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Neural representations change, even in the absence of overt learn-
ing. To preserve stable behavior and memories, the brain must
track these changes. Here, we explore homeostatic mechanisms that
could allow neural populations to track drift in continuous represen-
tations without external error feedback. We build on existing models
of Hebbian homeostasis, which have been shown to stabilize repre-
sentations against synaptic turnover and allow discrete neuronal as-
semblies to track representational drift. We show that a downstream
readout can use its own activity to detect and correct drift, and that
such a self-healing code could be implemented by plausible synap-
tic rules. Population response normalization and recurrent dynamics
could stabilize codes further. Our model reproduces aspects of drift
observed in experiments, and posits neurally plausible mechanisms
for long-term stable readouts from drifting population codes.
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The cellular and molecular components of the brain change1

over time. In addition to synaptic turnover (1), ongoing2

reconfiguration of the tuning properties of single neurons has3

been seen in hippocampus (2, 3) and neocortex, including4

parietal (4), frontal (5), prefrontal (6), visual (7, 8), and olfac-5

tory (9) cortices. Remarkably, the reconfiguration observed6

in these studies occurs in the absence of any obvious change7

in behavior, task performance, or perception. How can we8

reconcile this stability with widespread ongoing changes in9

how the brain encodes experiences?10

These recent and widespread observations seem to be at11

odds with well established evidence of homeostasis in neural12

circuit properties. Homeostasis is a feature of all biological13

systems, and examples of homeostatic plasticity in the ner-14

vous system are pervasive (e.g. (10) for review). Broadly15

speaking, homeostatic plasticity is a negative feedback process16

that maintains physiological properties such as average firing17

rates (e.g. 11), neuronal variability (e.g. 12), distributions of18

synaptic strengths (e.g. 13, 14), and population-level statistics19

(e.g. (15)). This maintains collective properties, such as the20

total synaptic drive to a neuron or an average firing rate in a21

population. Regulation of collective properties is consistent22

with substantial variability in internal components (16). This23

suggests that known homeostatic mechanisms may be capa-24

ble of maintaining a consistent readout from a continually25

reconfiguring code (17, 18).26

In our model of representational drift, homeostatic processes27

maintain selectivity and function in neural population codes,28

while allowing individual neurons to reconfigure. We also29

develop a second sense of homeostasis that allows consolidated30

representations to maintain stable relationships with unstable31

neural population codes. This form of homeostasis arises from32

the interaction between single-cell homeostatic processes, and33

Hebbian learning in a predictive coding framework. When34

combined with recurrent network dynamics, such “Hebbian35

homeostasis" stabilizes consolidated neural representations in36

the presence of drift.37

In this paper, we show that two kinds of homeostatic plastic- 38

ity can stabilize a population code despite drift. We first argue 39

that single-cell processes can stabilize the information-coding 40

capacity of populations. We then describe a novel form of 41

homeostatic plasticity that allows consolidated representations 42

to interoperate with unstable neural populations. The implica- 43

tion of this finding is that long-term storage of memories and 44

percepts is possible dynamically, with relatively simple, known 45

mechanisms. This potentially reconciles stable behavior with 46

representational drift. The mechanisms we propose here are 47

theoretical, but they are grounded in well-established princi- 48

ples of neuronal function. Our model therefore yields testable 49

predictions about how Hebbian plasticity and homeostasis 50

should interact to stabilize neural representations. 51

Background. We briefly review representational drift and the 52

broader context of the ideas used in this manuscript. Repre- 53

sentational drift refers to seemingly random changes in neural 54

responses during a learned task that are not associated with 55

learning (17). For example, in Driscoll et al. (4) mice nav- 56

igated to one of two endpoints in a T-shaped maze (Figure 57

1a), based on a visual cue. Population activity in Posterior 58

Parietal Cortex (PPC) was recorded over several weeks using 59

fluorescence calcium imaging. Neurons in PPC were tuned 60

to the animal’s past, current, and planned behavior. Grad- 61

ually, the tuning of individual cells changed: neurons that 62

might initially fire at the start of the maze, could start to fire 63

more toward the end—or become disengaged from the task 64

entirely (Figure 1b). The neural population code eventually 65

reconfigured completely (Figure 1c). However, neural tunings 66

continued to tile the task, indicating stable task information 67

at the population level. These features of drift have been 68

observed throughout the brain (3, 7, 8). 69

Gradual drift would be relatively easy for a downstream 70

readout to track using external error feedback, e.g. from 71
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ongoing rehearsal (18). Indeed, recent simulation studies72

