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Glossary of abbreviations

Neuroscience terms

ADP After-Depolarization Potential (also DAP)

AHP After-Hyperpolarization Potential

AIP Anterior Inferior Parietal lobule/gyrus

ALS Amyotrophic Lateral Sclerosis

CGID Cued Grasp with Instructed Delay task

DAP Depolarizing Afterpotential (also ADP)

EEG Electroencephalogram(graph)

EMG Electromyogram(graph)

FRG Free Reach to Grasp task

FS Fast Spiking inhibitory interneuron

LFP Local Field Potential

LIP Lateral Intraparietal Area

M1 Primary motor cortex

MEA Multi-Electrode Array

MIP Medial Inferior Parietal lobule/gyrus

PMd Dorsal Premotor cortex

PMv Ventral Premotor cortex

PT Pyramidal Tract neuron (synonym of PTN)

PTN Pyramidal Tract Neuron (synonym of PT)

RS Regular Spiking excitatory pyramidal cell

SAHP Slow After-Hyperpolarization Potential

TMS Transcranial Magnetic Stimulation

β-LFP Beta oscillations (∼20 Hz oscillations)

γ-LFP Gamma oscillations (∼50 Hz oscillations)

Statistical terms

ACF Auto-Correlation Function

AUC Area Under the ROC Curve

CIF Conditional Intensity Function

CV Coe�cient of Variation

GLM Generalized Linear Model

ISI Inter-Spike Interval distribution

PCA Principal Component Analysis

PGD Phase Gradient Directionality

PP Predictive Power

PPC Pairwise Phase Consistency

ROC Receiver Operating Characteristic

SNR Signal-to-Noise Ratio

STA Spike-Triggered Average
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Preface

Understanding the neural computations involved in motor control is of fundamental sci-

enti�c and clinical importance. From the standpoint of basic science, we wish to under-

stand the mechanisms of voluntary action as one facet of the larger problem of under-

standing consciousness and cognition. Motor, premotor, and other areas of frontal cortex

exhibit similarities in their local architecture and in their connectivity with other brain

systems, and insights about the functioning of motor cortex may generalize to insights

into how the frontal cortex plans and executes complex sequences of behavior. From

a clinical standpoint, understanding the processes of motor control is essential for treat-

ment of disorders of the motor system. A clear understanding of how actions are selected,

timed, gated, executed, and controlled, is necessary for optimal decoding of action sig-

nals for neuroprosthetics applications for individuals with amyotrophic lateral sclerosis

and upper cervical cord injury. A clear understanding of the regulation of movement is

also necessary for the treatment of movement disorders, including Parkinson’s, and the

numerous movement disorders that can arise from injury to the motor system such as

dystonia and chorea-ballism.

Historically, the brain has often been likened to a very big version of whatever most

complex technology man had available at the time, the telephone switchboard, the super-

computer. These analogies fail dramatically, the failure of a single transistor can cause a

computer to crash, but the loss of a few neurons is hardly noticeable. This robustness is

possible because single neurons rarely exert overwhelming in�uence over the trajectory

of the brain state as a whole. Instead, the dynamics emerge from average behaviors and

(pairwise and higher-order) interactions among the neurons. The planning and execu-

tion of movements involves coordination between recurrently connected populations of

billions
1

of single neurons distributed across multiple areas of the brain. This number

remains large even for the smaller neocortical patches examined in this thesis: a rough

1
Order of magnitude estimate. See Braendgaard et al. 1990; Gredal et al. 2000
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estimate indicates that each 4×4 mm2 recorded patch in primary, ventral and dorsal mo-

tor areas contains about 2 million neurons. Neurons in motor cortex operate collectively

to prepare and to generate movements, forming a distributed system that can maintain

normal motor functioning in the face of noise, uncertainty, and unreliability in single

neuron activity. Because the neural correlates of action preparation and execution are

distributed, we can decode actions with substantial accuracy from a random subsample

of single neurons picked up by chance in a multi-electrode array recording. However, the

distributed and collective nature of the neural dynamics means that we cannot understand

the operation of the motor system without considering the simultaneous operation of all

its components. Simultaneous recordings from all neural structures involved in motor

control is currently infeasible, and thus we are faced with the task of piecing together a

theory of motor control based on observations of small sections of the motor system.

