parameters were used to generate the right-hand column
of Fig. 5, to show the e�ect of a larger amount of drift. After training
the initial readout, 60% of the encoding features were changed to a
new, random tuning. Learning rates were increased by 50× for naïve
homeostasis to handle the larger transient adaptation needed for this
larger change. The other methods did not require any adjustments
in parameters. Each homeostatic or plasticity rule was then run to
steady-state (1000 iterations).

Code availability Source code for all simulations is available on-
line at github.com/michaelerule/selfhealingcodes.
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Supplemental Information

Gaussian-process tuning curves

Equation (10) in the main text (Methods: Simulated drift) de�nes an
Ornstein-Uhlenbeck (OU) random walk on the encoding weights U.
This is equivalent to assuming that the synaptic activations of the en-
coding population undergo a random walk, and are samples from a
stationary distribution of functions on \ .

Assume that individual encoding weights D vary randomly over
time, sampling from a stationary distribution that can be approximated
as Gaussian. Without loss of generality, choose units such that this
distribution is a standard normal distribution D ∼ N(0, 1). Denote the
time-varying vector of synaptic weights for a single encoding neuron
as u3 . Now, consider the synaptic activation for an encoding neuron
driven by features s: 03 (\ ) = u>

3
s(\ ). If u3 ∼ N(0, I), then the second

moment Σ0 (\, \ ′) = 〈03 (\ ) 03 (\ ′)〉3 is:

〈03 (\ ) 03 (\ ′)〉3 = 〈[s(\ )>u3 ] [u>3 s(\ ′)]〉3
= s(\ )>〈u3u>

3
〉3 s(\ ′)

= s(\ )>s(\ ′),
(22)

which is constant since s(\ ′) do not change over time. A similar logic
holds for the other moments, con�rming that the OU drift on the en-
coding weights samples from a stationary distribution of activation
functions.

If the encoding features s(\ ) are sampled from a Gaussian process
on \ , then OU drift on the encoding weights amounts to OU drift over
a Gaussian-process distribution of activation functions. Let the en-
coding weights change as u3

√
1 − U + b

√
U , where U sets the drift

rate and b are are the Gaussian noise sources as in Eq. 10 in the
main text. De�ne the drift in synaptic activation at each time-point
as Δ0(\ ) = b>s(\ )

√
U . The updated synaptic activations 03+1 (\ ) are

then:
03+1 (\ ) = u>

3+1s(\ )

= (u3
√

1 − U + b
√
U)>s(\ )

= u>
3

s(\ )
√

1 − U + b>s(\ )
√
U

= 03 (\ )
√

1 − U + Δ0(\ ) .

(23)

The increments Δ0(\ ) are samples from a Gaussian Process Δ0(\ ) ∼
GP(0, ΣΔ0 (\, \ ′)), with second moment:

ΣΔ0 (\, \ ′) = 〈Δ08,C (\ )Δ08,C (\ ′)>〉C
= U 〈s(\ )>bb>s(\ )〉C
= U s(\ )>〈bb>〉C s(\ )
= U s(\ )>s(\ )

(24)

If units are chosen such that the encoding features s(\ ) are zero-mean
in \ , then the second moments in Eqs. (22-24) can be interpreted as
covariances. The randomly-drifting encoding weights u are therefore
equivalent to an OU random walk through the space of possible acti-
vation functions on \ . We use this to simplify computations.
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If the synaptic activations 0(\ ) are samples from a stationary dis-
tribution of functions over \ , then the tuning curves G (\ ) = q [0(\ )]
are also samples from a stationary distribution over possible tuning
curves. Adding homeostasis scales and shifts the activation to achieve
the target �ring rate statistics, removing two directions of variability
from this distribution. This regulates the amount of information about
\ encoded in the �ring-rate variations of the population x(\ ) (Supple-
ment: Stability of encoded information).

