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Abstract

Large-scale neural recording methods now allow us to observe large populations of iden-
ti�ed single neurons simultaneously, opening a window into neural population dynamics in
living organisms. However, distilling such large-scale recordings to build theories of emer-
gent collective dynamics remains a fundamental statistical challenge. The neural �eld models
of Wilson, Cowan, and colleagues remain the mainstay of mathematical population modeling
owing to their interpretable, mechanistic parameters and amenability to mathematical anal-
ysis. Inspired by recent advances in biochemical modelling, we develop a method based on
moment closure to interpret neural �eld models as latent state-space point-process models,
making them amenable to statistical inference. With this approach we can infer the intrinsic
states of neurons, such as active and refractory, solely from spiking activity in large popula-
tions. After validating this approach with synthetic data, we apply it to high-density record-
ings of spiking activity in the developing mouse retina. This con�rms the essential role of a
long lasting refractory state in shaping spatiotemporal properties of neonatal retinal waves.
This conceptual and methodological advance opens up new theoretical connections between
mathematical theory and point-process state-space models in neural data analysis.

Signi�cance Developing statistical tools to connect single-neuron activity to emergent collec-
tive dynamics is vital for building interpretable models of neural activity. Neural �eld models
relate single-neuron activity to emergent collective dynamics in neural populations, but inte-
grating them with data remains challenging. Recently, latent state-space models have emerged
as a powerful tool for constructing phenomenological models of neural population activity. The
advent of high-density multi-electrode array recordings now enables us to examine large-scale
collective neural activity. We show that classical neural �eld approaches can yield latent state-
space equations and demonstrate that this enables inference of the intrinsic states of neurons
from recorded spike trains in large populations.

1 Introduction
Neurons communicate using electrical impulses, or spikes. Understanding the dynamics and
physiology of collective spiking in large networks of neurons is a central challenge in modern
neuroscience, with immense translational and clinical potential. Modern technologies such as
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high-density multi-electrode arrays (HDMEA) enable the simultaneous recording of the electri-
cal activity of thousands of interconnected neurons, promising invaluable insights into neural
dynamics at the network level. However, the resulting data is high-dimensional and frequently
exhibits complex, non-linear dynamics, presenting formidable statistical challenges.

Due to the high complexity of the data, most analyses of neuronal population activity take
a descriptive approach, adopting methods from statistical signal processing such as state-space
models (SSM; Paninski et al. 2010; Zhao and Park 2016, 2017; Sussillo et al. 2016; Aghagolzadeh
and Truccolo 2016; Linderman et al. 2016; Gao et al. 2016) or autoregressive generalized-linear
point-process models (PP-GLM; Paninski 2004; Pillow et al. 2008; Truccolo et al. 2005; Truccolo
2016). Such methods capture the population statistics of the system, but fail to provide mecha-
nistic explanations of the underlying neural dynamics. While this phenomenological description
is valuable and can aid many investigations, the inability to relate microscopic single-neuron
properties to emergent collective dynamics limits the scope of these models to extract biological
insights from these large population recordings.

Connecting single-neuron dynamics with population behavior has been the central focus of
research within the theoretical neuroscience community over the last four decades. Neural �eld
models (Amari, 1977; Wilson et al., 1972; Cowan, 2014; Bresslo�, 2012) have been crucial in un-
derstanding how macroscopic �ring dynamics in populations of neurons emerge from the mi-
croscopic state of individual neurons. Such models have found diverse applications including
working memory (see Durstewitz et al. 2000 for a review), epilepsy (e.g. Zhang and Xiao 2018;
Proix et al. 2018; González-Ramírez et al. 2015; Martinet et al. 2017), and hallucinations (e.g. Er-
mentrout and Cowan 1979; Bresslo� et al. 2001; Rule et al. 2011), and have been successfully
related to neuroimaging data such as Electroencepelography (EEG; Moran et al. 2013; Bojak et al.
2010; Pinotsis et al. 2012), Magnetoencephelography (MEG; Moran et al. 2013), electromyogra-
phy (EMG; Nazarpour et al. 2012), and Functional Magnetic Resonance Imaging (fMRI; Bojak
et al. 2010), which measure average signals from millions of neurons. Nevertheless, using neural-
�eld models to model HDMEA spiking data directly remains an open statistical problem: HDMEA
recordings provide su�cient detail to allow modeling of individual neurons, yet the large number
of neurons present prevents the adoption of standard approaches to non-linear data assimilation
such as likelihood free inference.

In this paper, we bridge the data-model divide by developing a statistical framework for
Bayesian modeling in neural �eld models. We build on recent advances in stochastic spatiotem-
poral modeling, in particular a recent result by Schnoerr et al. (2016) which showed that a spa-
tiotemporal agent-based model of reaction-di�usion type, similar to the ones underpinning many
neural �eld models, can be approximated as a spatiotemporal point process associated with an
intensity (i.e. density) �eld that evolves in time. Subsequently, Rule and Sanguinetti (2018) il-
lustrated a moment-closure approach for mapping stochastic models of neuronal spiking onto
latent state-space models, preserving the essential coarse-timescale dynamics. Here, we demon-
strate that a similar approach can yield state-space models for neural �elds derived directly from
a mechanistic microscopic description. This enables us to leverage large-scale spatiotemporal
inference techniques (Cseke et al., 2016; Zammit-Mangion et al., 2012) to e�ciently estimate an
approximate likelihood, providing a measure of �t of the model to the data that can be exploited
for data assimilation. Our approach is in spirit similar to latent variable models such as the Pois-
son Linear Dynamical System (PLDS; Macke et al. 2011; Aghagolzadeh and Truccolo 2016; Smith
and Brown 2003), with the important di�erence that the latent variables re�ects non-linear neu-
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ral �eld dynamics that emerge directly from a stochastic description of single-neuron activity
(Bresslo�, 2009; Buice et al., 2010; Touboul and Ermentrout, 2011).

We apply this approach to HDMEA recordings of spontaneous activity from ganglion cells
in the developing mouse retina (Maccione et al., 2014), showing that the calibrated model ef-
fectively captures the non-linear excitable phenomenon of coordinated, wave-like patterns of
spiking (Meister et al., 1991) that have been considered in both discrete (Hennig et al., 2009a) and
continuous neural-�eld models before (Lansdell et al., 2014).

2 Results

2.1 High level description of the approach
We would like to explain large-scale spatiotemporal spiking activity in terms of the intrinsic
states of the participating neurons, which we cannot observe directly. Latent state-space models
(SSMs) solve this problem by describing how the unobserved states of neurons relate to spiking
observations, and predict how these latent states evolve in time. In this framework, one esti-
mates a distribution over latent states from observations, and uses a forward model to predict
how this distribution evolves in time, re�ning the latent-state estimate with new observations
as they become available. This process is often called ‘data assimilation’. However, in order to
achieve statistical tractability, SSMs posit simple (typically linear) latent dynamics, which can-
not be easily related to underlying neuronal mechanisms. Emergent large-scale spatiotemporal
phenomena such as travelling waves typically involve multiple, coupled populations of neurons
and nonlinear excitatory dynamics, both of which are di�cult to incorporate into conventional
state-space models.