Current research in the motor system is limited by the technologies for recording and

manipulating neural activity. One common recording approach, extended recently also to

brain-machine interface research for paralyzed individuals, is microelectrode array (MEA)

technology, which permits simultaneous recording from up to a few hundred microelec-

trodes covering a few square milliliters of cortex. These MEAs provide information about

neural activity at multiple spatial and temporal scales, and can simultaneously record both

dozens of isolated single neurons as well as indicators of population activity like multi-

unit spiking activity (MUA) and ongoing local �eld potentials (LFPs) in multiple frequency

bands. Previous work in the Truccolo lab has focused on examining collective dynamics

at the level of spiking activity in ensembles of single neurons (e.g. Aghagolzadeh and

Truccolo 2015; Truccolo et al. 2010). In this thesis, I focus on the collective neural dynam-

ics re�ected in LFPs. Although still a matter of intense debate (even the dipole models

commonly used as LFP generators may be wrong; Bedard and Destexhe 2013; Destexhe

and Bedard 2012), LFPs are thought to re�ect primarily spatial averages of postsynaptic

potential over large neuronal populations. The aim here is to better understand how these
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signals at varying spatial and temporal scales relate, and to characterize the features of

collective neural activity that may be observed. We will also address data coming from

the emerging technology of optogenetic stimulation in primate motor cortex.

Speci�cally, the thesis examines three main topics in collective dynamics in motor

cortex. First, what processes in�uence neural spiking in motor cortex during movement?

Second, what is the relationship between neural �ring and local population dynamics

during movement planning and preparation? Third, how do local populations of neurons

interact and coordinate across motor cortex during the preparation of movement? Chap-

ter 1 covers relevant background, including neuroanatomy and our current understanding

of neural coding, variability, oscillations, and spatiotemporal wave dynamics in primate

motor cortex. Chapter 1 section 5 introduces the statistical methods used to model single

neuron spiking, to examine its relationship to ongoing LFP oscillations, and to character-

ize spatiotemporal wave patterns.

Chapter 2 of this thesis explores variability in single neuron spiking in primate motor

cortex during movement execution, and addresses the question of what accounts for the

excess trial-to-trial variability observed in neural spiking during movement. As stated

above, neuronal networks in neocortex are highly recurrent. Recurrent connectivity is

known to lead to complex spontaneous activity, which by itself can contribute to single

neuron variability. Understanding the nature of such neural variability is an important

step toward a theory of how motor cortex robustly generates movement. The question is

also important for improving neural decoding for brain-machine interface applications.

The main �nding of Chapter 2 is that collective dynamics re�ected in LFPs, even though

highly predictive of single neuron spiking, are mostly redundant to the information avail-

able in movement parameters (e.g. kinematics) and, therefore, cannot explain the excess

variability. Speci�cally, information related to spiking variability in local �eld potentials

is composed of two components: a slow, motor-evoked component that is related to gen-

erating the dynamics of reaching and grasping actions, and a fast-timescale component
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that is related to stochastic spiking history e�ects. These results come in contrast to sim-

ilar studies in sensory cortex under anesthesia, which found that local �eld potentials

re�ect intrinsic neural dynamics unrelated to stimulus encoding, and add weight to the

conjecture that the spontaneous collective dynamics re�ected in motor cortex LFPs are

used for movement generation.

Chapter 3 of this thesis investigates motor cortex ∼20 Hz rhythmic beta activity, a

salient feature of steady-state movement preparation periods. Although many have pro-

posed that these oscillations play some role in stabilizing motor steady-states, the com-

putational and functional signi�cance of this rhythmic activity is unresolved. The main

�nding of Chapter 3 is that the activity of rhythmically spiking single neurons can be

dissociated from population oscillations evidenced in local �eld potentials. This result

provides an important constraint on collective beta-frequency dynamics for models of

motor steady-states, and raises questions about the potential computational signi�cance

of heterogeneous and variable relationships between rhythmic neural �ring and popula-

tion oscillations at the same frequency as re�ected in beta LFPs.