Stability of encoded information

The model of drift described in Methods: Simulated drift and Sup-
plement: Gaussian-process tuning curves conserves the information-
coding capacity of x(\ ). Because individual encoding neurons evolve
independently in this model, the population of # encoding cells rep-
resents # independent samples from the distribution of tuning curves
on \ . If we consider the large (#→∞) population limit, the average
population variability related to \ is given by the expected variability
caused by \ for the typical tuning curve:

lim
#→∞

1
#

∑#
8=1 ‖∇\ aC (\ )‖2 = 〈‖∇\0(\ )‖2〉3 , (25)

where aC (\ )=U>C s(\ ) is the vector of synaptic activations for all encod-
ing units at location \ . The expected amount of population variability
driven by \ is conserved, and is a function of the covariance of the
activation functions Σ0 (\, \ ′):

〈‖∇\0(\ )‖2〉3 = tr
[
∇\ 〈0(\ ) 0(\ )>〉3∇>\

]
= ∇\Σ0 (\, \ )∇>\ . (26)

The second step in Eq. (26) follows from the linearity of the trace and
the identity ‖q‖2 = tr[qq>]. The operator ∇>

\
refers to di�erentiating

Σ0 (·, ·) in its second argument. This is in turn relates to the amount of
variability in the features s(\ ) that is driven by \ :

∇\Σ0 (\, \ )∇>\ = ∇\ s(\ )>s(\ )∇>
\
= ‖∇\ s(\ )>‖2 . (27)

This shows that a(\ ) inherits the correlation structure of s(\ ), and
that in the large population limit the variation in a(\ ) driven by \ is
approximately conserved.

Additional assumptions about the nonlinearity q [·] are needed to
show that stable information in a(\ ) implies stable information in
x(\ ) = q [a(\ )]. In the special case of an exponential nonlinearity
q= exp, the trace of Fisher information I(\ ) of x8,C (\ ) = exp[u>

8,C
s(\ )]

is proportional to the average variation in a(\ ) driven by \ :

tr[I(\ )] ∝
〈
‖∇\ ln[x(\, C)] ‖2

〉
=

〈
‖∇\ a(\, C)‖2

〉
(28)

(Formally, the Fisher information is in�nite when the noise in x is zero,
but Eq. (28) can be viewed as the zero-variance limit of homogeneous
and IID Gaussian noise with suitable normalization.) With a threshold
nonlinearity, the dynamic range of each 0(\ ) must remain in a certain
range to ensure that information is not lost due to the saturation in the
�ring-rate response. This can be ensured by homeostasis (24, 48, 79).

Hebbian homeostasis as an emergent property

Here we explore a simpli�ed linear model to make concrete the intu-
ition that Eq. (5) in the main text should emerge through interactions
between homeostasis and Hebbian learning. Consider a single (scalar)
linear readout with inputs x, weights w, and output �ring rate ~:

~ = w>x (29)

Let X and Y be a training dataset of presynaptic inputs x ∈ X and
postsynaptic outputs ~ ∈ Y. Assume that ~ and x are both zero-mean
over this dataset. Consider an Oja-style Hebbian learning rule of the
form:

Δw ∝ 〈x~〉 − 6(w), (30)

where 6(w) represents stabilizing terms in the learning rule. Assume
that learning has converged to steady state for some o0 = (w0,X0,Y0),
such that Δw = 0. This implies that

6(w0) = 〈x0~0〉. (31)

Now, consider incremental drift in the input encoding X1 = X0 + ΔX.
This changes the readout’s �ring to~1 = ~0+Δ~ , where Δ~ = w>0 Δx is
small. This alters the activity statistics of ~1, changing the �ring-rate
variance f2

1 ≠ f2
0 . Assume that the variance of ~1 has been restored

by homeostatic processes that multiply the �ring rate by a factor W =

f0/f1 = 1 + X , where X is a small parameter:

~̃1 = W~1 = ~1 + X~1 (32)

What is the in�uence of this new activity ~̃1 on plasticity? Evaluating
Eq. (30) for (x1, ~̃1), and substituting in Eq. (31) yields:

Δw ∝ 〈x1~̃1〉 − 〈x0~0〉
= (1 + X)〈x1~1〉 − 〈x0~0〉
= X 〈x1~1〉 + 〈x1~1〉 − 〈x0~0〉
= X 〈x1~1〉 + 〈x0Δ~〉 + 〈Δx~0〉 + O(·2)
= X 〈x1~1〉 + 2〈x0Δ

>
x 〉w0 + O(·2),

(33)

whereO(·2) denotes all terms of second-order and higher inΔx. If drift
is uncorrelated with the current state, then 〈x0Δ>x 〉 is zero to �rst-order
in Δx, and Eq. (33) simpli�es to:

Δw ∝ X 〈x1~1〉 + O(·2) . (34)

This is similar to the Hebbian term in Eq. (5) in the main text, if X ∝ Yf
at �rst order. This is easily veri�ed:

Yf

f0
=
f0 − f1
f0

= 1 − f1
f0

= 1 − 1
W
= 1 − 1

1 + X = X + O(X2). (35)

Eq. (35) is therefore equivalent to the Hebbian contribution to the Heb-
bian homeostatic rule in Eq. (5) in the main text, with X = Yf/f0. What
about the weight decay terms?