Fortunately, mathematical neuroscience has developed methods for describing such dynamics
using neural �eld models. Neural �eld models map microscopic dynamics to coarse-grained de-
scriptions of how population �ring rates evolve. This provides an alternative route to construct-
ing latent state-space models for large-scale spatiotemporal spiking datasets. However, neural
�eld models traditionally do not model statistical uncertainty in the population states they de-
scribe, which makes it di�cult to deploy them as statistical tools to infer the unobserved, latent
states of the neuronal populations. A model of statistical uncertainty is important for describing
the uncertainty in the estimated latent states (posterior variance), as well as correlations between
states or spatial regions. As we will illustrate, work over the past decades to address noise and
correlations in neural �eld models also provides the tools to employ such models as latent SSMs
in data-driven inference.

At a high level then, our approach follows the usual derivation of neural �eld models, starting
with an abstract description of single-neuron dynamics, and considers how population averages
evolve in time. Rather than deriving a neural-�eld equation for the population mean rate, we
instead derive two coupled equations for the mean and covariance of population states. We in-
terpret these two moments as a Gaussian-process estimate of the latent spatiotemporal activity,
and derive updates for how this distribution evolves in time and how it predicts spiking observa-
tions. This provides an interpretation of neural-�eld dynamics amenable to state-space inference,
which allows us to infer neural population states from spiking observations.
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2.2 Neural �eld models for refractoriness-mediated retinal waves
Most classical neural-�eld models (Wilson and Cowan, 1972, 1973) consider two neuron states:
neurons may be either actively spiking (A state), or quiescent (Q state). However, voltage and
calcium gated conductances typically lead to refractory states, which can be short following in-
dividual spikes, or longer after more intensive periods of activity. An excellent example of the
importance of a refractory mechanism is found in the developing retina, where a slow afterhyper-
polarization (sAHP) current mediates the long-timescale refractory e�ects that strongly shapes
the spatio-temporal dynamics of spontaneous retinal waves (Hennig et al., 2009b). To address
this, we explicitly incorporate additional refractory (R) states into our neural �eld model (e.g.
Buice and Cowan 2007, 2009; Figure 1). In the following, we �rst outline a non-spatial model for
such system, before extending it to a spatial setting with spatial couplings. Finally, we develop a
Bayesian inference scheme for inferring latent states from observational data.

e

Figure 1: 3-state Quiescent-Active-Refractory (QAR) neural-�eld model. Cells in the de-
veloping retina are modeled as having three activity states. Active cells (A; red) �re bursts of
action potentials, before becoming refractory (R; green) for an extended period of time. Quies-
cent (Q ; blue) cells may burst spontaneously, or may be recruited into a wave by other active
cells. These three states are proposed to underlie critical multi-scale wave dynamics (Hennig
et al., 2009b).

2.3 A stochastic three-state neural mass model
We now consider the neural �eld model with three states as a generic model of a spiking neuron
(Figure 1), where a neuron can be in either an actively spiking (A), refractory (R), or quiescent
(Q) state. We assume that the neurons can undergo the following four transitions:

Q
ρq−−→ A Q +A

ρe−→ A +A

A
ρa−−→ R R

ρr−→ Q,
(1)

i.e. quiescent neurons transition spontaneously to the active state; active neurons excite quiescent
neurons; active neurons become refractory, and refractory neurons become quiescent. The ρ(·)
denote corresponding rate constants.
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Figure 2: Summarizing estimated neural state as population moments. A The activity
within a local spatial region (encircled, left) can be summarized by the fraction of cells (repre-
sented by colored dots) in the quiescent (blue), active (red), and refractory (green) states (Q,A,R;
right). B An estimate of the population state can be summarized as a probability distribution
Pr(Q,A,R) over the possible proportions of neurons in each state. A Gaussian moment-closure
approximates this distribution as Gaussian, with given mean and covariance (orange crosshairs).

For illustration, we �rst consider the dynamics of a local (as opposed to spatially-extended)
population of neurons. In this case the state of the system is given by the non-negative number
counts Q,A and R of the respective neuron types (we slightly abuse notation here and use Q ,
A, and R both as symbols for the neuron states and as variables counting the neurons in the
corresponding states; see Figure 2 for an illustration). The time evolution of the corresponding
probability distribution to be in a state (Q,A,R) at a certain time point is then given by a master
equation (Buice and Cowan 2007; Ohira and Cowan 1993; Bresslo� 2009; Methods: Moment-
closure for a single population). Due to the nonlinear excitatory interactionQ+A→A+A in Eq. (1),
no analytic solutions to the master equation are known. To get an approximate description of
the dynamics, we employ the Gaussian moment closure method which approximates the discrete
neural counts (Q,A,R) by continuous variables, and assumes a multivariate normal distribution
(Figure 2B; Goodman 1953; Whittle 1957; Gomez-Uribe and Verghese 2007; Bresslo� 2009; Buice
et al. 2010; Schnoerr et al. 2017; Rule and Sanguinetti 2018). This allows one to derive a closed set
of ordinary di�erential equations for the mean and covariance of the approximate process which
can be solved e�ciently numerically (Methods: Moment-closure for a single population; Figure 2).

Applying this procedure to our system leads to the following evolution equations of the �rst
moments (mean concentrations):

∂t 〈Q〉 = rrq − rqa
∂t 〈A〉 = rqa − rar
∂t 〈R〉 = rar − rrq

rqa = ρq 〈Q〉 + ρe 〈AQ〉
rar = ρa 〈A〉
rrq = ρr 〈R〉 ,

(2)

where the rate variables r(·)(·) describe the rates of the di�erent transitions in Eq. (1), and 〈·〉 de-
notes expected-value with respect to the distribution over population states. Intuitively, Eq. (2)
says that the mean number of neurons in each state evolves according to the di�erence between
the rate that neurons enter, and the rate that neurons leave, said state. For spontaneous (Poisson)
state transitions, these rates are linear and depend only on the average number of neurons in the
starting state. The transition fromQ toA, however, has both a spontaneous and excito-excitatory
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component. The latter depends on the expected product of active and quiescent cells 〈AQ〉, which
is a second moment and can be expressed in terms of the covariance: 〈AQ〉 = 〈A〉 〈Q〉 +ΣAQ . We
obtain similar equations for the covariance of the system (Eq. 6; Methods: Moment-closure for a
single population). These can be solved jointly with Eq. (2) forward in time to give an approxi-
mation of the system’s dynamics.