Chapter 4 of this thesis investigates spatiotemporal waves observed in local �eld po-

tential beta oscillations during movement preparation steady states, as well as complex

multi-band spatiotemporal gamma oscillations induced by optogenetic stimulation in pri-

mate motor cortex. Spatiotemporal wave phenomena have been extensively studied in,

for example, the retina and visual cortex, but remain relatively unexplored in the mo-

tor system. Studies to-date have focused on planar traveling wave activity in beta, and

we �nd that the true activity is in fact much more variable and complex, especially in

area PMv, which has not been examined before. The results of Chapter 4 support the

theory that beta spatiotemporal dynamics represent spatial organization of local ongo-

ing beta oscillation phases, but also show that amplitude may be an important feature of

beta spatiotemporal dynamics. The analysis of optogenetically induced spatiotemporal

gamma oscillations provides an important contrast or reference for the interpretation of
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the examined spatiotemporal beta waves. The induced gamma waves o�er a clear ex-

ample of waves generated in an excitable medium. Chapter 4 also provides a thorough

description of the response of motor cortex to optogenetic stimulation, and demonstrates

that the gamma spatiotemporal dynamics in cortex can be comprised of multiple inter-

acting narrow-band oscillations. Clarifying the mechanisms behind this phenomenon is

an important �rst step for developing closed-loop stimulation methods for research and

neuroprosthetic applications.

-
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Chapter 1

Collective neural dynamics in primate
motor cortex
Michael Rule

This section reviews relevant background information for Chapters 2 through 4 of this the-

sis. The work presented in this thesis has been done in motor cortex of rhesus macaques,

and so we begin with a brief review of the primate motor system. Then, we discuss collec-

tive dynamics in motor cortex during movement, including what is known about popula-

tion activity and sources of variability in neural �ring. Third, we discuss oscillatory states

in motor cortex that can be observed during movement preparation. Fourth, we cover

spatiotemporally organized population activity in the brain, including wave dynamics in

motor cortex. The chapter concludes with an introduction to the statistical methods that

we use to investigate these topics of collective dynamics in motor cortex.

1.1 Primate motor cortex

This thesis focuses on collective dynamics in motor and premotor cortices during both

naturalistic and cued visually guided reaching and grasping. This section brie�y reviews

major inputs and outputs of motor and premotor cortex involved in these tasks, as well
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as the laminar organization and what is known about neural cell types in these areas of

the brain. Additionally, we review current understanding of how motor cortex represents

and generates the neural activity required for movement.

1.1.1 Primary motor and premotor cortices

Rizzolatti et al. (1998) provide a review of the anatomy of sensorimotor cortex in rhesus

macaques. Primary motor cortex (M1) in rhesus macaques lies on the anterior bank of the

central sulcus and the precentral gyrus, and constitutes Brodmann areas 4 and 6 (Rizzo-

latti et al., 1998). A number of cortical areas connect directly to motor cortex, including

the supplementary motor area (SMA), the cingulate motor areas, and dorsal and ventral

premotor cortex (Dum and Strick, 2002). The dorsal and ventral premotor (PMd and PMv)

areas are located anterior to M1 (Dum and Strick, 2002), and are on the outer surface of

the brain and therefore accessible for multi-electrode array (MEA) recording approaches

(Figure 1.1). PMd is adjacent to M1, in an anterior and dorsal position in the precentral

gyrus, and dorsal to the spur of the arcuate sulcus. In macaques, PMd is located ventrally

and slightly anterior to an anatomical feature called the superior precentral dimple. PMv

is located below the spur of the arcuate sulcus (Dum and Strick 2002, see Figure 1.1).