We assume that the norm of the weight vector, ‖w‖2, is conserved.
Hebbian learning will generally disrupt this. If we assume that the
norm of the weight vector is restored by weight decay−dw, what value
of d would keep the norm of the weight vector constant? Consider
a weight update as in Eq. (35), with an unknown weight decay term
−dw:

w1 = w0 + X 〈x1~1〉 − dw (36)

Assume that d ∼ O(X). What value would d need to take to ensure
that ‖w1‖2 = ‖w0‖2? The norm of the updated weight vector is:

‖w1‖2 = ‖w0‖2 + Xw>0 〈x1~1〉 − d ‖w0‖2 + O(.2). (37)

We see that ‖w1‖2 = ‖w0‖2 if Xw>0 〈x1~1〉 = d ‖w0‖2+O(.2), implying
that

d = X
w>0 〈x1~1 〉
‖w0 ‖2 + O(.

2) . (38)

Since w>0 x1 = ~1, the term w>0 〈x1~1〉 = 〈w>0 x1~1〉 = 〈~2
1〉 = f

2
1 is equal

to the �ring-rate variability after perturbation by drift. This implies
that

Δw ∝ X
[
〈x1~1〉 −

f2
1

‖w0 ‖2 w
]
. (39)

This suggests that the optimal value of weight decay is d = f2
1/‖w0‖2.

In practice we found that and setting d = 1 still led to good stability in
simulations.

This derivation is not indented to prove that Hebbian homeostasis
should arise in any speci�c physiological model, but rather to illustrate
that a learning rule of this form might reasonably be expected to exist
based on known Hebbian and homeostatic plasticity mechanisms.
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Weight �ltering

The action of the Hebbian homeostatic rule (Eq. 5 in the main text) can
be interpreted as a form of �ltering. Consider a linear readout trained
initially on day3 = 0 with weights W0 (make dependence on \ implicit
to simplify notation):

y0 = W>0 x0 . (40)

The encoding x3 changes on each day 3 . Tracking these changes en-
tails translating the population code-words x3 into the code originally
used on day 0. Using this translation x̂0 |3 , one might achieve an ap-
proximately stable readout.

ŷ = W>0 x̂0 |3 . (41)

How could one estimate x̂0 |3? Consider estimating the code-words on
day 3 from those on day 3 + 1. Let drift 3x3 be sampled from a known
distribution 3x ∼ N(0,∆3 ). An estimate of x̂3 |3+1 can be obtained via
linear least-squares:

x̂3 |3+1 = Σ3 [Σ3 + ∆3 ]−1x3+1, (42)

where Σ3 is the covariance of the code x3 on the previous day.
Eq. (42) provides the minimum squared error estimate of x̂3 . In the

linear, Gaussian case this is also the Bayesian maximum a posteriori
estimate. Applying Eq. (42) iteratively yields an estimate of the orig-
inal code x̂0, thereby translating the current representation x3 back
through time to when the readout was �rst learned:

x̂0 |3 =
{∏

3′∈0..3−1 Σ3′ [Σ3′ + B∆3′]−1} x3 . (43)

Now, consider the e�ect of Eq. (42) on a decoded ŷ by substituting
Eq. (42) into Eq. (41):

ŷ3+1 = W>
3

Σ3 [Σ3 + ∆3 ]−1x3+1
= [(Σ3 + ∆3 )−1Σ3W3 ]>x3+1 .

(44)

The expression [(Σ3 + ∆3 )−1Σ3W3 in Eq. (44) is the same one used
to re-train the readout from its own output (Eq. 15 in the main text,
Methods: Synaptic learning rules, with ∆3 estimated as dI):

ŷ3+1 = [(Σ3 + ∆3 )−1Σ3W3 ]>x3+1 = W>
3+1x3+1 . (45)

This illustrates that the Hebbian homeostatic learning rules outlined
in the text can be viewed loosely as �ltering the current code-words
x3 to recover the original code x0 against which the readout was �rst
trained. In a linear, Gaussian case the correspondence with Bayesian
�ltering is exact.