confirm that learning in the presence of noise can lead to73

a steady state, in which drift is balanced by error feedback74

(19, 20). Here, we will show that it is possible to track drift75

without an external learning objective.76

Previous studies have shown how stable functional connec-77

tivity can be maintained despite synaptic turnover (21, 22).78

However, we are interested in the scenario where functional79

connectivity itself is unstable, allowing the roles of single neu-80

rons to change. Additionally, recent work has shown that81

discrete representations can be stabilized despite drift using82

neural assemblies (23, 24). Since assembly activation is all-83

or-nothing, no fidelity is lost if a few neurons enter or leave84

the assembly. A readout can detect this, and update how it85

interprets neural population activity (24).86

Self-correcting assemblies provide a compelling model for87

the longevity of discrete information, such as semantic knowl-88

edge. However, the brain must contend with continuous sen-89

sorimotor variables. Recent experiments suggest that neural90

representations of these variables are also continuous (25).91

Even if internal representations are discrete (26, 27), the ex-92

ternal world is not. Some states will always lie at ambiguous93

boundaries between different assemblies. Here, small amounts94

of drift can introduce large changes.95

Despite this, neural representations of continuous tasks96

are stable. Neural activity is typically confined to a low-97

dimensional manifold that reflects sensory, motor, and cogni-98

tive variables (28). The geometry of these low-dimensional99

representations is consistent over time, although the way it100

is reflected in neuronal firing changes (29, 30). Engineers101

have applied online recalibration and transfer learning and to102

track drift in brain-machine interface decoders (31). Could103

neurons in the brain do something similar? We argue that neu-104

ronal homeostasis and Hebbian plasticity driven by internally-105

generated prediction errors allows neural networks to, in effect,106

“self-heal".107

Results108

Here, we explore how neural networks could track drift in109

sensorimotor representations. There are two important general110

principles to keep in mind throughout. First, distributed111

neural representations are redundant. To create ambiguity112

at the macroscopic level, many smaller disruptive changes113

must occur in a coordinated way. Neurons can exploit this114

to improve their robustness to drift. Second, learning creates115

recurrent connections that allow neural populations to predict116

their own inputs and activity. Even if learning has ceased,117

these connections continue to constrain activity. This allows a118

downstream readout to repair inputs corrupted by drift, and119

use these error-corrected readouts as a training signal.120

In the first half of the manuscript, we discuss how homeosta-121

sis achieves stable population-level representations, despite122

instability in single-neuron tunings. We then explore how a123

single neuron might stabilize its own readout in the presence124

of drift using homeostasis, and updating its synaptic weights.125

In the latter half of the manuscript, we show that these rules126

imply a form of Hebbian learning that achieves homeostasis.127

We extend these ideas to neural populations, and show that128

recurrent dynamics can stabilize a readout of an unstable129

neural code.130

A model for representational drift. To understand how neurons 131

cope with unstable population codes, we must first build 132

a model of representational drift. We focus on continuous 133

representations, like those studied in Ziv et al. (2) and Driscoll 134

et al. (4), and simplify our model as much as possible. 135

Figure 1b illustrates average neuronal fluorescence inten- 136

sities as a function of progress through the task, mapped 137

to a pseudo-location variable θ∈[0, 1] (Methods: Data and 138

analysis). Neurons fired preferentially in specific parts of the 139

maze. Preferred tunings were typically stable, but occasionally 140

changed abruptly. Figure 1c shows a population of forty neu- 141

rons tracked over thirty-nine days. Neurons could be sorted 142

according to their preferred location on the first day, and tiled 143

the task space. Preferred tunings gradually switched over 144

time to new locations, leaving little trace of the original code 145

after a month. To model this, we consider a population of N 146

neurons that encodes states θ. We assume that the encoded 147

states θ lie on a continuous low-dimensional manifold. We 148

neglect noise, and assume that θ is encoded in the vector of 149

instantaneous firing rates in a neural population, with tuning 150

curves x(θ) = {x1(θ), .., xN (θ)}>. 151

The population statistics (2, 4, 9), and low-dimensional 152

geometry (29, 30) of drifting population codes remains sta- 153

ble. The properties of single-neuron tuning curves are also 154

preserved: place cells may change their preferred location, but 155

always look like place cells (2). We incorporate these con- 156

straints by viewing tuning curves as random samples from the 157

space of possible tuning curves, constrained by the statistics 158

of the encoded variables. 159

To define this random process, we assume that a task is 160

associated with a set of K features, s(θ) = {s1(θ), .., sK(θ)}>. 161

These features have a fixed relationship to the external world, 162

for example visual input or the space of joint configurations, 163

and capture the statistics of the encoded variables θ. To model 164

this, we take s(θ) to be fixed samples from a Gaussian process 165

on θ: 166

s(θ) ∼ GP[0,Σ(θ, θ′)] [1] 167

These features are combined linearly through an encoding 168

weight matrix U = [u1, ..,uN ], to yield the synaptic activations 169

a(θ)={a1(θ), .., aN (θ)}> of the encoding population. Each 170

column ui is the encoding weights for a single unit xi. The 171

firing rates x(θ) are then given as a nonlinear function of these 172

activation functions: 173

a(θ) = U>s(θ)
x(θ) = φ[a(θ)]

[2] 174

The nonlinearity φ[·] can be any function that is rectifying 175

and monotonically increasing; We use the exponential here. 176

If the encoding weights are taken as i.i.d. samples from a 177

standard normal distribution, u∼N (0, IN ), then the activation 178

functions will follow a zero-mean Gaussian process on θ with 179

covariance inherited from s(θ). This converts the problem of 180

defining drift as a random walk through the space of possible 181

activation curves a(θ), to a simpler random walk in the space 182

of encoding weights, U. (See Methods: Simulated drift for 183

details of how these weights evolve, and why this preserves 184

information about θ in the population.) 185

At this point we should pause to address two caveats of this 186

model. First, the fixed features s(θ) do not exist in a literal 187

sense. It is true that primary sensory and motor connections 188

are fixed, but these do not provide a sufficiently rich basis to 189
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Fig. 1. A model for representational drift. (a) Driscoll
et al. (4) imaged population activity in PPC for several
weeks, after mice had learned to navigate a virtual T-maze.
Neuronal responses continued to change even without
overt learning. (b) Tunings were often similar between
days, but could change unexpectedly. Plots show average
firing rates as a function of task pseudotime (0=beginning,
1=complete) for select cells from (4). Tuning curves from
subsequent days are stacked vertically, from day 1 up to
day 32. Missing days (light gray) are interpolated. Peaks
indicate that a cell fired preferentially at a specific loca-
tion (Methods: ??). (c) Neuronal tunings tiled the task.
Within a day, one can decode the mouse’s behavior from
population activity (4, 18). Plots show normalized tuning
curves for 40 random cells, stacked vertically. Cells are
sorted by their preferred location on day 1. By day 10,
many cells have changed tuning. Day 39 shows little trace
of the original code. (d) We model drift in a simulated
rate network (Methods: ??). An encoding population x(θ)
receives input s(θ) with low-dimensional structure, in this
case a circular track with location θ. The encoding weights
U driving the activations a(θ) of this population drift, lead-
ing to unstable tuning. Homeostasis preserves bump-like
tuning curves. (e) As in the data (a-c), this model shows
stable tuning punctuated by large changes. (f) The neural
code reorganizes, while continuing to tile the task. We
will examine strategies that a downstream readout could
use to update how it decodes x(θ) to keep its own rep-
resentation y(θ) stable. This readout is also modeled as
linear-nonlinear rate neurons, with decoding weights W.