1.1.2 Connections with parietal cortex

Areas PMv and PMd are involved in visually guided reaching and grasping, and connect

to several parietal areas that represent the sensory information necessary for these be-

haviors. Tanné-Gariépy et al. (2002) found that PMd and PMv project to separate sets of

parietal areas, corresponding roughly to information about spatial geometry necessary for

reaching, and information about object shape important for grasping, respectively. Area

PMd receives inputs from areas MIP, PEc, PGm (also called MDP or 7m; Shipp et al. 1998),

PO, 7b and PE (Tanné-Gariépy et al., 2002). Area MIP neurons encode goal-directed hand

motion information (Grefkes and Fink, 2005). Area PEc neurons are tuned to hand and eye
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position (Ferraina et al., 2001), as are neurons in area PGm (Ferraina et al., 1997). Area PO

plays a role in encoding visual space (Boussaoud et al., 1990). Taken together, the parietal

areas that project to PMd convey information about visual space, spatial representations

for reaching, and the conjunction between the two for hand-eye coordination. Area PMv

receives inputs from areas AIP, 7b, PE, and somatosensory cortex (Tanné-Gariépy et al.,

2002). Area AIP encodes object shape information relevant for grasp shaping (Grefkes

and Fink, 2005). Area 7b encodes somatosensory information as well as visual information

(Hyva et al., 1981), and area PE is thought to relate to somatosensory functions (Johnson

et al., 1996). Taken together, the parietal areas that project to area PMv convey informa-

tion important for grasping, including visual information about object geometry as well

as tactile feedback important for grasp shaping.

1.1.3 Connections with subcortical structures

Motor cortex is involved in a number of recurrent connectivity loops with subcortical

structures, including interactions with the basal ganglia, extrapyramidal motor structures

of the brainstem, and the cerebellum. Inputs to motor cortex from these structures arrive

from the ventral lateral and ventral anterior thalamic nuclei
1
, and synapse primarily in

the super�cial cortical layers (I/II), and also in layer V (Bosch-Bouju et al., 2015). These

other structures are beyond the scope of the thesis, but are relevant to the interpretation

of local �eld potentials (LFPs) observed in motor cortex, which arise in part from synaptic

inputs (Buzsáki et al., 2012).
2

Thalamic inputs may form part of a system that gives rise

to intrinsic neural dynamics for movement pattern generation (§ 1.2, Chapter 1), and may

also play a role in gating beta oscillations in the motor system (§ 1.3, Chapters 3, 4).

1
Nomenclature is not standardized in primates (Bosch-Bouju et al., 2015), see Krack et al. (2002).

2
Several studies have called into question the assumption that LFPs re�ect synaptic inputs. See § 1.2.3.
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Figure 1.1: Anatomy of visually-guided reaching and grasping. During visually guided reaching and grasp-

ing, the arm and hand area of M1 coordinates with the dorsal and ventral premotor areas PMd and PMv. In

this illustration, reciprocally connected motor and parietal areas are shaded in common colors. Premotor

areas receive segregated streams of visual information from parietal cortex. Area PMd receives information

about spatial geometry important for reaching from dorsal parietal areas (shaded in blue). Area PMv re-

ceives information about object geometry important for grasping from the parietal areas shaded in orange.

Area M1 also receives feedback from somatosensory cortex (areas 3a,1,2, shaded in grey). Connections be-

tween parietal and premotor cortex are taken from Tanné-Gariépy et al. (2002), and anatomical boundaries

of premotor areas are taken from Dum and Strick (2002).
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Figure 1.2: Laminar organization of rodent motor cortex. (A) Figure adapted from Kaneko (2013). Layer

V of motor cortex gives rise to output to spinal cord and subcortical structures. Layer II/III participates in

corticocortical and thalamocortical connections. Recurrent dynamics between motor thalamus and layers

VI and IIId may play a pattern-generating role in motor output. Feed-forward transformation of cortic-

ocortical and thalamic inputs in layers II/III and 1 may play a role in converting sensory and contextual

information into motor output. Importantly, this study was conducted in rodents, whose motor cortex

exhibits an identi�able layer IV not present in the motor cortex in primates and may exhibit a di�erent

pattern of thalamocortical projections. (A, Illustration inset) Nissl-stained forelimb representation area

of M1 in a mouse (Yamawaki et al., 2015). (A, LFP illustration) Inset detailing generation of LFP adapted

from Niedermeyer and da Silva (2005). Dendritic currents arising from synaptic conductances contribute

to local �eld potentials (LFPs). The LFP provides complementary information to spiking output, and the

relationship between spikes and LFP in motor cortex may re�ect aspects of ongoing neural computation.