2.4 Generalization to spatial (neural �eld) system
So far we have considered a single local population. We next extend our model to a two-dimensional
spatial system. In this case the mean concentrations become density or mean �elds (‘neural
�elds’) that depend on spatial coordinates x = (x1,x2), e.g. 〈Q〉 becomes 〈Q(x)〉. Similarly, the
covariances become two-point correlation functions. For example, ΣQA(x, x′) denotes the co-
variance between the number of neurons in the quiescent state at location x and the number of
neurons in the active state at location x′ (see Methods: Extension to spatial system for details).

By replacing the mean concentrations and covariances accordingly in Eqs. (2) and (6), we
obtain spatial evolution equations for these space-dependent quantities. The terms arising from
the linear transitions in Eq. (1) (i.e. rrq, raq and the �rst term in rqa in Eq. 2) do not introduce any
spatial coupling and hence do not need to be modi�ed (note also that neurons do not di�use or
move otherwise, which is why we do not obtain a dynamic term in the resulting equations). The
nonlinear excitatory interactionQ+A→A+A in Eq. (1), however, introduces a coupling which we
need to specify further in a spatial setting. We assume that each quiescent neuron experiences an
excitatory drive from nearby active neurons, and that the interaction strength can be described
as a function of distance | |∆x| | by a Gaussian interaction kernel:

k(∆x) ∝ exp(−||∆x| |2/2σ 2
e ), (3)

where σe the standard deviation determining the length scale of the interaction: for distances
larger than σe , the interaction strength decreases exponentially. This kernel introduces a spatial
coupling between the neurons, which could be mediated by synaptic interactions, di�using neu-
rotransmitters, gap junction coupling, or combinations thereof. With this coupling, the transition
rate (compare to Eq. (2)) from the quiescent to active state at position x becomes the following
integral:

rqa(x) = ρq 〈Q(x)〉 +ρe
∫

k(x−x′) 〈Q(x)A(x′)〉 dx′, (4)

where the integral runs over the whole volume of the system. (see Methods: Extension to spatial
system for details)

We thus obtain a ‘second-order’ neural �eld in terms of the mean �elds and two-point corre-
lation functions. We simulated the spatially-extended system by sampling. Figure 3 shows that
it is indeed capable of producing multi-scale wave-like phenomena similar to the waves observed
in the retina (c.f. Figure 5; see Methods: Langevin equations and sampling for details).

2.5 Neural �eld models as latent-variable state-space models
The equations for the mean �elds and correlations can be integrated forward in time and used as
a state-space model to explain population spiking activity (Figure 4; Methods: Bayesian �ltering).
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Figure 3: Spatial 3-state neural-�eldmodel exhibits self-organizedmulti-scale wave phe-
nomena. Simulated example states at selected time-points on a [0, 1]2 unit interval using a 20×20
grid with e�ective population density of ρ=50 cells per unit area, and rate parameters σ=7.5e-2,
ρa=4e-1, ρr=3.2e-3, ρe=2.8e-2, and ρq=2.5e-1 (Methods: Langevin equations and sampling). As,
for instance, in neonatal retinal waves, spontaneous excitation of quiescent cells (blue) lead to
propagating waves of activity (red), which establish localized patches in which cells are refrac-
tory (green) to subsequent wave propagation. Over time, this leads to diverse patterns of waves
at a range of spatial scales.

In extracellular recordings, we do not directly observe the intensity functions 〈Q(x)〉, 〈A(x)〉, and
〈R(x)〉. Instead, we observe the spikes that active neurons emit, or in the case of developmental
retinal waves recorded via a HDMEA setup, we observe the spikes of retinal ganglion cells which
are driven by latent wave activity. The spiking intensity should hence depend on the density A(x)
of active neurons. Here, we assume that neural �ring is a Poisson conditioned on the number
of active neurons, which allows us to write the likelihood of point (i.e. spike) observations in
terms of A(x) (Truccolo et al. 2005, 2010; Truccolo 2016; see Methods: Point-process measurement
likelihood for details).

The combination of this Poisson observation model with the state-space model derived in
previous sections describes how hidden neural �eld states evolve in time and how these states
drive neuronal spiking. Given spatiotemporal spiking data, the latent neural �eld states and cor-
relations can then be inferred using a sequential Bayesian �ltering algorithm. The latter uses
the developed �eld model to predict the evolution of latent states, and updates this estimate at
each time point based on the observed neuronal spiking (Methods: Bayesian �ltering). This pro-
vides estimates of the unobserved physiological states of the neurons. To verify this approach,
we simulated observations from the neural �eld equations (Figure 3; Methods: Langevin equa-
tions and sampling), and inferred the latent neural states and con�dence intervals via Bayesian
�ltering using known parameters (Figure 5). We used parameters corresponding to a relatively
low spike rate, indicating that state inference can recover latent states in the presence of limited
measurement information.
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Figure 4: Hidden Markov model for latent neural �elds. For all time-points T , state transi-
tion parameters θ=(ρq, ρa, ρr , ρe ,σ ) dictate the evolution of a multivariate Gaussian model µ, Σ of
latent �eldsQ,A,R. The observation model (β,γ ) is a linear map with adjustable gain and thresh-
old, and re�ects how �eld A couples to �ring intensity λ. Point-process observations (spikes) y
are Poisson with intensity λ.

3 Application to retinal wave datasets
Having developed an interpretation of neural �eld equations as a latent-variable state-space
model, we next applied this model to the analysis of spatiotemporal spiking data from sponta-
neous traveling wave activity occurring in the neonatal vertebrate retina (e.g. Figure 7; Sernagor
et al. 2003; Hennig et al. 2009a; Blankenship et al. 2009; Meister et al. 1991; Zhou and Zhao 2000;
Feller et al. 1996; Maccione et al. 2014).