Predictive coding as inference

In the main text (Results: Predictive error feedback), we argued that
negative feedback of prediction errors removes variations in y(\ ) that
are inconsistent with a learned internal model. In particular, if recur-
rent weights A? are learned through Hebbain learning, then this feed-
back selectively tracks only the modes of y(\ ) known to enode infor-
mation about \ . This leads the readout to infer a de-noised estimate

ˆy(\ ) that can be used to update decoding weights. Here, we prove that
this inference has an exact interpretation as Bayesian inference under
certain circumstances.

Assume that the readout has internal states z, and has learned a
prior for what values these states should take for encoding \ , Pr(z).
This prior re�ects the ground-truth distribution of z experienced when
the inputs x are driven by true external inputs s(\ ) during behavior.
Assume that the error model for the feed-forwarded decoding y5 (Eq.
4 in the main text) in known, Pr(y5 |z). For a given y5 , the Baysian
posterior estimate for ẑ is

Pr(ẑ|y5 ) ∝ Pr(y5 |z) Pr(z) (46)

The estimate ẑ can be optimized by �nding the posterior mode of
Eq. (46). This can be done by maximizing the log-posterior:

L(z) = ln Pr(y5 |z) + ln Pr(z) + const. (47)

Now, consider the case where the prior on z is multivariate Gaussian.
Let this prior be zero mean for convenience, without loss of generality,
z ∼ N(0,A? ). Let the observation model Pr(y5 |z) be of the natural
exponential family, where z are the natural parameters, and y5 are the
natural statistics. Let 5 (·) be an element-wise function of z such that
its derivative matches the �ring-rate nonlinearity, q (z) = 5 ′(z). The
log-prior and log-likelihood then take the forms:

ln Pr(z) = − 1
2 z>A−1

? z + const.

ln Pr(y5 |z) = z>y5 − 5 (z) + const.
(48)

The states z can be optimized via gradient ascent of∇zL(z) on Eq. (47),
implying the following dynamics:

¤z = −A−1
? z + y>

5
− q (z) (49)

Multiplying through by the prior covariance A? does not change the
�xed points, and so Eq. (49) can be written as:

¤z = −z + A? [y>5 − q (z)] . (50)

Eq. (50) is the same as Eq. (7) in the main text (Results: Predictive error
feedback), with the exception of a time constant gI which does not
change the �xed points.

As an aside, modulating the feedback gain by a factor ^ in Eq. (50)
allows a neural population to dynamically adjust the in�uence of the
external inputs and its internal model:

¤z = −z + 1
^A? [y>5 − q (z)] . (51)

One might set ^ to be small when one is con�dent in y5 . This would
cause learning to overwrite a learned y(\ ) with external input. Con-
versely, larger ^ can be used to rely on priors more heavily when y5
are uncertain. We conjecture that modulating the feedback gain might
control whether internal models vs. external input dominate activity,
and, as a result, synaptic plasticity.

Overall, the correspondence between predictive coding and
Bayesian inference is exact when

1. Subthreshold activations z receive prediction-error feedback, and
can be interpreted as the natural parameters of an exponential-
family distribution for ŷ = q (z).

2. Feedback weights A? are proportional to the covariance of a
Gaussian prior on z.

3. The nonlinearity implies a natural exponential family that can
reasonably capture error and uncertainty in y5 .

The natural exponential family includes most common �ring-
rate models of neural dynamics, including linear-Gaussian, linear-
nonlinear-Poisson, and linear-nonlinear-Bernoulli.

It is unlikely that this correspondence is exact in vivo. Symmetric
Hebbian learning of the recurrent weights would potentiate correla-
tions in y = q (z), not z. This would lead the recurrent weights to
learn the covariance structure in the �ring rates, A? ∝ Σ~ , rather than
synaptic activations A? ∝ ΣI . These are only equal in the case of a lin-
ear readout. A saturating nonlinearity that approximates q−1 (·) when
tracking pre-post correlations could compensate for this, but there is
no experimental evidence for this.