(B) Recurrent connectivity in motor cortex, adapted from Weiler et al. (2008) �gure 4. Recurrent intra- and

inter-laminar connections form upper and lower processing loops. Inputs to motor cortex arrive primarily

in the upper layers, and outputs arise from the lower layers.
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Figure 1.3: Neuronal subtypes in motor cortex. Sub�gures A and B are adapted from Figure 1 of Baranyi

et al. (1993b). Sub�gures C and D are adapted from Figure 2 of Chen and Fetz (2005). (A) Three di�erent

types of action potentials were identi�ed by Baranyi et al. (1993b) in cat motor cortex. Class A: Fast spiking

pyramidal tract neurons (PTNs), and some types of non-PTN neurons, exhibit depolarizing afterpotentials

(DAPs) that enable �ring of spike doublets and bursts. These cells also exhibit slow afterhyperpolarization

potentials (SAHPs). Class B: Slow spiking PTNs and some types of non-PTN neurons exhibit wide spikes

and SAHPs. Class C: Fast spiking (FS) cells exhibit short spike widths, lack DAPs, and have very short

afterhyperpolarization potentials. (B) Distribution of spike widths for various cell types. FS cells exhibit the

narrowest spikes, but overlap to some extent with fast-spiking PTNs. Slow PTNs exhibit the widest spikes

on average. Non PTN neurons including regular spiking cells, and inactivating (i) and noninactivating (ni)

bursting neurons, exhibit varied spike widths. (C) Motor neuron classes in primates are similar to those

observed in cats (Chen and Fetz, 2005). Type I is similar to type B from Baranyi et al. (1993b), exhibiting

only a SAHP. Type II is similar to type A from Baranyi et al. (1993b), exhibiting both a DAP (or ADP as

abbreviated by Chen and Fetz (2005) and a SAHP. Type III is similar to type C from Baranyi et al. (1993b),

exhibiting narrow spikes and rapid repolarization after spiking. (D) Spike waveform properties correlate

with di�erences in inter-spike interval (ISI) histogram distributions. Type I cells �re irregularly at low

rates, consistent with the slow PTNs and regular spiking cells observed by Baranyi et al. (1993b). Type II

cells exhibit a bursting component related to the ADP, and a rhythmic component related to the SAHP. Type

III cells �re rhythmically at high rates, corresponding to the Type C FS cells from Baranyi et al. (1993b).
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1.1.4 Laminar organization

Recent studies in rodents have suggested that motor cortex is functionally divided into

two interacting subsystems (Figure 1.2). Weiler et al. (2008) found that recurrent con-

nectivity in motor cortex clusters into a super�cial system in layers II/III and the upper

portion of layer V, and a deep system in layer VI and the lower portion of layer V (Figure

1.2B). Kaneko (2013) hypothesizes that the super�cial system is related to feed-forward

transformation of inputs into motor output, and that the deep layers form part of a recur-

rent dynamical system in interaction with motor thalamus (Figure 1.2B). Therefore, one

expects neural signals originating from deep verses super�cial layers to re�ect di�erent

aspects of neural computation related to motor control. This is particularly relevant for

interpreting local �eld potentials, which can re�ect both summed synaptic inputs into

the local spiking population as well as volume-conducted potentials from other cortical

layers. We note, however, that the laminar organization of primate motor cortex remains

controversial, with layer IV initially described in adult humans by Cajal, but reported as

absent in subsequent studies. More recent work (García-Cabezas and Barbas, 2014) sup-

ports the existence of layer IV cells in motor cortex of adult primates, although these cells

may not form a distinctive layer.

In this work we analyze recordings from multi-electrode arrays (MEAs; Utah Array,

Blackrock Microsystems) with an electrode length of 1.5 mm. It is thought that the single

units isolated in these experiments are in layer V. Some amount of compression and corti-

cal thinning through cell loss may occur in the tissue under the MEA implant, making the

laminar origin of MEA recordings uncertain, and layer III is also a possibility. Histological

assessments, which were not available at the time of this writing, would be necessary to

verify the targeted layers.
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1.1.5 Types of neurons