3.1 State inference in developmental retinal waves
During retinal development, the cell types that participate in wave generation change (Maccione
et al., 2014; Sernagor et al., 2003; Zhou and Zhao, 2000), but the three-state model globally de-
scribes dynamics in the inner retina at all developmental stages (Figure 6). The Active (A) state de-
scribes a sustained bursting state, such as the depolarization characteristic of starburst amacrine
cells (Figure 6) during acetylcholine-mediated early-stage (Stage 2) waves between P0 and P9
(Feller et al., 1996; Zhou and Zhao, 2000), and late-stage (Stage 3) glutamate-dependent waves
(Bansal et al., 2000; Zhou and Zhao, 2000). For example, Figure 7 illustrates spontaneous reti-
nal wave activity recorded from a postnatal day 6 mouse pup (Stage 2). In addition, at least for
cholinergic waves, the slow refractory state R is essential for restricting wave propagation into
previously active areas (Zheng et al., 2006). We note that the multi-scale wave activity exhibited
in the three-state neural �eld model (e.g. Figure 3) recapitulates the phenomenology of retinal
wave activity explored in the discrete three-state model of Hennig et al. (2009b).
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Figure 5: State inference via �ltering: ground-truth simulation. Filtering recovers latent
states in ground-truth simulated data. Spatially averaged state occupancy (Q, A, and R) (y-axis)
is plotted over time (x-axis). Solid lines represent true values sampled from the model, and shaded
regions represent the 95% con�dence interval estimated by �ltering. The active (A) state density
has been scaled up by a factor of 25 for visualization. Colored plots (below) show the qualitative
spatial organization of quiescent (blue), active (red), and refractory (green) neurons is recovered
by �ltering during example wave events. Model parameters are the same as Figure 3, with the
exception of the spatial resolution, which has been reduced to a 9×9 grid. Conditionally-Poisson
spikes were sampled with bias β=0 and gain γ=15 spikes/second per simulation area.

Figure 7: Developmental retinal waves. Example neonatal mouse retinal waves recorded on
a 4096-electrode array on postnatal day 6. Recorded spikes were binned at 100 ms resolution,
and assigned to 10×10 spatial regions for analysis. A Average �ring rate from RGCs recorded
across the retina (the central region devoid of recorded spikes is the optic disc). B Spatial regions
with spiking activity detected for further analysis C Distribution of wave durations. To segment
waves, spiking activity on each channel was segmented into "up" states (during wave activity)
and "down" states (quiescent) using a two-state hidden Markov model with Poisson observations.
D Average inter-wave interval. E Example wave event, traveling across multiple spatial regions
and lasting for a duration of 16-20 seconds. 9
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Figure 6: Illustration of inner retina and recording setup. Spontaneous retinal waves are
generated in the inner retina via laterally interacting bipolar (blue) and amacrine (red) cells, de-
pending on the developmental age. These waves activate Retinal Ganglion Cells (RGCs; yellow),
the output cells of the retina. RGC electrical activity is recorded from the neonatal mouse retina
via a 64×64 4096-electrode array with 42 µm spacing.

Using RGC spikes recorded with a 4,096 channel HDMEA (Figure 6), we demonstrate the
practicality of latent-state inference using heuristically initialized rate parameters and illustrate
an example of inference for a retinal wave dataset from postnatal day 11 (Stage 3; Figure 8). For
retinal wave inference, we normalize the model by population-size (Methods: System-size scaling)
so that the gain and bias may be set independently in normalized units, rather than depending
on the local neuronal population size. Model parameters were initialized heuristically based on
observed timescales at ρe=ρa=15, ρr=0.15, and σ=0.15. As in Lansdell et al. (2014), lateral inter-
actions in our model re�ect an e�ective coupling that combines both excitatory synaptic inter-
actions and the putative e�ect of di�using excitatory neurotransmitters, which has been shown
to promote late-stage glutamatergic wave propagation (Blankenship et al., 2009). The moment-
closure system does not accurately approximate the rare and abruptly-discontinuous nature of
wave initiation. We therefore model spontaneous wave-initiation events as an extrinsic noise
source, and set the spontaneous excitation rate ρq to zero in the neural �eld model that de�nes
our latent state-space. The Poisson noise was re-scaled to re�ect an e�ective population size of 16
neurons/mm2, signi�cantly smaller than the true population density (Jeon et al., 1998). However,
due to the recurrent architecture and correlated neuronal �ring, the e�ective population size is
expected to be smaller than the true population size. Equivalently, this amounts to assuming
supra-Poisson scaling of �uctuations for the neural population responsible for retinal waves.

Bayesian �ltering recovers the expected features of the retinal waves (Figure 8): the excito-
excitatory transition Q+A→A+A and the onset of refractoriness A→R are rapid compared to the
slow refractory dynamics, and therefore the A state is brie�y occupied and mediates an e�ective
Q→R transition during wave events. The second-order structure provided by the covariance
is essential, as it allows us to model posterior variance (shaded regions in Figure 8), while also
capturing strong anti-correlations due to the conservation of reacting agents, and the e�ect of
correlated �uctuations on the evolution of the means. Furthermore, spatial correlations allow
localized RGC spiking events to be interpreted as evidence of regional (spatially-extended) latent
neuronal activity.
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Figure 8: State inference via �ltering: retinal datasets. Filtering of spontaneous retinal waves
(postnatal day 11). Solid lines indicate inferred means, shaded regions the 95% con�dence bound.
The magnitude of theA state and the counts have been scaled up by a factor of 5 for visualization.
Grey vertical lines indicate example time slices, which are shown in the colored plots below. Col-
ored plots are the same as in Figure 5, with red, green, and blue re�ecting (normalized) densities
of active, refractory, and quiescent cells, respectively.

3.2 Open challenges in model identi�cation
So far, we have demonstrated good recovery of states when the true rate parameters are known
(Figure 5), and shown that plausible latent-states can be inferred from neural point-process datasets
using heuristically initialized parameters (Figure 8). A natural question then is whether one can
use the Bayesian state-space framework to estimate a posterior likelihood on the rate parameter
values, and infer model parameters directly from data. At present, model inference remains very
challenging for four reasons: under-constrained parameters, computational time complexity, nu-
merical errors from successive approximations, and non-convexity in the joint posterior. It is
worth reviewing these open challenges as they relate to important open problems in machine
learning and data assimilation.

First, the e�ective population size, the typical fraction of units in quiescent vs. refractory
states, and the gain parameter mapping latent activations to spiking, are all essential to setting
appropriate rates, and are not accessible from observation of RGC spiking alone. Without direct
measurement or appropriate physiological priors on parameter values, recovering a physiologi-
cally realistic model is infeasible. In e�ect, this means that a large number of equivalent systems
can explain the observed RGC spiking activity, a phenomenon that has been termed "sloppiness"
in biological systems (Transtrum et al., 2015; Panas et al., 2015). Indeed, Hennig et al. (2011)
show that developmental waves are robust to pharmacological perturbations, suggesting that the
retina itself can use di�erent con�gurations to achieve similar wave patterns. Second, although
state inference is computationally feasible, parameter inference requires many thousands of state-
inference evaluations. A Matlab implementation of state-inference running on a 2.9 GHz 8-core
Xeon CPU can process ∼85 samples/s for a 3-state system on a 10×10 spatial basis. For a thirty-
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minute recording of retinal wave activity, state inference is feasible, but repeated state inference
for parameter inference is impractical. Third, model likelihood must be computed recursively,
and is subject to well-known loss of numerical accuracy due to back-propagation through time
(Pascanu et al., 2013; Bengio et al., 1994; Hochreiter et al., 2001). In other words, small errors in
the past can have large e�ects in the future owing to the nonlinear and excitable nature of the
system. This makes it di�cult to dissociate numerical errors due to the recursive calculations
from true estimates of the error related to model parameters. For early-stage retinal waves, the
large separation of timescales between the refractory e�ects, and the fast-timescale excitation,
also makes it di�cult to estimate gradients for the slow-timescale parameters. Furthermore, the
inferred likelihood is approximated as the product of a large number of high-dimensional Laplace
approximations (or similar Gaussian approximations, e.g. variational), which makes the inferred
model likelihood itself approximate . Fourth and �nally, the overall likelihood surface is not, in
general, convex, and may contain multiple local optima. In addition, regions of parameters space
can exhibit vanishing gradient for one or model parameters. This can occur when the value of
one parameter makes others irrelevant. For example, if the excito-excitatory interaction ρe is
set to a low value, the interaction radius σe for excitation becomes irrelevant since the overall
excitation is negligible.