describe all possible sensorimotor transformations. Richer rep-190

resentations are constructed through transformations within191

the brain (e.g. 32). The synapses involved in these transfor-192

mations are also subject to drift. The decomposition of fixed193

s(θ) and drifting a(θ) captures the abstract principles that194

(I) the brain has learned a rich representation of θ with fixed195

statistics, (II) this representation is tethered to the external196

world, and (III) drifting synaptic weights cause neurons to197

wander through the space of task-relevant tuning curves.198

The second caveat we should address is that this model is199

not, on its own, especially stable. We have assumed that inputs200

s(θ) and encoding weights U follow particular distributions,201

which yield synaptic activations a(θ) that produce sensible202

firing rates when passed through nonlinearity φ[·]. These203

constraints are easily enforced in a computer, but biological204

systems must achieve them through homeostatic tuning or205

regulation of the network activity.206

To model these homeostatic processes, we impose an addi-207

tional constraint on the mean and the variance of the firing208

rate for each encoding neuron xn(θ):209

〈xn〉 = µ0

var[xn] = σ2
0

[3]210

These moments are fixed by homeostatically adapting a bias211

β and gain γ of each neuron separately:212

x(θ) = φ[γa(θ) + β]. [4]213

The bias can be viewed as threshold adaptation, and the gain214

as synaptic scaling. These processes control the excitability215

and variability of the encoding neuron, respectively. They216

occur over hours to days, through homeostatic regulation in 217

single neurons (12). For a fixed average firing rate, larger 218

variability invariably corresponds to higher selectivity. Home- 219

ostatic regulation of these statistics ensures that (I) encoding 220

neurons retain a reasonable range of firing rates and (II) the 221

tuning curves of these encoding neurons remain selective for 222

a particular preferred stimulus θ0 (or set of stimuli that are 223

similar in some way). 224

For encoding neuron x(θ), we adjust the gain and bias 225

based on the error between the neuron’s firing rate statistics, 226

and the homeostatic targets Eq. (3). 227

∆γ ∝ εσ = (σ2
0 − var[x])/σ2

0

∆β ∝ εµ = µ0 − 〈x〉
[5] 228

Multiple homeostatic processes acting in parallel can interact, 229

potentially leading to instability (12). One solution is to allow 230

threshold adaptation to be much faster than synaptic scaling. 231

Another is for the synaptic scaling process to also adapt the 232

threshold, canceling out any influence on excitability. 233

Figure 1 shows examples of tuning curve drift from Driscoll 234

at al (4), compared to the Gaussian-process model of drift 235

described above. Figure 1d-f illustrates simulated tuning curve 236

drift in the model. We define a circular environment with 237

location θ ∈ [0, 2π). This location drives fixed input features 238

s(θ), which then drive activity in the encoding population 239

x(θ) via encoding weights U. Drift is simulated as a random 240

walk on these encoding weights, and the encoding cells’ tuning 241

curves are homeostatically maintained according to Eq. (3) 242

and Eq. (4) (Methods: Simulated drift). Notably, the model 243

mimics changes in tuning curves seen in vivo. In Figure 1e, 244

we see that individual encoding neurons show a punctuated 245
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Fig. 2. Homeostatic Hebbian plasticity enables sta-
ble readout from unstable populations. (a) Simulated
linear-nonlinear units that are driven by redundant popu-
lation activity show a loss of excitability, not a change in
tuning, when their inputs drift. Since the cell is selective
to a conjunction of features, it loses excitatory drive when
some of its inputs change. Since most drift is orthogonal
to this readout, however, the preferred tuning θ0 does not
change. The right-most plot shows that the excitability grad-
ually diminishes as a larger fraction of inputs change. (b)
Homeostatic adjustments to neuron sensitivity stabilizes
readouts for small amounts of drift. As more inputs recon-
figure, the cell compensates for loss of excitatory drive by
increasing an effective gain parameter γ. However, the
readout changes to a new, random location once a sub-
stantial fraction of inputs have reconfigured (right). This
phenomenon is the same as the model for tuning curve
drift in the encoding population (c.f. Fig. 1e). (c) Hebbian
homeostasis increases neuronal variability by potentiating
synaptic inputs that are correlated with post-synaptic ac-
tivity, or depressing those same synapses when neuronal
variability is too high. This results in the neuron re-learning
how to decode its own tuning curve from the shifting popu-
lation code, supporting a stable readout despite complete
reconfiguration (right).

stability in their tuning, similar to Figure 1b. Likewise, Figure246

1f shows that the tuning curves of the encoding population tile247

the state space, but gradually reconfigure over several weeks.248

Overall, this illustrates that neural population codes dis-249

playing drift similar to that seen in the brain arise under very250

generic circumstances. The only constraints are (I) that inputs251

to the population reflect the similarity space of the encoded252

variables θ, and (II) that neuronal excitability and selectivity253

are homeostatically maintained.254

Hebbian homeostasis stabilizes readouts without error feed-255

back. Neural population codes are massively redundant. For256

example, most of the neural variability in (4) is explained by257

progress through the maze, conditioned on the current and258

planned turn direction. Nonlinear dimensionality reduction259

algorithms recover the latent T-shaped structure of the task260

(17). Because of redundancy, there are many valid ways to261

decode information from the population. We propose that,262

in the absence of external error feedback or sensorimotor re-263

hearsal, a readout could use this to generate a surrogate error264

signal. The error signal supports a plasticity rule that could265

allow unstable neural codes to be continuously reconsolidated.266

This self training re-encodes a learned readout function y(θ)267

in terms of the new neural code x(θ), allowing the network268

to track an unstable representation. Surprisingly, this "self-269

healing" plasticity stabilizes the readout of unstable population270

codes even in single neurons. We first sketch an example of271

this plasticity, and then explore why this works.272

Using our drifting population code as input, we model273

a readout population of M neurons with tuning curves274

y(θ) = {y1(θ), .., yM (θ)}> (Figure 1d). If this readout is sta-275

ble, then the responses y(θ) should remain fixed, even as the276

encoding population x(θ) reconfigures completely. We model277

this decoder as a linear-nonlinear function, using decoding278

weights W and biases (thresholds) b:279

y(θ) = φ[W>x(θ) + b]. [6]280

On each simulated day, we re-train the decoding weights using281

a Hebbian rule. This potentiates decoding weights whose input 282

xn(θ) correlates with the post-synaptic firing rate ym(θ). We 283

also adapt the threshold b to maintain the average firing rate, 284

and include some weight decay: 285

∆W ∝ εσ[〈x(θ)y(θ)>〉θ −W]
∆b ∝ εµ 〈x(θ)〉θ .