Regardless , Eq. (50) generically restricts the activity in y to the sub-
space associated with encoding \ (Results: Recurrent feedback of pre-
diction errors.). In large population codes for low-dimensional activity,
this subspace is low rank. Eq. (50) is therefore likely to provide useful
error correction via subspace projection, even if the matching of the
amplitudes of speci�c modes of y to the internal model is inexact. The
recurrent feedback model should therefore be interpreted as a qualita-
tive hypothesis for how corrective feedback might aid in tracking drift.
The precise interpretation of the feedback weights A? is left to further
studies.
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Learning as inference

Eq. (25) in the main text describes how the forward weights evolve
based on the correlation between a prediction error ε = ŷ−y5 and the
inputs x (Methods: Population simulations). It also includes a weight
decay term −dW. This trains the forward weights to minimize predic-
tion errors, subject to the constraints that the weights should not grow
too large. Analogously to how negative feedback optimizes a trade-o�
between input and an internal estimate of ŷ, this optimization corre-
sponds to Bayesian inference when certain quantities are equated to
the parameters of a distribution from the natural exponential family.

Consider training the readout weight vector w for a single decod-
ing unit, using ! training examples, each consisting of an input x and
a desired output ~. The readout makes predictions ~5 = q (I), where
I = w>x. Now, de�ne a zero-mean Gaussian prior for these weights,
w ∼ N(0, 1

d I). Let the �ring-rate nonlinearity q (I) = 5 ′(I) corre-
spond to the derivative of a known function 5 (·), and assume that
our observation model is taken from a natural exponential family with
natural parameter I and natural statistics ~. Up to constants, the log-
posterior for w can then be written as

〈ln Pr(~ |w, x)〉 = 〈I~ − 5 (I)〉 + O(1)
ln Pr(w) = − 1

2 w> [ 1
d I]−1w + O(1)

⇒ 〈ln Pr(w|x, ~)〉 ∝ 〈I~ − 5 (I)〉 − 1
2d ‖w‖

2 + O(1),

(52)

where the expectation 〈·〉 averages over the training data. This ob-
jective can be optimized by ascending the gradient ∇w of the log-
likelihood, implying to the following weight dynamics:

Δw ∝ 〈x~ − ∇w 5 (I)〉 − dw

= 〈x(~ − q (w>x))〉 − dw

= 〈x(~ − ~5 )〉 − dw
(53)

Eq. (53) is equivalent to the error-based learning rule used in the main
text (Eq. 25), if one applies this update in discrete steps with learning
rate [ to a population readout.

As was the case for prediction-error feedback, this statistical inter-
pretation is unlikely to correspond exactly to processes in vivo. Never-
theless, learning rules resembling Eq. (53) do emerge in some timing-
dependent plasticity rules (78). In this work, such rules are used pri-
marily to initialize the readout weights W or recurrent weights AA for
the linear-nonlinear map. Subsequent evolution of W is then assumed
to follow the unsupervised Hebbian homeostatic rule in Eq. (5) in the
main text. A biologically plausible interpretation of supervised, error-
driven learning is therefore not essential to the core results regarding
the tracking of representational drift.

Calibrating the model to data

The results in the main text are abstract, because drift statistics vary
across brain areas, species, and experimental conditions. Stability de-
pends on many unknown parameters, include drift rate, noise levels,
population-code redundancy, and the frequency of reconsolidation.
Nevertheless, in Supplemental Figure 4, we present a best-e�ort cal-
ibration of our simulations to the Driscoll et al. (2017) data recorded
from mouse posterior parietal cortex (2, 47).

We calibrated a model of simulated drift using three subjects from
Driscoll et al. (47) (mice M1, M3, and M4). For each subject, we selected
a subset of �fteen recording sessions sharing common neurons (N=10,
60, and 83 neurons from M1, M3, and M4 respectively). Each subpopu-
lation was tracked for over a month (58, 35, and 38 days respectively),
with modest gaps between consecutive recording sessions (no more
than 13, 8, and 10 consecutive missing days, respectively). For each
day, we �ltered log-Calcium �uorescence traces between 0.03 and 0.3
Hz and normalized them by z-scoring. We aligned �ltered traces from
successful trials to task pseudotime ("\ ") based on progress through the
maze. These traces were averaged to estimate neuronal tuning curves.