Overall, parameter inference via Bayesian �ltering presents a formidable technical challenge
that hinges upon several open problems for e�cient model inference in high-dimensional spa-
tiotemporal point process models undergoing latent, nonlinear dynamics. At present, it would
seem that traditional parameter identi�cation methods, based on mathematical expertise and
matching observable physical quantities (e.g. wavefront speed, c.f. Lansdell et al. 2014), remain
the best-available approach to model estimation. Nevertheless, the state-space formulation of
neural �eld models enables Bayesian state inference from candidate neural �eld models, and
opens the possibility of likelihood-based parameter inference in the future.

4 Discussion
In this work, we showed that classical neural-�eld models, which capture the activity of large,
interacting neural populations, can be interpreted as state-space models, where we can explicitly
model microscopic, intrinsic dynamics of the neurons. This is achieved by interpreting a second-
order neural �eld model as de�ning equations on the �rst two moments of a latent-variable pro-
cess, which is coupled to spiking observations. In the state-space model interpretation, latent neu-
ral �eld states can be recovered from Bayesian �ltering. This allows inferring the internal states
of neuronal populations in large networks based solely on recorded spiking activity, information
that can experimentally only be obtained with whole cell recordings. We demonstrated successful
state inference for simulated data, where the correct model and parameters were known. Next, we
applied the model to large-scale recordings of developmental retinal waves. Here the correct la-
tent state model is unknown, but a relatively simple three-state model with slow refractoriness is
well motivated by experimental observations (Zheng et al., 2006). Consistent with previous work
(Feller et al., 1997; Zheng et al., 2006; Godfrey and Swindale, 2007; Hennig et al., 2009a), the state
inference revealed that activity-dependent refractoriness restricts the spatial spreading of waves.
In contrast to phenomenological latent state-space models, the latent states here are motivated by
an (albeit simpli�ed) description of single-neuron dynamics, and the state-space equations arise

12

All rights reserved. No reuse allowed without permission. 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/543769doi: bioRxiv preprint first posted online Feb. 8, 2019; 

http://dx.doi.org/10.1101/543769


directly from considering the evolution of collective activity as a stochastic process.
In the example explored here, we use Gaussian moment-closure to arrive at a second-order

approximation of the distribution of latent states and their evolution. In principle, other dis-
tributional assumptions may also be used to close the moment expansion. Other mathematical
approaches that yield second-order models could also be employed, for example the linear noise
approximation (Van Kampen, 1992), or de�ning a second cumulant in terms of the departure of
the model from Poisson statistics (Buice et al., 2010). The approach applied here to a three-state
system can generally be applied to systems composed of linear and quadratic state transitions.
Importantly, systems with only linear and pairwise (quadratic) interactions can be viewed as a
locally-quadratic approximation of a more general smooth nonlinear system (Ale et al., 2013),
and Gaussian moment closure therefore provides a general approach to deriving approximate
state-space models in neural population dynamics.

The state-space interpretation of neural �eld models opens up future work to leverage the al-
gorithmic tools of SSM estimation for data assimilation with spiking point-process datasets. How-
ever, challenges remain regarding the retinal waves explored here, and future work is needed to
address these challenges. Model likelihood estimation is especially challenging. Despite this, the
connection between neural-�eld models and state-space models derived here will allow neural
�eld modeling to incorporate future advances in estimating recursive, nonlinear, spatiotemporal
models. We also emphasize that some of the numerical challenges inherent to high-dimensional
spatially extended neural �eld models do not apply to simpler, low-dimensional neural mass mod-
els, and the moment-closure framework may therefore provide a practical avenue to parameter
inference in such models.

In summary, this report connects neural �eld models, which are grounded in models of stochas-
tic population dynamics, to latent state-space models for population spiking activity. This con-
nection opens up new approaches to �tting neural �eld models to spiking data. We expect that
this interpretation is a step toward the design of coarse-grained models of neural activity that
have physically interpretable parameters, have physically measurable states, and retain an ex-
plicit connection between microscopic activity and emergent collective dynamics. Such models
will be essential for building models of collective dynamics that can predict the e�ects of manip-
ulations on single-cells on emergent population activity.

Acknowledgements: Funding provided by EPSRC EP/L027208/1 Large scale spatio-temporal
point processes: novel machine learning methodologies and application to neural multi-electrode
arrays. We thank Gerrit Hilgen for important discussions in establishing biologically-plausible
parameter regimes for the three-state model. We thank Evelyne Sernagor for the retinal wave
datasets, as well as ongoing advice and invaluable feedback on the manuscript.

5 Methods

5.1 Data acquisition and preparation
Example retinal wave datasets are taken from Maccione et al. (2014). Spikes were binned at 100 ms
resolution for analysis, and regions without spiking observations were excluded. Spiking activ-
ity in each region was segmented into wave-like and quiescent states using a two-state hidden
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Markov model with a Poisson observations. To address heterogeneity in the Retinal Ganglion Cell
(RGC) outputs, the observation model was adapted to each spatial region based on �ring rates.
Background activity was used to establish per-region biases, de�ned as the mean activity in a
region during quiescent periods. The scaling between latent states and �ring rate (gain) was ad-
justed locally based on the mean �ring rate during wave events. The overall (global) gain for the
observation model was then adjusted so that 99% of wave events in a given region corresponded
to a fraction of cells in the active (A) state fraction no greater than one.