[7] 286

In some ways, Eq. (7) resembles the homeostatic rules ex- 287

plored earlier (Eq. (3)). Firing rate statistics are controlled 288

through negative feedback, driven by measurements of the 289

deviations from the target set-points εµ and εσ. However, 290

rather than scale all weights uniformly, this rule adjusts the 291

component of the weights that is most correlated with the post- 292

synaptic output, y(θ). Traditionally, “homeostatic Hebbian 293

plasticity" refers to processes that stabilize synaptic weights 294

and responses under ongoing rehearsal and learning. The 295

role of “Hebbian homeostasis" here is more specific: the neu- 296

rons adjust their activity toward homeostatic set-points using 297

Hebbian (or anti-Hebbian) learning. 298

Figure 2 simulates a single neuron driven by the unstable 299

population code. With fixed weights (Figure 2a), drift reduces 300

the excitability without changing its tuning. This is because 301

the readout requires a conjunction of specific inputs to fire. 302

Drift gradually destroys this conjunction, and is unlikely to 303

spontaneously create a similar conjunction at a different part 304

of the coding space. A similar phenomena may underlie forms 305

of drift that consist of changes in excitability, but stable 306

preferred tuning (5, 7, 33). For small amounts of drift, firing- 307

rate homeostasis Eq. (5) can temporarily stabilize the readout 308

(Figure 2b). Eventually, however, the encoding population 309

reconfigures so drastically that no trace of the original code 310

remains, and the cell acquires a new preferred stimulus. 311

In contrast, Figure 2c illustrates the consequences of Heb- 312

bian homeostasis. As the encoding population x(θ) drifts, the 313

excitatory drive to the neuron decreases. This activates home- 314

ostatic plasticity to restore neuronal excitability. However, 315

instead of scaling up all synapses uniformly, the neuron selec- 316
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Fig. 3. Self-healing codes in a linear model. (a) Net-
work schema: An unstable population x(θ) encodes vari-
ables θ (c.f. Fig. 1). A linear readout y(θ) seeks to home-
ostatically preserve its representation, and can use re-
current activity as a training signal ŷ. (b-1) Drift changes
the low-dimensional structure of population activity. Most
drift occurs in non-coding directions, and readouts can
detect when low-dimensional activity no longer aligns
with their synaptic weights. In linear models, this corre-
sponds to reduced firing-rate variability. (b-2) Hebbian
homeostasis restores a target variability by re-aligning
the decoding weights with low-dimensional activity. This
is the sum of a Hebbian and weight-decay term, scaled
by the homeostatic error γ. (b-3) For small amounts of
drift, this self-repair has low (but nonzero) error. Large
amounts of drift can be tracked if changes are gradual.
(c) Readout stability y(θ) with bump-like tuning curves
tiling a circular space. Encoding cells x(θ) drift with time-
constant τ = 50 days (“one epoch"). We simulate ten
epochs, applying continuous-time Hebbian homeostatic
learning rules (Eq. 13). Fixed weights degrade rapidly.
Single-cell homeostasis provides some stability for≈ 3
epochs, but preferred directions shift. Recurrent dynam-
ics better preserve population correlation structure. (d)
Hebbian homeostasis reduces the drift of the readout,
and recurrence stabilizes it further. The ability of the lin-
ear network to error-correct is limited, so the readout still
drifts in the long-term (but see Fig. 4). Shaded regions
reflect the interquartile range over twenty realizations.

tively potentiates the component of x(θ) that correlates with317

its own output. This leverages the fact that small amounts318

of drift change neuronal excitability, but not tuning. The319

neuron’s own output provides a teaching signal to re-learn320

decoding weights for inputs that have changed.321

If Hebbian homeostasis is applied continuously, a readout322

can track drift despite complete reconfiguration in the encoding323

population x(θ). In effect, the readout’s initial tuning curve324

is transported to a new set of weights that estimate the same325

function from an entirely different input (Methods: Weight326

filtering). This homeostatic rule might seem ad-hoc. However,327

we will show that such a rule arises naturally as a plausible328

consequence of the interaction between prevailing models of329

learning and homeostasis.330

Internal models track drift. Since most neurons are not coupled331

directly to the external world, learning must incorporate con-332

straints on perception and behavior into local networks (34).333

Neural populations learn internal models that recapitulate334

and predict the statistics of the external world (35–39). We335

propose that these internal models provide the error signals336

needed to integrate stable and volatile neural representations.337

In essence, the brain generates a teaching signal that trains338

neurons how to re-interpret the meaning of neurons whose339

function have changed. By computing this teaching from re-340

current dynamics, the brain continually re-trains itself. This341

implies that a strategy for tracking drift in a neural population342

should contain three components.343

I The readout should leverage redundancy to minimize the344

error caused by drift.345

II The readout should use its own activity as a training346

signal to update its decoding weights.347

III The correlation structure of the readout population should348

be homeostatically preserved.349

To show how these principles imply Hebbian homeostasis, we 350

unpack them in a linear network. We then illustrate that 351

these principles lead to long-term stability, despite drift, in a 352

nonlinear network. 353

A self-healing linear readout. In a linear network (Fig. 3a), 354

the readouts y(θ) can be viewed as the output of ordinary 355

least-squares linear regression. Although this network is not 356

particularly good at correcting errors, it does provide useful 357

intuition. We incorporate the three components of self-healing 358

codes (robustness, self-training, and correlation homeostasis) 359

as follows: (I) We regularize decoding weights to improve 360

robustness; (II) We use the readout’s own activity as a train- 361

ing signal; (III) We use homeostasis to stabilise firing-rate 362

variability, and recurrent dynamics to stabilize correlations. 363

We assume that the readout is initially trained from an 364

external error signal, and consider a drifting population code 365

xd(θ) that evolves randomly over several days ‘d’. Given a 366

training signal y0, the regularized least-squares solution for 367

the ideal decoding weights for the following day d+ 1 is: 368

Wd+1 = [Σd + Σ∆]−1〈xdy>0 〉, [8] 369

where Σd = 〈xdxd>〉 is the covariance of the encoding popu- 370

lation on day d, and Σ∆ is a regularizing term reflecting the 371

expected covariance of day-to-day drift. 372

To incorporate self-training, we generate the training signal 373

for the weights on day d+ 1 from the network’s own output on 374

day d. For a linear readout, the readout is the linear projection 375

ŷ = W>
d xd. The expectation 〈xdy>0 〉 therefore equals ΣdWd 376

and on may write: 377

Wd+1 = [Σd + Σ∆]−1ΣdWd [9] 378

This update applies recursive filtering to the weights (Methods: 379

Weight filtering). However, filtering alone is unhelpful (Fig. 380

3e), since it allows activity to decay as predictions become 381
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(e) Recurrence
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÷

y
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) 
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144 18072361 108 Fig. 4. Self-healing readout in a nonlinear rate net-
work. Each plot shows (left) the stability of a population
readout y(θ) from a drifting code x(θ) over time, (middle)
a schematic of the readout dynamics, and (right) a plot
of select readout unit’s tuning to θ if 55 out of 60 (92%)
of the encoding cells were to abruptly switch to a new,
random tuning. (a) For fixed readouts, representational
drift in the encoding population gradually destroys the fea-
ture conjunctions used to define selective activity in the
readout. (b) Homeostatic processes could stabilize the
mean firing rate and variability in readout cells. For small
amounts of drift, homeostasis can compensate for loss
of drive. However, drift eventually disrupts the readout’s
tuning curve. (c) Hebbian homeostasis can preserve the
statistics of tuning curves in single cells, by using a neu-
ron’s own output as a training signal to update decoding
weights. However, this process is not lossless, and the
population code in the readout degrades over time. (d)
Response normalization controls the population firing rate,
causing neurons to compete for activation. This stabilizes
the statistics of the population code, but readout neurons
can still swap preferred tunings, degrading the readout. (e)
Recurrent activity, in which the network predicts its own
activity, can enforce population correlations. This limits the
structure of the readout to the ring-like encoding in which
it was first trained. Here, the only drift that is permitted is
along the symmetry of the circular state θ.