The tuning curves can be interpreted as vectors in a high-
dimensional space, with a di�erent component for each location \ . We
used the cosine of the anglek between two tuning curves as an "align-
ment" measure to quantify drift. This can be computed as the average
product cos(k ) = 〈G̃1 (\ )G̃2 (\ )〉\ between normalized (z-scored) tun-
ing curves G̃8 (\ ), and is 1 if the tuning curves are identical and 0 (on
average) if they are unrelated.

This estimator is biased by measurement noise and trial-to-trial
variability. We compensated for this by bootstrap-resampling the av-
erage alignment between two tuning curves from the same cell and
day, where each tuning curve is estimated as an average over a di�er-
ent random subsets of trials. This baseline was calculated separately
for each neuron and day, averaged over ten random samples. Bias was
removed by dividing the tuning-curve alignment measure by this base-
line. This retains excess per-day variability that cannot be explained
by drift, noise, or trial-to-trial �uctuations.

Alignment decayed exponentially over time (Figure S4-a). The de-
cay time constant (g) indicates the drift rate. The extrapolated value at
Δ = 0 days (00) indicates the excess per-day variability. We estimated
these parameters using least-squares exponential regression. Results
were similar across subjects (g = 57, 23, 54 and 00 = 0.63, 0.69, 0.72;
for M1, M3, M4 respectively). We used the average values of these
parameters across subjects (ḡ = 45 and 0̄0 = 0.67) to calibrate a model
of drift (Figure S4-b). This calibration does not provide all the infor-
mation needed for a principled comparison between simulations and
experiments. However, it seems reasonable to conjecture that among
the ∼10, 000+ synaptic inputs to a given pyramidal cell, there is suf-
�cient redundancy to recover a readout with accuracy comparable to
the 100 idealized encoding units considered here.

Comparing simulation and experiment also requires assumptions
about the frequency of "self-healing" reconsolidation, relative to the
drift rate. In our simulations we apply self-healing every Δ = 5 time
points. If we assume that "self-healing" occurs once per day in vivo,
then an excess per-timepoint variability of A = 30% and a time constant
of g = 45 days matches the simulated drift to the Driscoll et al. (2017)
(2) data. This implies approximate stability out to ∼10 days using re-
dundancy alone (�xed readout weights), a few months using Hebbian
homeostasis, and over a year if the readout contains a stable internal
model (Figure S4-d). However, a rigorous test of how these ideas apply
in vivo would require new experimental studies.

Normalized Root Mean-Squared Error (NRMSE)

In Supplemental Figures 1, 2, 3, and 6 we summarized the stability
of the readout population code by measuring the normalized distance
between the initial, trained readout �ring-rates y(\ ), and the �ring
rates on a given time-step y3 (\ ).

NRMSE(y(\ ), y3 (\ )) =
√

1
2 〈ỹ(\ ) − ỹ3 (\ )〉\," . (54)

The values ỹ and ỹ3 re�ect normalized tuning curves , in which the
�ring-rate function ~ (\ ) for each readout neuron has been z-scored
The average 〈·〉\," is taken over all" decoding units and all! values of
\ . The normalization by 1/2 ensures NRMSE ranges from 0 (identical
codes) to 1 (chance level).
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Topology of latent variable θExample encoding feature

Figure 4: Self-healing stabilizes readout population codes for diverse types of representational dri�. Left: An example of a single drifting encoding
feature G (\ ) sampled for a circular \ for di�erent hypothetical drift scenarios. The horizontal axes for all plots are expressed in terms of the number of complete
recon�gurations of the encoding population-code (or equivalent, for scenarios b-d). All simulations were run for)=1000 time-steps, corresponding to 10 complete
recon�gurations in the encoding population. For continuous drift (b-d), time-constants were set to match the rate of population drift corresponding to changing
encoding features one-at-a-time for a population of # = 100 encoding neurons. Right: Normalized Root-Mean-Squared-Error (NRMSE; 0=perfect match,
1=chance) of the readout population code over time. Lines indicate the median over 10 random seeds, and shaded regions the inter-quartile range. Simulation
parameters are the same as for scenarios b-f in Figure 4 in the main text. We ran “self-healing” reconsolidation every Δ = 5 iterations (equivalent to 5% change in
the encoding). We explored three topologies for \ : circular, linear, and T-maze (compare to Supplemental Figure S5). The rate of decay of the readout population
code does not depend on the style of drift in the encoding population. (a) “One-at-a-time” drift changes one out of # = 100 encoding neurons on each iteration of
the simulation. 100 simulated time-steps corresponds to one complete recon�guration of the encoding population. (b) “Random drift” applies Ornstein-Uhlenbeck
(OU) drift with a time constant g = 100 (Methods: Simulated drift). (c) “Non-sparse drift” samples the encoding curves directly from a linear, Gaussian process,
and does not apply the �ring-rate nonlinearity q ( ·) . These features lack the sparse, bump-like tuning curves present in the other scenarios. The variance has
been scaled to match that of the other drift scenarios. The correlation time is g = 100. (d) “Directed” drift simulates a second-order OU process evolving as two
stages of Eq. (9) in the main text chained in series, such that consecutive changes are correlated in time. Each stage has a time constant g = 50. Note that the
circular environment is generally less stable than the liner and T-maze environments, since it is able to drift along a continuous degree of symmetry.
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(a) Per-timepoint encoding variability