The diversity and number of distinct neuronal subtypes in neocortex remains an open

question (for review, see Markram et al. 2004). Determining the functional roles of neu-

ron types is important for understanding the dynamics of motor cortex, as each subtype

may play a di�erent role in network dynamics. In the simplest possible schema, one can

identify two major types of neurons (interneurons vs. principal cells) based on extracel-

lular spikes recorded on MEAs (Barthó et al., 2004; McCormick et al., 1985). In sensory

cortex single units can be classi�ed into putative fast spiking (FS) inhibitory and regular

spiking (RS) pyramidal cells based on the width of the extracellularly recorded spike wave-

form (e.g. Cardin et al. 2007, Woloszyn and Sheinberg 2012), and these classi�cations �t

reasonably well with major morphological di�erences (Foehring et al., 1991). Some stud-

ies have categorized cells in motor cortex based on spike width, but surprisingly found

little di�erence between the dynamics of cells with thin and thick spikes (Kaufman et al.,

2010). Vigneswaran et al. (2011) showed that in motor cortex, pyramidal tract neurons can

exhibit narrow spikes and high �ring rates, making them di�cult to distinguish from pu-

tative inhibitory FS interneurons. Therefore, the lack of electrophysiological di�erences

between thin and thick spiking cells recorded on MEAs from motor cortex may result

from both being subtypes of excitatory pyramidal tract neurons. Additionally, the rel-

ative sparseness of the thin-spike, aspiny neurons (∼20%) and their restricted electrical

�eld compared to pyramidal neurons, means that they may be less likely to be sampled
3
.

Studies of intracellular action potentials and spiking statistics have found a diversity

of neurons in motor cortex. Baranyi et al. (1993a) and Baranyi et al. (1993b) identi�ed

a number of di�erent types of neurons in cat motor cortex, including inhibitory FS in-

terneurons, slow and fast spiking PTNs, regular spiking non-PTNs, and bursting non-PTN

types with and without spike-rate adaptation. These units had overlapping distributions

of spike widths (Figure 1.3B). Baranyi et al. (1993b) observed three main types of action

3
Dr. John Donoghue, personal communication.
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potentials in primate motor cortex: thin spikes with fast repolarization, thick spikes with

slow afterhyperpolarization potentials (SAHPs), and thin spikes with a depolarizing after-

potential (DAP) followed by a SAHP (Figure 1.3A). Chen and Fetz (2005) also found three

classes of neurons in primate motor cortex that can be distinguished by spike waveforms:

regular spiking cells with thick spikes, and two types of fast spiking cell: one that ex-

hibits bursting and rhythmicity as a result of a short DAP and a SAHP, and another that

�res regularly and at high rates, exhibiting neither bursting nor SAHP (Figure 1.3C,D).

Overall, the results of Baranyi et al. 1993a and Chen and Fetz (2005) suggest that units in

motor cortex can be classi�ed into at least three groups based on extracellular recordings.

Thick spikes correspond to regular spiking excitatory pyramidal cells, a subset of which

are PTNs. Thin spikes correspond to two categories: inhibitory FS interneurons, and fast-

spiking PTNs. Both exhibit rhythmicity, but only the fast-spiking PTNs exhibit bursting

and spike-doublets, as a consequence of the DAP.

Vigneswaran et al. (2011) note that the fast spiking PTNs in motor cortex likely corre-

spond to the fast-conducting pyramidal tract �bers (Calvin and Sypert, 1976; Koike et al.,

1970, 1968; Takahashi, 1965), which were found to be associated with fast, transient "ki-

netic" motor output, as opposed to slow-conducting �bers which relate to sustained or

"tonic" motor output (Koike et al., 1970). This is interesting from a standpoint of motor

decoding, as fast spiking PTNs should be interpreted as having more of a phasic relation-

ship to motor output compared to slow-spiking PTNs. Fast spiking PTNs activate at high

rates earlier in movements and display spike-rate adaptation. For the purposes of under-

standing computational and neural circuit mechanisms in motor cortex, the ambiguity

of cell types recorded on MEAs frustrates attempts to analyze excitatory and inhibitory

neurons separately. Recent work by Best et al. (2016) found that motor cortex thin-spike

cells convey more information than thick-spike cells for movement decoding, supporting

the theory that some thin-spike cells isolated on MEA recordings of primate motor cortex

are a subtype of PTNs.
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1.1.6 Lateral connectivity