5.2 Moment-closure for a single population
To develop a state-space formalism for inference and data assimilation in neural �eld models, we
begin with a master equation approach. This approach has been used before to analyze various
stochastic neural population models, often as a starting point to derive ordinary di�erential equa-
tions for the moments of the distribution of population states, as we do here (Ohira and Cowan,
1993; Buice and Cowan, 2007; Bresslo�, 2009; El Boustani and Destexhe, 2009; Buice et al., 2010;
Touboul and Ermentrout, 2011). In our case, we examine a three-state system of the kind pro-
posed in Buice and Cowan (2007, 2009), and use a Gaussian moment-closure approach similar
to Bresslo� (2009). The master equation describes how the joint probability distribution of neu-
ral population states (in our example the active, quiescent and refractory states) evolves in time.
However, modelling this full distribution is computationally prohibitive for a spatially-extended
system, since the number of possible states scales exponentially with the number of neural pop-
ulations. Instead, we approximate the time evolution of the moments of this distribution. In
principle, an in�nite number of moments are needed to describe the full population activity. To
limit this complexity, we consider only the �rst two moments (mean and covariance), and use
a moment-closure approach to close the series expansion of network interactions in terms of
higher moments (Schnoerr et al. 2017; Gomez-Uribe and Verghese 2007; Goodman 1953; Whittle
1957; for applications to neuroscience see Ly and Tranchina 2007; Bresslo� 2009; El Boustani and
Destexhe 2009; Buice et al. 2010; Touboul and Ermentrout 2011; Rule and Sanguinetti 2018). Us-
ing this strategy, we obtain a second-order neural �eld model that describes how the mean and
covariance of population spiking evolve in time, and recapitulates spatiotemporal phenomena
when sampled.

We may describe the number of neurons in each state in terms of a probability distribution
Pr(Q,A,R) (Figure 2A), where we slightly abuse notation and use Q , A, and R both as symbols
for the neuron states and as variables counting the neurons in the corresponding states, i.e. non-
negative integers. The time evolution of this probability distribution captures stochastic popula-
tion dynamics, and is represented by a master equation that describes the change in density for
a given state {Q,A,R} when neurons change states. Accordingly, the master equation describes
the change in probability of a given state {Q,A,R} in terms of the probability of entering, minus
the probability of leaving the state:

∂t Pr(Q,A,R) = Pr(Q,A+1,R−1)ρa(A+1) (transition A→R)
+ Pr(Q−1,A,R+1)ρr(R+1) (transition R→Q)
+ Pr(Q+1,A−1,R)

[
ρq + ρe(A−1)

]
(Q+1) (Q→A and A+Q→A+A)

− Pr(Q,A,R)
[
(ρeA + ρq)Q + ρaA + ρrR

]
(outgoing transitions)

(5)
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Even in this simpli�ed non-spatial scenario, no analytic solutions are known for the master equa-
tion. However, from Eq. (5) one can derive equations for the mean and covariance of the pro-
cess. The approach, generally, is to consider expectations of individual states, e.g. 〈Q〉 (�rst
moments, i.e. means), or 〈QA〉 (second moments), taken with respect to the probability distri-
bution Pr(Q,A,R) described by the master equation (5). Di�erentiating these moments in time,
and substituting in the time-evolution of the probability density as given by the master equation,
yields expressions for the time-evolution of the moments. However, in general these expressions
will depend on higher moments and are therefore not closed.

For our system, the nonlinear excitatory interaction Q+A→A+A couples the evolution of the
means to the covariance ΣAQ , and the evolution of the covariance is coupled to the third moment,
and so on. The moment equations are therefore not closed, and require an in�nite number of
moments to describe the evolution of the mean and covariance. To address this computational
complexity, we approximate Pr(Q,A,R) with a multivariate normal distribution at each time-
point (Figure 2B), thereby replacing counts of neurons with continuous variables. This Gaussian
moment-closure approximation sets all cumulants beyond the variance to zero, yielding an ex-
pression for the third moment in terms of the mean and covariance, leading to closed ordinary dif-
ferential equations for the means and covariances (Goodman, 1953; Whittle, 1957; Gomez-Uribe
and Verghese, 2007; Schnoerr et al., 2017).

For out model with transitions given in Eq. (1) this leads to the system of ODEs for the mean
values given in Eq. (2) in the main text. For the evolution of the covariance we obtain

∂tΣ = JΣ + ΣJT + Σnoise,

Σnoise =


rqa + rrq −rqa −rrq
−rqa rqa + rar −rar
−rrq −rar rar + rqa


J =


−ρq − ρe 〈A〉 −ρe 〈Q〉 ρr
ρq + ρe 〈A〉 ρe 〈Q〉 − ρa 0

0 ρa −ρr


(6)

where J is the Jacobian of the equations for the deterministic means in Eq. (2), and the Σnoise
�uctuations are Poisson and therefore proportional to the mean reactions rates (Eq. (2)). Intu-
itively, the Jacobian terms J describe how the covariance of the state distribution ‘stretches’ or
‘shrinks’ along with the deterministic evolution of the means, and the additional Σnoise re�ects
added uncertainty due to the fact that state transitions are stochastic. Each state experiences
Poisson �uctuations with variance equal to the mean transition rates, due to the sum of tran-
sitions into and away from the state. Because the number of neurons is conserved, a positive
�uctuation into one state implies a negative �uctuation away from another, yielding o�-diagonal
anticorrelations in the noise.

Together, equations (2) and (6) provide approximate equations for the evolution of the �rst
two moments of the master equation (Eq. 5), expressed in terms of ordinary di�erential equa-
tions governing the mean and covariance of a multivariate Gaussian distribution. Here, we have
illustrated equations for a 3-state system, but the approach is general and can be applied to any
system with spontaneous and pairwise state transitions.
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5.3 Extension to spatial system
To extend the moment equations (2) and (6) to a neural �eld system, we consider a population
of neurons at each spatial location. In this spatially-extended case, we denote the intensity �elds
as Q, A, and R, which are now vectors with spatial indices (or, in the spatially-continuous case:
scalar functions of coordinates x). In the spatially-extended system, active (A) neurons can excite
nearby quiescent (Q) neurons. We model the excitatory in�uence of active cells as a weighted sum
over active neurons in a local neighborhood, de�ned by a coupling kernel K(∆x) that depends
on distance (Eq. 4). To simplify the derivations that follow, denote the convolution integral in
equation (4) as a linear operator K such that

KA = K(∆x) ∗A(x). (7)

In this notation, one can think of K as a matrix that de�nes excitatory coupling between nearby
spatial regions. Using the notation of Eq. (7), the rate that active cells excite quiescent ones is
given by the product

ρe(KA) ◦ Q = ρe Diag
(
KAQ>

)
, (8)

where ◦ denotes element-wise (in the spatially-continuous case: function) multiplication. For
the time evolution of the �rst moment (mean intensity) of Q in the spatial system, one therefore
considers the expectation

〈
KAQ>

〉
, as opposed to 〈AQ〉 in the non-spatial system. Since K is a

linear operator, and the extension of the Gaussian state-space model over the spatial domain x is a
Gaussian process, the second moment of the nonlocal interactions KA with Q can be obtained in
the same way as one obtains the correlation for a linear transformation of a multivariate Gaussian
variable:

〈KAQ>〉 = K〈AQ>〉
= K

(
ΣA,Q + 〈A〉 〈Q〉>

)
.