uncertain. To stabilize the firing-rate variability, we rescale382

the training signal to compensate for any loss of variability σ2
y,383

from its homeostatic target σ2
0 . For a single readout neuron384

with weights w, this gives the homeostatic update:385

wd+1 = [Σd + Σ∆]−1Σdwd
σ0
σy

[10]386

This update can be solved by online stochastic gradient descent387

using a Hebbian learning rule (Methods: Synaptic learning388

rules.).389

∆wt ∝ γ xty>t − Σ∆wt [11]390

We can use loss of excitatory drive as an indicator of the391

current drift rate, setting Σ̂∆≈γI (Methods: Estimating the392

rate of drift). This gives a Hebbian rule:393

∆wt ∝ γ · [xtx>t − I]wt [12]394

This learning rule is the same as the Hebbian homeostasis rule395

proposed earlier Eq. (7). Its acts as follows: In redundant,396

low-dimensional codes, most drift occurs in directions that are397

not used for coding (Fig. 3b-1). Drift does, however, reduce398

input drive to a readout. Neurons can detect this, and apply399

Hebbian homeostasis to re-align their decoding weights with400

the encoding subspace (Fig. 3b-2). This process allows synap-401

tic weight to track drift as it occurs. If drift is gradual, a stable402

readout can survive multiple complete reconfigurations of the403

input code (Fig. 3b-3). This update resembles classic linear404

approximations to Hebbian learning (40) with weight decay.405

Such learning rules extract the leading principle component(s)406

of their input. This can cause different cells tend to regress to407

encoding the same salient inputs. Population interactions can408

counter this, as we will explore later.409

Recurrence in a linear model Hebbian homeostasis improves410

stability, but does not stabilize the population code in the411

long-term, since the tuning of each neuron can diffuse slowly.412

Recurrent dynamics address this by deleting changes in y(θ)413

that are inconsistent with the learned structure of θ. We414

define recurrent weights R that transform the feed-forward 415

activations yf = W>x into an error-corrected training sig- 416

nal yr = R>yf . This gives a new Hebbian learning term 417

that cancels the difference between feed-forward and recurrent 418

activity: 419

∆W ∝ γ[〈xy>r 〉 −wt] + ρ〈x(yr − yf )>〉, [13] 420

where ρ sets the influence of recurrent dynamics on the decod- 421

ing weights. The error signal yr−yf can be computed using 422

recurrent negative feedback in a predictive coding framework 423

(Methods: Linear network with recurrence). The benefits of 424

recurrence in a linear network are limited (Fig. 3d), but more 425

substantial in a nonlinear network (Fig. 4). 426

Overall, the linear model provides important intuition: Heb- 427

bian homeostasis is an inevitable consequence of the interaction 428

between Hebbian learning and homeostatic processes in single 429

cells. This stabilizes neural function in the presence of drift; 430

Recurrent dynamics can provide further stability (Fig. 3cd). 431

As we discuss next, further constraints, such as nonlinear 432

recurrent dynamics and response normalization, can confer 433

marked stability. 434

Nonlinearity and response normalization. Much of the intu- 435

ition from the linear network extends to the nonlinear case. 436

We assume that neuronal responses are (approximately) locally 437

linear, so the same Hebbian learning rules apply. However, 438

a nonlinear network has key advantages: It is better at cor- 439

recting errors, and it lets us examine the effect of response 440

normalization on readout stability. 441

Response normalization controls the average firing rate in 442

a local population of neurons, causing neurons to compete 443

to remain active. It is supported experimentally, and impli- 444

cated in diverse sensory computations (for review, see (41)). 445

Competition can encourage neurons to acquire diverse tunings, 446

forming a population of localized receptive fields that tile the 447

encoded latent variable space (42, 43). 448
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Nonlinear recurrent networks require specific architectural449