Chapter 4 of this thesis investigates two spatiotemporal wave phenomena in motor cor-

tex. To clarify interpretations of functional connectivity and collective wave activity in

motor cortex, it is necessary to review what is known about the underlying anatomical

connectivity in motor cortex. Takahashi et al. (2015) analyze functional connectivity, i.e.

pairwise time-causal statistical relationships between isolated single units, in motor cor-

tex during beta (10-45 Hz, see ave events. They found that (1) "The circular distribution of

excitatory connection directions became bimodal and closely oriented to the beta wave axis"

and (2) "The circular distributions of inhibitory connection directions were also bimodal but

oriented almost orthogonal to the beta wave axis". They also found that the beta state mod-

ulated spiking functional connectivity, and it is conceivable that this connectivity re�ects

the impact of beta waves on single-unit activity.

Measurements of conduction velocities in motor cortex are relevant for understanding

which e�ects in Chapter 4 might be mediated by direct spread of neural activity through

excitatory connections. Takahashi et al. (2015) found that the conduction velocity be-

tween functionally connected pairs of units is approximately 10 cm/s, and noted that this

is comparable to both the observed propagation velocity of motor cortex beta waves, and

the experimentally measured conduction speeds of 10 cm/s observed in electrical stimu-

lation in rat motor cortex (Aroniadou and Keller, 1993). Another study in motor cortex,

Capaday et al. (2011), found that multi-unit activity in cat motor cortex spreads from a

stimulation site at about 14 cm/s. These measured propagation speeds relate to polysy-

naptic transmission through excitatory connections, since the distances over which the

observed phenomena propagate are larger than the range of typical monosynaptic con-

nections. Although some activity may spread via direct long-range connections, the grad-

ual radiation of activity from the stimulation site observed in the above studies suggests

that these conduction velocities re�ect propagating activity mediated by lateral excito-
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excitatory connections.

Aroniadou and Keller (1993) found that typical monosynaptic excitatory lateral con-

nections extend for up to 450 µm. Similarly, Asanuma and Rosén (1973) found that monosy-

naptic connections from layers II, III, and IV spread up to 500 µm. Although their work

did not explicitly separate excitatory and inhibitory populations, they suggested that the

spread of putative excitatory connections from super�cial and intermediate layers is ap-

proximately 450 µm and that the spread of putative inhibitory connections from deep

layers is approximately 600 µm. Aroniadou and Keller (1993) also observed that electrical

stimulation elicits an outward traveling LFP response that decays exponentially with a

space constant of approximately λ =450 µm.

Huntley and Jones (1991) found complex lateral connectivity in motor cortex over a

variety of spatial scales that integrates areas of motor cortex needed for reaching and

grasping (e.g. �nger, wrist, and elbow representations). This pattern of connectivity is

very di�erent from the almost crystalline arrangement of cortical columns with center-

surround inhibition (“Mexican hat”) often considered in studies of waves and pattern for-

mation (e.g. Ermentrout and Cowan 1979; Rule et al. 2011). Some models of spatiotem-

poral wave phenomena in motor cortex (Heitmann et al., 2012) require center-surround

connectivity, however there is little evidence that the connections in motor cortex re-

�ect this arrangement. Understanding how spatiotemporally organized waves emerge in

motor cortex is therefore an open problem.

1.1.7 Encoding in and decoding

Georgopoulos et al. (1982) found that single-unit �ring rates in motor cortex can be tuned

to the direction of reaching movements (Figure 1.4A). Georgopoulos et al. (1986) subse-

quently showed that the direction of movement can be decoded as a population average

of the preferred directions of individual neurons, weighted by each neuron’s �ring rate

(Figure 1.4B). This provided a good �rst approximation of motor encoding that has proven
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su�cient for accurately decoding movement based on populations of neurons in motor

cortex (Schwartz et al., 2001). However, there is no reason to assume that neurons encode

a particular physical quantity such as position, velocity, or force. Shoham et al. (2005)

found that neurons can exhibit tuning up to the 3
rd

derivative of position, indicating that

neurons in motor cortex can encode a combination of position, velocity, acceleration, and

jerk.