(9)

The resulting equations for the spatial means are similar to the nonspatial system (Eq. 2), with
the exception that we now include spatial coupling in the rate at which quiescent cells enter the
active state:

rqa = ρq 〈Q〉 + ρe Diag
[
〈KAQ>〉

]
= ρq 〈Q〉 + ρe Diag

[
K

(
ΣA,Q + K 〈A〉 〈Q〉>

) ]
= ρq 〈Q〉 + ρe

[
Diag

(
KΣA,Q

)
+ K 〈A〉 ◦ 〈Q〉

]
.

(10)

The number of neurons in the quiescent verses active states are typically anti-correlated, because
a neuron entering the active state implies that one has left the quiescent state. Therefore, the
expected number of interactions between quiescent and active neurons is typically smaller than
what one might expect from the deterministic mean �eld alone. The in�uence of correlations
Diag

(
KΣA,Q

)
on the excitation is therefore important for stabilizing the excitatory dynamics.

To extend the equations for the second moment to the neural �eld case, we consider the
e�ect of spatial couplings on the the Jacobian (Eq. 6). The spontaneous �rst-order reactions
remain local, and so the linear contributions are similar to the non-spatial case. However, nonlocal
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interaction terms emerge in the nonlinear contribution to the Jacobian:

Jnonlinear = ρe

Gradient in Q︷           ︸︸           ︷ Gradient in A︷           ︸︸           ︷
−Diag (K 〈A〉) −Diag (〈Q〉 K) 0

Diag (K 〈A〉) Diag (〈Q〉 K) 0
0 0 0

 ,
(11)

where here the “Diag” operation refers to constructing a diagonal matrix from a vector. Intu-
itively, the �rst column of Eq. (11) re�ects the fact that the the availability of quiescent cells
modulates the excitatory e�ect of active cells, and the second column re�ects the fact that the
density active of neurons in nearby spatial volumes contribute to the rate at which quiescent cells
become active.

5.4 Basis projection
The continuous neural �eld equations are simulated by projection onto a �nite spatial basis B.
Each basis element is an integral over a spatial volume. Means for each basis element are de�ned
as an integral over this volume, and correlations are de�ned as a double integral. For example,
consider the number of quiescent neurons associated with the ith basis function, Qi . The mean
〈Qi〉 and covariance ΣijQA between the quiescent and active states are given by the projections:

〈Qi〉 =
∫

Bi(x)Q(x)dx

ΣijQA =

∬
Bi(x)Bj(x′)ΣQA(x, x′)dxdx′,

(12)

where x and x′ range over spatial coordinates as in Eq. (3) and (4). When selecting a basis B,
assumptions must be made about the minimum spatial scale to model. A natural choice is the
radius of lateral (i.e. spatially nonlocal) interactions in the model σe (Eq. 3), since structure below
this scale is attenuated by the averaging over many nearby neurons in the dendritic inputs.

5.5 Langevin equations and sampling
For ground-truth simulations, we sample from a hybrid stochastic model derived from a Langevin
approximation to the three-state neural �eld equation. In the Langevin approximation, the deter-
ministic evolution of the state is given by the mean-�eld equations (Eq. (2) for a local system, Eq.
(10) for the neural �eld system), and the stochastic noise arising from Poisson state transitions is
approximated as Gaussian as given by second-order terms (i.e. Σnoise in Eq. (6); see also Riedler
and Buckwar, 2013; Schnoerr et al., 2017). Spontaneous wave initiation events are too rare to
approximate as Gaussian, and instead are sampled as Poisson (shot) noise, giving us a hybrid
stochastic model:

rq(t) ∼ Poisson(ρq · dt) · δ (t), (13)

where δ (t) is a Dirac delta (impulse). To avoid uniform spontaneous excitation, the excito-
excitatory reaction rate is adjusted by a small �nite thresholdϑ , i.e. rqa←max(0, rqa−ϑ ) in Eq. (10).

17

All rights reserved. No reuse allowed without permission. 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/543769doi: bioRxiv preprint first posted online Feb. 8, 2019; 

http://dx.doi.org/10.1101/543769


For our simulations (e.g. Figure 3), we let ϑ=8e-3. For the non-spatial system, the hybrid stochas-
tic di�erential equation equation is:

dQ
dA
dR

 = ©«

−rq(t) 0 ρr
rq(t) −ρa 0
0 ρa −ρr



Q
A
R

 + ρe

−QA
QA
0

ª®¬dt + Σ1/2
noisedW , (14)

where Σnoise is the �uctuation noise covariance as in Equation (6) (with ρq excluded, as it is ad-
dressed by the shot noise, Equation (13)), and dW is the derivative of a multidimensional standard
Wiener process, i.e. a spherical (white) Gaussian noise source. The deterministic component of
the Langevin equation can be compared to Equation (2) for the means of the non-spatial system
in the moment-closure system (without the covariance terms).

The stochastic di�erential equation for the spatial system is similar, consisting to a collection
of local populations coupled through the spatial interaction kernel (Eqs. 3-4), and follows the
same derivation used when extending the moment-closure to the spatial case (Methods: Exten-
sion to spatial system, Eqs. 7-10). When applying the Euler-Maruyama method method to the spa-
tiotemporal implementation, �uctuations were scaled by

√
dt ∆x, where ∆x is the volume of the

spatial basis functions used to approximate the spatial system (See Methods: System-size scaling
for further detail). The Euler-Maruyama algorithm samples noise from a Gaussian distribution,
and can therefore create negative intensities due to discretization error. We addressed this issue
by using the complex chemical Langevin equation (Schnoerr et al., 2014), which accommodates
transient nonphysical negative states.

5.6 Point-process measurement likelihood
Similarly to generalized linear point-process models for neural spiking (Truccolo et al., 2005,
2010; Truccolo, 2016), we model spikes as a Poisson process conditioned on a latent intensity
function λ(x, t), which characterises the probability of �nding a certain number of spikes in a
small spatiotemporal interval ∆x×∆t as:

Pr
(∫ t0+∆t

t0

∫ x0+∆x
x0

y(x, t)dxdt = k
)
∼ Poisson

(∫ t0+∆t

t0

∫ x0+∆x
x0

λ(x, t)dxdt
)
. (15)

In (15), y(x, t) denotes the experimentally-observed spiking output, and is a sum over Dirac delta
distributions corresponding to each spike with an associated time ti and spatial location xi , i.e.
y(x, t) = ∑

i∈1..N δ (xi)δ (ti). We use a linear Poisson likelihood for which the point-process inten-
sity function

λ(x, t) = γ (x)A(x, t) + β(x) (16)
depends linearly on the number of active neurons A(x, t) with spatially-varying gain γ (x) and
bias β(x). In other words, the observed �ring intensity in a given spatiotemporal volume should
be proportional to the number of active neurons, with some additional o�set or bias β to capture
background spiking unrelated to the neural-�eld dynamics.