details to ensure stable dynamics. To avoid this complexity,450

we model recurrent dynamics and response normalization as451

discrete transformations. For response normalization, we di-452

vide the rates by the average firing rate across the population453

〈yf (θ)〉:454

yd(θ) = yf (θ)/〈yf (θ)〉 · µp, [14]455

where µp is the target average firing rate across the population.456

For recurrent connections, we train the readout to predict its457

own activity using fixed set of recurrent weights R:458

yr(θ) = φ[R>yd(θ)] [15]459

This signal yr(θ) can be used as a training signal to continu-460

ously update the forward encoding weights, as in Eq. (5).461

Figure 4 summarizes the impact of drift on a nonlinear462

population readout in several scenarios (Methods: Nonlinear463

simulations). As in the linear case, fixed weights are unstable.464

Classical homeostasis provides only short term stability. Heb-465

bian homeostasis stabilizes tuning curve statistics, but does466

not prevent collapse of the population code (Fig. 4a-c).467

Surprisingly, response normalization alone improves stabil-468

ity substantially (Fig. 4d). It creates repulsive force between469

neurons’ preferred tunings under the influence of Hebbian plas-470

ticity. For the one-dimensional θ explored here, this repulsion471

constrains the possible rearrangements. Drift must be large to472

cause two readout neurons to exchange their preferred tunings.473

Note that tuning curves would be much less constrained in474

higher dimensional spaces, and we should expect the stabilizing475

effect of crowding to diminish in higher dimensions.476

With recurrent dynamics, the nonlinear readout is excep-477

tionally stable (Fig. 4d). The recurrent weights strongly con-478

strain the correlated activity patterns in y(θ), and suppressing479

any activity that does not match the ring structure learned480

initially. Drift can only occur along directions of symmetry in481

the underlying encoded space θ. For the circular θ explored482

here, drift can rotate the readout, but no other changes are483

permitted. This illustrates that internal models can strongly484

constrain network activity, and that these constraints allow485

populations of neurons to tolerate complete reconfiguration of486

the inputs that drive them.487

Discussion488

In this work, we outlined homeostatic principles that could489

allow stable and plastic representations to coexist in the brain.490

We argue that self-healing codes should have of three compo-491

nents: (I) Neuronal responses should be tolerate small amounts492

of drift; (II) Neurons should use their own output as a training493

signal to update their decoding weights, and (III) Stable codes494

should homeostatically preserve internal models, which are495

reflected in stable population statistics.496

Here, we considered two populations, one stable and one497

unstable. This could reflect communication between stable498

and plastic components of the brain, or the interaction between499

stable and plastic neurons within the same population. This500

is consistent with experiments that find consolidated stable501

representations (44), and with the view that neural populations502

contain a mixture of stable and unstable cells (45).503

However, there is no requirement that a neuron that is504

stable at present must remain so. Over time, neurons could505

enter or leave this stable core. As long as some stable neurons506

remain, long-term representations could persist. This implies 507

a general principle that supports reallocation of the function 508

of single neurons, while preserving internal models. It also 509

raises the question of whether a stable population is even 510

necessary: could functional stability be achieved by several 511

plastic populations tracking each-other? This points to a 512

potentially powerful generalization of homeostatic principles, 513

which could explain the long-term robustness of distributed 514

neural representations. 515

Here, we considered how networks might stabilize a pre- 516

existing trained structure. How are these stable representa- 517

tions learned? Once learned, can they be updated? A crucial 518

assumption in our work is that neurons generate their own 519

internal training signals. For single cells, this amounts to 520

error correcting across the pool of its own synaptic inputs. 521

For networks, this corresponds to prediction errors coming 522

from recurrent or top-down dynamics. These error signals 523

are precisely the same ones that would be used for learning 524

from external error feedback. During learning, recurrent and 525

top-down prediction errors propagate high-level reinforcement 526

signals back to local neural populations (34). These predic- 527

tion errors are carried by the same mechanisms that we use 528

here to achieve homeostasis. Hebbian homeostasis, then, can 529

be viewed as a natural consequence of predictive learning 530

mechanisms in the absence of external error feedback. 531

The brain supports both consolidated and volatile repre- 532

sentations, respectively associated with memory and learning. 533

Artificial neural networks have so far failed to imitate this, 534

and suffer from catastrophic forgetting wherein new learning 535

erases previously learned representation (46). Many strategies 536

have been proposed to mitigate this. Broadly, all of these 537

methods segregate stable and unstable representations into 538

distinct subspaces of the possible synaptic weight changes 539

(c.f. 47). These learning rules therefore amount to preventing 540

disruptive drift in the first place. 541

The strategies we explore here are fundamentally different. 542

We do not restrict changes in weights or activity: the encoding 543

population is free to reconfigure arbitrarily. However, any 544

change in a neural code leads to an equal and opposite change 545

in how that code is interpreted—The brain must publish new 546

translations of its changing internal language. This constraint 547

preserves the functional relationships between neurons. The 548

approach shares some similarities with approaches to attenu- 549

ate forgetting using replay during sleep, or the equivalent in 550

artificial networks (e.g. (48, 49)). The internal models must 551

be occasionally re-activated through either rehearsal or replay, 552

in order to detect and correct inconsistencies caused by drift. 553

If this process occurs too infrequently, drift becomes large, 554

and the error correction will fail. 555

Here, we focused on homeostatic maintenance of function 556

despite drifting population codes. It is worth exploring whether 557

a similar process can explain how the brain preserves learned 558

representations despite neuronal death. In developmental 559

pruning, the brain removes synapses and neurons without loss 560

of function (50). Existing models of pruning require ongoing 561

learning to prevent loss of learned representations (51, 52). 562

Homeostatic preservation of predictive models may allow the 563

brain to benefit from large networks during learning (53–55), 564

and optimize these networks without extensive re-training. 565

To integrate stable and plastic representations, changes 566

anywhere in the brain must be accompanied by compensatory 567
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changes throughout the brain. The learning rules we explored568

here placed a particular emphasis on Hebbian homeostasis,569

and the role of predictive coding in generating robust repre-570

sentations. In the long term, these processes could support571

widespread reallocation or reconsolidation of neuronal func-572

tion. Further exploration of these principles may clarify how573

the brain can be simultaneously plastic and stable, and pro-574

vide clues to how to build artificial networks that share these575

properties.576

Materials and Methods577

Data and analysis. Data shown in Figure 1b,c were taken from578

Driscoll et al. (4), and are available online at at Dryad (56). Ex-579

amples of tuning curve drift were taken from mouse four, which580

tracked a sub-population of cells for over a month. Normalized581

dF/F calcium transients were band-pass filtered between 0.3 and 3582

Hz, and individual trial runs through the T maze were extracted.583

Calcium fluorescence traces from select cells were aligned based on584

task pseudotime (0: start, 1: reward). The activity of each cell585

was z-scored within each trial to yield a normalized log-fluorescence586

signal. On each day, normalized log-fluorescence was averaged over587

all trials and then exponentiated to generate the average tuning588

curves shown in Figure 1b. for Figure 1c, a sub-population of forty589

cells was selected at random, and sorted based on their peak firing590

location on the first day. For further details, see (4, 18).591

Simulated drift. We sample a random walk on encoding weights U as592

an Ornstein Uhlenbeck (OU) process with unit steady-state variance593

and time constant τ , measured in days. Given τ , and the constraint594

that the steady-state variance of an OU process is 1
2 τσ

2 = 1, we595

set the noise variance to σ2 = 2/τ . In discrete time this is sampled596

with α = σ2∆t:597

ut+1
ij = utij

√
1− α+

√
αξ, ξ∼N (0, 1) [16]598

This yields an embedding of θ in the activity of the N -dimensional599

encoding population that changes gradually and randomly over time.600

The structure of θ encoded in s(θ) is inherited by a(θ) = U>s(θ).601

This model preserves the amount of population variability in602

a(θ) driven by θ, in expectation:603 〈
‖∇θa(θ, t)‖2

〉
= N · tr[∇θΣ(θ, θ′)∇>θ′ ] = N · ‖∇θs(θ)>‖2 [17]604

In the special case of an exponential nonlinearity φ= exp, the trace605

of Fisher information of x(θ) is proportional to the average variation606

in a(θ) driven by θ:607

tr[I(θ)] ∝
〈
‖∇θln[x(θ, t)]‖2

〉
=
〈
‖∇θa(θ, t)‖2

〉
[18]608

Formally, the Fisher information is infinite when the noise in x609

is zero, but Eq. (18) can be viewed as the zero-variance limit of610

homogeneous and i.i.d. Gaussian noise with suitable normalization.611

In expectation then, this random walk in the encoding weight612

space preserves the overall population code statistics: It preserves613

the geometry of θ in the correlations of a(θ), and the average amount614

of information about θ encoded in the population activations.615

Weight filtering. We consider a linear version of our encoding-616

decoding model (Eqs. 2-6), whose weights and activity change617

across days ("d")618

xd(θ) = U>d s(θ)

yd(θ) = W>
d xd(θ)

[19]619

Drift can be viewed as a slow-timescale component of noise, and620

a readout that is robust to noise can also tolerate some amount621

of drift. Denote the drift in the code between days as ∆x(θ), and622

assume that it can be modeled as Gaussian:623

∆x(θ) ∼ N (0,Σ∆) [20]624

This Gaussian model captures diffusive drift like the OU process625

Eq. (16) introduced earlier. For training signals (x0,y∗0), the least-626

squares optimal weights for day d+1 trained on activity on day d is627

given by regularized linear regression:628

Wd+1 = [Σd + Σ∆]−1Σ0,y∗0 [21]629

where Σd is the covariance of xd(θ), and Σ0,y∗0
is the cross covariance 630

between the encoding population activity and the target readout 631

tuning curves y∗0. 632

We needn’t estimate these regularized weights from scratch. If 633

we have already weights Wd trained on day d, then we can prepare 634

regularized weights for the subsequent day Wd+1 by updating these 635

existing weights. This also realigns the decoding weights with the 636

correlation structure of the current encoding, Σd=〈xdxd>〉: 637

Wd+1 = [Σd + Σ∆]−1ΣdWd. [22] 638

(c.f. Eq. 9) This is equivalent to using the activity on the current 639

day, xd+1, to predict the corresponding activity on the previous 640

day xd: 641

x̂d = Σd[Σd + Σ∆]−1xd+1 [23] 642

Applying Eq. (23) iteratively yields an estimate of the original code 643

x̂0, thereby translating the current representation xd back in time 644

to when the readout was first learned: 645

ŷ(θ) = W>
0
{∏

d′∈0..d−1 Σd′ [Σd′ + Σ∆]−1
}

xd(θ). [24] 646

Since the readout activity is driven by these decoding weights, 647

yd = W>
d xd, this recursive filtering can be interpreted by the 648

network re-training itself using its own output: 649

y∗ = W>
d xd

Wd+1 = [Σd + Σ∆]−1Σd,y∗

Σd,y∗ = 〈xdy∗>〉 = 〈xdxd>Wd〉 = ΣdWd

⇒Wd+1 = [Σd + Σ∆]−1ΣdWd [c.f. Eqs. 9,22]