Homeostasis

0% 25%
Decoding weight drift

10 1

100

101

102

Su
rv

iv
al

 T
im

e
(#

 re
co

nf
ig

ur
at

io
ns

)

(b) Per-timepoint readout weight drift
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Figure 5: Encoding variability and readout-weight dri� a�ect stability. Each plot shows the survival time for a self-healing readout as in Fig. 4 of the
main text, measured as the time until the normalized root-mean-squared error of the readout exceeded 0.75. 10000 time-points are simulated for an encoding
population of #=100 cells with a drift time constant of g=100. Time (vertical axis) is expressed in multiples of the drift time constant. Boxes show the median
(black) and inter-quartile range. Whiskers indicate the 10th-90th percentiles over 20 random seeds. Scenarios in which the median survival time was less than
one complete recon�guration are plotted as "×" and those in which the median survival time exceeded the simulation time are are plotted as triangles. We
explored three topologies for \ : circular, linear, and T-maze (compare to Supplemental Figure S5). All simulations used the same parameters as in Figure 4 in
the main text, with the exception of the noise parameter (A or =) which is varied along the horizontal axis. Drift is gradual as described in Methods: Simulated
drift. “Self-healing” reconsolidation is applied every Δ=5 time-steps. (a) We varied the amount of daily encoding variability that is unrelated to cumulative drift.
This is expressed as the percentage of the variance in synaptic activation for the encoding neurons that is unique to each day (A , horizontal axis; Eq. (10) in the
main text). The “response normalization” and “linear-nonlinear map” scenarios show good stability up until =≈40% (c.f. Fig. 4 d-f in the main text). “Recurrent
feedback” is susceptible to instability, and some environments are destabilized at lower levels of variability. (b) We varied the amount of drift applied to the
readout’s decoding weights W on each day (=, horizontal axis; Eq. (11) in the main text). Recurrent dynamics can correct small amounts of readout-weight drift,
but stability degrades if drift exceeds ≈8% per time-step.
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Figure 6: Summary of stability of eachmodel scenario.
Each box shows survival time for a self-healing readout
as in Fig. 4 of the main text, measured as the time un-
til the normalized root-mean-squared error of the read-
out exceeded 0.75. 10000 time-points are simulated for
an encoding population of #=100 cells with a drift time
constant of g=100. Time (horizontal axis) is expressed in
multiples of the drift time constant. Boxes show the me-
dian (black) and inter-quartile range. Whiskers indicate
the 10th-90th percentiles over 20 random seeds. Scenarios
in which the median survival time exceeded the simula-
tion time are are plotted as triangles. We explored three
topologies for \ : circular, linear, and T-maze (compare to
Supplemental Figure S5). All simulations used the same
parameters as in Figure 4 in the main text. Drift is gradual
as described in Methods: Simulated drift. “Self-healing”
reconsolidation is applied every Δ=5 time-steps.
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Figure 7: The statistics of dri� observed in vivo are compatible with long-term stability. (a) The rate of drift can be measured using the cosine of the
angle between two tuning curves (“alignment”), estimated on di�erent days for the same cell (1: identical; 0: unrelated). Plots show tuning-curve alignment for a
population of cells tracked for over a month, taken from three subjects in Driscoll et al. (47). Each point re�ects the average alignment across the population for
a pair of recordings separated by Δ days. Measurement noise exaggerates apparent tuning di�erences, so alignment was normalized via a bootstrap estimator
such that tuning curves estimated from di�erent trials on the same day were fully aligned (teal ‘◦’). Alignment decays exponentially, with a similar timescales
across subjects ("g"). Extrapolating the day-to-day alignment (black ‘+’) to a separation of zero days (00) does not yield perfect alignment, indicating that not all
day-to-day tuning variability is explained by drift. This excess variability also cannot be attributed to systematic drift during the recording session (measured as
the alignment between the �rst and second half of the recording session; red ‘×’). (b) We modeled tuning curves as samples from a log-Gaussian process over the