5.7 Bayesian �ltering
Having established an approach to approximate the time-evolution of the moments of a neural
�eld system, we now discuss how Bayesian �ltering allows us to incorporate observations in the
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estimation of the latent states. Suppose we have measurements y0, . . . ,yN of the latent state x
at time t0, . . . , tN , given by a measurement process Pr(yi |xti ), which in our case is given by the
point-process likelihood (Eq. 16). Bayesian �ltering allows us to recursively estimate the �ltering
distribution Pr(xti |yi , . . . ,y0) at time ti , i.e. the posterior state probability at time ti given the
current and all previous observations. The procedure works by the following iterative scheme:
i) suppose we know the �ltering distribution Pr(xti |yi , . . . ,y0) at time ti . Solving the dynamics
forward in time up to ti+1 gives the predictive distribution Pr(xt |yi , . . . ,y0) for all times ti<t≤tt+1.
ii) at the time ti+1 the measurement yi+1 needs to be taken into account which can be done by
means of the Bayesian update:

Pr(xi+1 |yi+1, . . . ,y0) =
Pr(yi+1 |xi+1) Pr(xi+1 |yi , . . . ,y0)

Pr(yi+1 |yi , . . . ,y0)
, (17)

where we have used the Markov property and Pr(yi+1 |xi+1,yi , . . . ,y0) = Pr(yi+1 |xi+1) to obtain
the right hand side. Eq. (17) gives the �ltering Pr(xti+1 |yi+1, . . . ,y0) at time ti+1 which serves as
the input of the next i step. Performing steps i) and ii) iteratively hence provides the �ltering
distribution for all times t0 ≤ t ≤ tn.

For our neural �eld model we must compute both steps approximately: to obtain the predictive
distribution in step i) we integrate forward the di�erential equations for mean and covariance
derived from moment-closure (Eq. 2-6 and Methods: Extension to spatial system). In practice, we
convert the continuous-time model to discrete time. If F∂t denotes the local linearization of the
mean dynamics in continuous time such that ∂tµ(t) = F∂tµ(t), then the approximated discrete-
time forward operator is

F∆t = exp(F∂t∆t) ≈ I + F∂t∆t . (18)

We update the covariance using this discrete-time forward operator, combined with an Euler
integration step for the Poisson �uctuations. A small constant diagonal regularization term Σreg
can be added, if needed, to improve stability. The resulting equations read:

µt+∆|t = F∆tµt

Σt+∆|t = F∆tΣtF
T
∆t+Σ

noise
t · ∆t + Σreg.

(19)

This form is similar to the update for a discrete-time Kalman �lter (Kalman et al., 1960; Kalman
and Bucy, 1961), the main di�erence being that the dynamics between observation times are taken
from the nonlinear moment equations.

Consider next the measurement update of step ii) in Eq. (17). Since the Gaussian model
for the latent states x is not conjugate with the Poisson distribution for observations y, we ap-
proximate the posterior Pr(xi+1 |yi+1, . . . ,y0) using the Laplace approximation (c.f. Paninski et al.
2010; Macke et al. 2011). The Laplace-approximated measurement update is computed using a
Newton-Raphson algorithm. The measurement update is constrained to avoid negative values
in the latent �elds by adding a ε/x potential (compare to the log-barrier approach; Nazarpour
et al. 2012), which ensures that the objective function gradient points away from this constraint
boundary, where x is the intensity of any of the three �elds. The gradients and Hessian for the
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posterior measurement log-likelihood lnL are

− lnL = 1
2 (x − µ)

TΣ−1(x − µ) +v(γx + β) − y ln(γx + β)

−∂ lnL
∂x

= Σ−1(x − µ) +vγ − y
(

γ

γx + β

)
−∂

2 lnL
∂x2

= Σ−1 + y

(
γ

γx + β

)2
,

(20)

where x is the latent state with prior mean µ and covariance Σ, and couples to point-process
observations y linearly with gain γ and bias β as in Eq. (16). The parameter v=∆x2·∆t is the
spatiotemporal volume of the basis function or spatial region over which the counts are observed.

5.8 System-size scaling
For clarity, the derivations in this paper are presented for a population of neurons with a known
size, such that the �elds Q(x), A(x), and R(x) have units of neurons. In practice, the population
size Ω of neurons is unknown, and it becomes expedient to work in normalized intensities, where
Q(x), A(x), and R(x) represent the fraction of neurons in a given state between 0 and 1, and
are constrained such that Q(x)+A(x)+R(x)=1. In this normalized model for population size Ω,
quadratic interaction parameters (like ρe ) as well as the gain are multiplied by Ω, to re�ect the
re-scaled population. In contrast, noise variance should be divided by Ω to account for the fact
that the coe�cient of variation decreases as population size increases. Although rescaling by
Ω is well-de�ned for �nite-sized populations, the in�nitesimal neural-�eld limit for the second-
order model is not. This is because, while the mean-�eld equations scale with the population size
O(Ω), the standard deviation of Poisson �uctuations scales with the square root of the population
size O(

√
Ω). The ratio of �uctuations to the mean (coe�cient of variation) therefore scales as

O(1/
√
Ω), which diverges as Ω→0.

This divergence is not an issue in practice as all numerical simulations are implemented on a
set of basis functions with �nite nonzero volumes, and each spatial region is therefore associated
with �nite nonzero population size. Even in the limit where �uctuations would begin to diverge,
one can treat the neural �eld equations as if de�ned over a continuous set of overlapping basis
functions with nonzero volume. Conceptually, one can interpret this as setting a minimum spatial
scale for the neural �eld equations, de�ned by spatial extent of each local population. If one
de�nes the model over a set of overlapping spatial regions, then overlapping spatial areas also
experience correlated �uctuations. Consider Poisson �uctuations as entering with some rate-
density σ 2(x) per unit area. The observed noise variances and covariances, projected onto basis
functions Bi(x) and Bj(x), are:

Σnoise
i,j =

∫
Bi(x)Bj(x)σ 2(x)dx (21)

If the neuronal population density is given as ρ(x) per unit area, then the e�ective population
size for a given basis function is:

Ωi =

∫
Bi(x)ρ(x)dx (22)
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If the population density is uniform, and if basis functions have a constant volume v , we can
write this more simply as Ω = vρ. In the system-size normalized model, the contributions of
basis function volume cancel and the noise variance should be scaled simply as 1/ρ.
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