[25] 650

To summarize, tracking an unstable code involves filtering the 651

current code-words xd to recover the original code x0 against which 652

the readout was first trained. In a linear, Gaussian model, this can 653

be computed by iteratively re-training the decoding weights using 654

the network’s own output. 655

The linear Bayesian model (Eq. 19-25) incorporates the as- 656

sumption that the encoding x changes, but not that Pr(θ) and the 657

primary inputs s(θ) are fixed. How might neurons incorporate this? 658

The readout population cannot access s(θ), but it could measure 659

its own statistics: 660

Pr(y) =
∫

y(θ) Pr(θ) dθ. [26] 661

For example, in the linear model (Eq. 8-12), y(θ) is a zero-mean 662

Gaussian variable, so Pr(y) is encoded fully in the covariance Σy: 663

Σy = 〈yy>〉 =
∫

y(θ)y(θ)> Pr(θ)dθ [27] 664

Since Σy is inherited from Pr(s(θ)), stable readouts must exhibit 665

stable Σy. The converse is not true, but is a useful constraint 666

that can improve stability. This covariance is readily accessible: its 667

diagonal is simply the firing rate variability of single neurons, and 668

its off-diagonal terms can be encoded in recurrent connections that 669

constrain population activity. 670

Synaptic learning rules. The homeostatic learning rule Eq. (10) is 671

simple, but unrealistic: it requires tracking the covariance of the 672

encoding population, and solving a linear system by matrix inversion. 673

Neither of these are things that single neurons could do. However, 674

these operations are equivalent to linear regression, which can be 675

computed in an online manner using stochastic gradient descent. 676

Least Mean Squares (LMS; 57) is an online stochastic gradi- 677

ent descent algorithm that solves the linear regression problem 678

y=W>x, converging (with noise) to the solution W=Σx−1Σxy, by 679

minimizing the following objective via stochastic gradient descent: 680

w = argmin
w

1
2

〈
‖w>x− y‖2

〉
[28] 681

Given a single observation (xt,yt) at time t, LMS computes the 682

following online weight update: 683

∆wt ∝ −∇wt
1
2

〈
‖w>t x− y‖2

〉
= Σx,y − Σxwt

≈ xtyt> − xtxt>wt

= xt(yt −w>t xt)>.

[29] 684
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Recall the formula for the filtering weight update, with homeostatic685

gain re-scaling of g=σ0/σy .:686

wd+1 = g · [Σd + Σ∆]−1Σdwd [30]687

This is a batched update, which uses activity on a given day to688

update the weights for the following day. It minimizes the following689

objective:690

y = g ·w>x

w = argmin
w

1
2

{〈
‖w>x− y‖2

〉
+ w>Σ∆w

}
= argmin

w

1
2 w>

{
(1− g2)Σd + Σ∆

}
w

[31]691

In the online model, we treat drift as occurring gradually and692

continuously, over small intervals ∆t. The incremental drift is693

therefore ∆t·Σ∆, and the homeostatic gain adjustments are small,694

g2≈1+γ∆t. The weight update Eq. (30) for a self-healing code is695

also a linear least-squares problem. In analogy to LMS, an online696

stochastic gradient solution for the self-healing weight update is:697

∆wt
∆t ∝ −

1
∆t

[
(1− g2)Σd + ∆t · Σ∆

]
wt

≈ [γ xtx>t − Σ∆]wt

= γ xty>t − Σ∆wt [c.f. Eq. Eq. (11)]