latent space \ , with drift modeled as an Ornstein-Uhlenbeck random walk in tuning over time (Methods: Simulated Drift). We used a time-constant of g = 45 days
and applied A = 30% excess per-day variability to match the model to experimental data. (c) Tuning curves sampled from the model (bottom left) qualitatively
resemble those in the experimental data. Tuning curves in vivo, however, exhibited nonuniform statistics in \ (top left). The statistics of drift (right) are also
similar, with both model and data exhibiting day-to-day variability superimposed over slower long-term drift which exhibits punctuated stability. (d) Evolution
of readout population tuning curves under simulated drift. The drift timescale and day-to-day variability were calibrated as in (b). All other parameters were the
same as in Figure 4. Readouts with a stable internal model (“linear-nonlinear map” and “recurrent feedback”) exhibit long-term stability.
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Figure 8: Self-healing plasticity stabilizes various geometries. We simulated representational drift under various self-healing plasticity scenarios as in Figure
4 of the main text, applied to di�erent geometries. This �gure illustrates a ring-shaped (left), linear (middle), and T-shaped (right) geometries for the encoded
latent variable \ . The Gaussian-process synaptic activations for x(\ ) were adapted to each geometry by shaping the covariance structure to match each geometry,
keeping the correlation as a function of distance the same as in Figure 4 in the main text and Methods: Simulated drift. We simulated 1000 iterations of drift
with time-constant g = 100. Results are similar across all three topologies. Black-and-white plots show the con�guration of the readout population code at
various time-points, similarly to Figure 4 (left) in the main text. Colored plots show the result of applying unsupervised dimensionality reduction to the �nal
readout population tuning curves (Python sklearn SpectralEmbedding (80); c.f. (43)). We applied this embedding to points sampled from �ve random
‘walkthroughs’ of \ with additive Gaussian noise fb = 1.2 × 10−2 to emphasize the loss of signal-to-noise ratio in the absence of compensation. (a) Without
compensation, the amount of variability in y(\ ) that is related to \ decays, lowering the signal-to-noise ratio. Both the original tunings, and the capacity to
encode \ , is lost. (b) With homeostasis, the original readout tuning curves are lost. However, homeostasis stabilizes the information-coding capacity of the
readout. This is evidenced by the fact that nonlinear dimensionality reduction can still recover the underlying topology of \ . In this scenario, the readout y(\ )
behaves much like the drifting encoding population x(\ ) . (c) Hebbian homeostasis provides some stability, but causes the readout population code to collapse
around a few salient preferred \0. (d) Response normalization compensates for the destabilizing impact of Hebbian homeostasis. However, noise causes readout
neurons to swap their preferred tunings. (e, f) Long-term stability is possible in readouts with a stable internal model. Sharing of information among the readout
population, modeled here as either a linear-nonlinear map or recurrent feedback, allows for more robust error correction.
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Figure 9: Larger amounts of dri� between reconsolidation sessions reduces stability. Changing the rate of drift relative to the frequency of reconsolidation
a�ects the stability of the readout population code. In these simulations, all parameters are the same as in Fig. 4 in the main text, with the exception of the
frequency of reconsolidation Δ. In the main text, Δ = 5. We explore up to Δ = 45, equivalent to nine times faster drift. The rate of degradation for Hebbian
homeostasis scales with the rate of drift, with (a) and without (b) response normalization. Error correction via linear-nonlinear map (c) behaves similarly.
However, there is evidence for a stable steady-state solution for moderate rates of drift. The error of this steady-state solution increases with the drift rate. With
recurrent feedback (d), the population readout is stable for modest rates of drift, but loses stability above a certain rate (Δ ≈ 25).
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