[32]698

This reduces to the Hebbian homeostatic weight update, Eq. (7),699

with γ=εσ providing negative feedback to stabilize the neuron’s700

firing-rate variability. Eq. (32) also contains an extra term, −Σ∆wt,701

which acts as regularizing weight decay. The drift Σ∆ could be702

estimated in several ways. It might simply be initialized heuristically703

as a constant weight decay Σ∆ ∝ I. It is also possible to use changes704

in neuronal variability as a proxy for drift.705

Estimating the rate of drift. Empirically, we observe that the popu-706

lation statistics for the tuning curves x(θ) are stable despite drift707

(4). The tuning curve of each encoding cell x(θ) can be viewed as708

a vector in this space of possible tuning curves. For large popula-709

tions, the total amount of task-related variability is approximately710

conserved. This implies that drift is, on average, mostly rotational.711

If rotational drift rotates our code by amount φ away from the712

subspace spanned by our current decoding weights, it will lead to a713

loss of drive to the readout neurons, which is approximately cos2(φ).714

The homeostatic gain adjustment acts based on the observed loss715

of drive. Assuming our target variance is one, σ2
t=1, a variability716

decreases of cos2(φ) requires a gain adjustment of g=1/ cos(φ). For717

small amounts of drift, a first-order Taylor expansion yields γ ≈ φ2.718

The current value γ is therefore also an estimate of the drift rate,719

i.e. Σ̂∆ ≈ γI, and one may write:720

∆wt
∆t ≈ γ · [xtx

>
t − I]wt [33]721

Another way to arrive at Eq. (33) is to assume that drift (and722

therefore any compensatory weight changes) should be tangent to723

the current decoding weight vector (Figure 3a). This has an intuitive724

interpretation: if we assume that the encoding of θ is stable over725

time at the population level, then we know that there is always726

some linear combination of decoding weights that can read out a727

target tuning curve y(θ) from x(θ). That is, the overall statistics of728

the weight vector should also be stable. Drift causes these decoding729

weights to point in a slightly different direction. Tracking drift730

therefore amounts to rotating the weight vector to point in this731

new direction. Large reconfigurations of the encoding space can732

therefore be tracked if drift is gradual (Figure 3b).733

To ensure that gain homeostasis can converge in the absence of734

drift, one might use a faster learning rate ηγ>1 for gain adjustment,735

which amounts to:736

∆wt
∆t ≈ γ · [ηγxtx>t − I]wt [34]737

Linear network with recurrence. So far, we have explored self-healing738

codes in the case of a single neuron, which uses a measurement of its739

own variability to detect and correct for drift. One way to extend740

this to populations is to assume that the activity in the readout,741

Y, is constrained by local recurrent connections. This recurrent742

activity provides additional error correction (27). In this scenario,743

the decoding weights and recurrent connections incorporate the 744

prior knowledge that Σy should remain stable over time. 745

A simple version of this mechanism might use feed-forward 746

activity yf=W>x to generate regularized predictions yr. This 747

regularized estimate might be computed via local, recurrent weights 748

R that encode a fixed prior model of Σy: 749

yf = W>x

yr = R>yf
R = [Σy + κI]−1Σy,

[35] 750

where κ sets the strength of the regularization in the recurrent 751

dynamics. 752

This pools information across the readout population by linearly 753

predicting the readout’s activity from itself, with regularization 754

strength α. This can also be viewed as Gaussian process (GP) 755

smoothing, where Σy encodes the GP prior kernel using the "true" 756

tuning curves y(θ) to support the function space. Eq. (35) can be 757

computed as a steady-state solution of a recurrent network that 758

computes a prediction error W>x− y using inhibitory feedback: 759

τ ẏ = −y + τΣy[W>x− y], [36] 760

where τ = 1/κ. If x varies slowly relative to the time constant τ , 761

and if Eq. (36) converges, then it converges to Eq. (35), and tracks 762

yr(t). We stop short of specifying a specific biological realization 763

of Eq. (36), but this feedback-based solution is consistent with 764

the prevailing theory that the brain learns and computes using 765

prediction errors (e.g. 58). Recurrent feedback yields a new error 766

signal, yr−yf that detects when the decoded activity strays outside 767

of the low-dimensional subspace of the initial code, y0(θ). This error 768

can be added to the weight update Eq. (34) to yield a combined 769

update that reflects two constraints: Hebbian homeostasis, and 770

local recurrent dynamics (Results, Eq. 13). 771

In this form, it becomes clear that the recurrent dynamics in y(θ) 772

truly are predictive dynamics. A Hebbian rule which tracks drift is, 773

essentially, minimizing the errors in the online predictions that y 774

makes about the activity x. In this paper, we consider only the case 775

where x changes so slowly that this prediction should be the identity 776

map. However, in a scenario where x has nontrivial temporal 777

dynamics, such recurrent computations and learning inherently 778

learn an asymmetric model that captures how θ evolves in time. 779

Linear simulations. We simulated a self-healing linear network en- 780

coding a circular latent variable θ ∈ [0, 2π), discretized into L=60 781

spatial bins. We sampled K=200 randomly-drifting spatial features 782

x(θ) from a Gaussian process on θ, with an exponentiated quadratic 783

(i.e. radial basis; Gaussian) covariance kernel with a spatial stan- 784

dard deviation of σl=9 bins, scaled so that the standard deviation 785

of each feature was s=0.15. These features underwent Ornstein Uh- 786

lenbeck drift over time, with a time-constant of τ=50 days (Eq. 16). 787

M=50 readout units y(θ) were initialized with bump-like tuning 788

curves, modeled as Gaussians with σy=9 bins, evenly distributed 789

over a range of preferred tunings θ0. These readouts were given a 790

homeostatic target variance of σt=1. 791

We simulated 500 days of drift—ten times of the correlation time 792

for the drifting encoding features. This allowed multiple complete 793

reconfigurations of the encoding population. We simulated Hebbian 794

homeostasis using a continuous-time learning rule (Eq. 34) applied 795

for 500 time-steps on each day, with a learning rate of 1×10−5 per 796

step. These updates were batched: rather than sampling individual 797

stimuli and using xx>W to calculate updates in stochastic gradient 798

descent, we directly apply the expectation ΣxW. 799

We evaluated three scenarios: fixed weights, Hebbian home- 800

ostasis, and Hebbian homeostasis with recurrent prediction errors 801

(Figure 3). We modeled recurrence as an additional linear map 802

yr=R>yf as in Equation Eq. (35), and the resulting yr was used 803

as a training signal in a batched least-mean-squares continuous-time 804

gradient update (Eq. 29). To summarize the relative performance of 805

these three scenarios (Fig. 3d), we sampled 20 random realizations 806

of the aforementioned simulations. 807

The ability of the linear model to error-correct is limited by the 808

amount of drift that projects onto the low-dimensional subspace 809

in x(θ) that encodes θ. While the total amount of drift increases 810

for larger populations, averaging predicts that the disruptive effect 811
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of drift (in terms of squared error) should scale inversely with812

population size. To verify this, we simulated a range of models with813

different degrees of redundancy. We simplified the input features814

s(θ) to reflect a K-dimensional Gaussian variable θ, encoded in an815

N > K population. The readout y(θ) was initialized to recover θ816

via linear regression. As above, we simulated 500 days of random817

drift as an O.U. process on the encoding weights, using Hebbian818

homeostasis (without recurrence). For each network realization, we819

sampled ten instances of the initial features and network, and then820

five independent realizations of random drift for each instance.821

Nonlinear simulations. For the nonlinear readout, we simulated a822

circular variable θ∈[0, 2π) divided into L=60 discrete bins. We823

sampled K=60 features s(θ) from a Gaussian process on θ, with824

zero mean and an exponentiated quadratic covariance kernel with825

standard deviation σl=15. We allowed individual encoding units826

xn(θ) to change abruptly, rather than undergo a continuous random827

walk. We did this by re-sampling features one-at-a-time, and running828

Hebbian homeostasis each time 8% of the encoding features changed.829

This approach emphasized that the nonlinear readout can track830

drift through multiple complete reconfigurations of the encoding831

population. Encoding features were normalized to range from 0 to 1,832

then passed through a nonlinearity x(θ)= exp[z(θ)− 1
2 ] to simulate833

sparse, non-negative network inputs.834

We initialized N=60 linear-nonlinear readout neurons (y(θ); Eq.835

2) with Gaussian tuning curves y0(θ) (standard deviation σy=5836

bins), and with preferred tunings θ0 evenly distributed on [0, 2π).837

Readout weights W were trained via gradient descent to minimize838

a loss similar to a log-linear Poisson model.839

W = argmin
W

〈
exp[W>x]− y0 ◦W>x

〉
+ κ‖W‖2, [37]840

where ◦ denotes element-wise multiplication, the expectation 〈·〉 is841

taken over θ and the readout population, and the regularization842

strength is κ=10−2. The homeostatic set-points for the mean and843

the variance of the firing rate (µt, σ2
t ) were taken from the statistics844

of these initial tuning curves.845

We implemented Hebbian homeostasis by defining slow variables846

γ and β, which track the deviations of the neuron’s firing rate847

statistics from its homeostatic set points. Weights were trained to848

restore these set-points via a continuous-time Hebbian learning rule849

(Eq. 7). 50 iterations of this learning rule were applied each time850

8% (5 out of 60) of the encoding population had reconfigured. For851

nonlinear neurons, homeostasis of the mean-rate and variability in-852

teract. Controlling the variability can change the overall excitability853

of the neuron, and can lead to instability. To address this, we used854

different learning rates ηβ=0.9 and ησ=0.1 for the mean-rate and855

variability, respectively.856

To simulate response normalization, we divided the response857

y(θ) by the average population rate, scaled to preserve the popula-858

tion rates seen in the initial network configuration, as in Equation859

Eq. (14). To model recurrent dynamics, we trained another set of860

fixed recurrent weights R as in Equation Eq. (15), with a gradient861

descent objective similar to the one used to initialize the decoding862

weights (Eq. 37).863

R = argmin
R

〈
exp[R>y0]− y0 ◦R>y0

〉
,+κr‖R‖2 [38]864

with regularization strength of κr=10−4.865

These recurrent predictions yield a revised prediction yr(θ) after866

applying response normalization. For both response normalization867

and the recurrent model, “error-corrected" estimates ŷ=yd or ŷ=yr868

were used to retrain the decoding weights via Hebbian learning,869

with regularizing weight decay rate of ρd= 1
3×10−3:870

yf = exp(U>x)

∆U = η
〈

x[ŷ− yf ]>
〉
− ρdU,

[39]871

with a learning rate of η=0.5. The above Eq. (39) corresponds to872

online gradient descent of an objective similar to those used to train873

the initial forward and recurrent weights (Eqs. 37, 38).874
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