Modern brain machine interfaces use a Kalman-�ltered population velocity vector

average (Wu et al., 2006), combined with a collection of heuristics to address common

sources of decoding errors, such as slow �ring rate nonstationarities (e.g. Bishop et al.

2014). Chhatbar and Francis (2013) found that treating neurons as if they encode a com-

bination of torque and position can improve brain machine interface control in some cir-

cumstances. Optimizing models for brain-machine interface decoding remains a subject

of active research. Curiously, motor cortex neurons can also show visual responses related

to action observation and planning (Rizzolatti et al., 1996; Vargas-Irwin et al., 2015), indi-

cating that neurons in motor cortex can exhibit complex tuning and variations in �ring

rate not necessarily related to motor output.

1.1.8 Motor cortex as a pattern generator

This subsection brie�y covers what is known about the role of motor cortex in action

execution, including theories about how motor cortex encodes movement information,

and how motor cortex might prepare and generate dynamic output. We begin with a

discussion of what motor cortex is thought to encode. We cover the history of decoding

from motor cortex, and discuss the implications of this work for understanding motor

cortex. We will also cover neural population dynamics during reaching and grasping,

including low-dimensional manifold trajectories, and discuss some of the implications of

these models for observing motor cortex.
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Churchland et al. (2010b) has noted that the function of motor cortex is not to encode

anything per se, but to generate the spatiotemporal patterns required to drive the spinal

cord and musculoskeletal plant in the proper way to generate coordinated movements. If

motor cortex serves as a pattern generator for movement, we would expect motor cortex to

contain correlates of the dynamical variables required for generating movement patterns.

Accordingly, it has been shown that motor cortical neurons are tuned to extended velocity

trajectories, representing the recent and upcoming dynamical evolution of motor output

(Figure 1.4C; Hatsopoulos et al. 2007). These “pathlets” form an additive basis of motor

primitives for composing dynamic movements (Hatsopoulos and Amit, 2012).

Churchland and colleagues (Churchland and Cunningham, 2015; Churchland et al.,

2012; Shenoy et al., 2013) have proposed that pattern generation in motor cortex is fun-

damentally oscillatory. The essence of this theory is that mammalian motor control can

be viewed as a highly evolved version of primitive oscillatory pattern generators. Multi-

ple damped oscillations can be combined to generate the sequences of muscle activations

needed to perform complex actions. The theory that dynamic movements are composed

of a collection of transient oscillatory components is attractive because such components

constitute a �exible basis for approximating arbitrary smooth functions. However, this

theory leaves unresolved exactly how populations of single-neurons might act collectively

to form such a basis.

1.1.9 Low-dimensional manifold trajectories

Using machine learning, it is possible to predict complex movements with substantial ac-

curacy using a small, sparse, random subsample of the �ring of motor cortical neurons.

This implies that information about movement in motor cortex is distributed. This is

to be expected because the ultimate targets of motor cortex output (muscles), generate

forces that are low-pass �ltered summations of the activity of many hundreds to thou-

sands of alpha motor neurons (McComas, 1991). Accordingly, the features of spiking
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population outputs that relate to movement tend to be slowly varying population tra-

jectories distributed over many neurons. It seems that motor cortex contains far more

neurons than are strictly required for representing motor output. Reconciling the appar-

ent low-dimensional and low-frequency output of the motor system with the potentially

high-dimensional and fast-timescale spiking dynamics remains a major open problem.

Work in Aghagolzadeh and Truccolo (2014, 2015); Byron et al. (2009); Vargas-Irwin

et al. (2015) has shown that the intrinsic dimensionality of neural variability in motor

cortex can be low-dimensional (Figure 1.4D). In these studies, the observed neural vari-

ability in motor cortex was concentrated in a sub-manifold much smaller than what would

be expected if neurons were independent. During movement execution, neural variability

may be con�ned to a low-dimensional manifold containing no more degrees of freedom

than strictly required for motor output. However, it could also be the case that the low-

dimensional manifold activity exhibits more degrees of freedom that the motor output.

The extent to which such low-dimensional manifolds might remain similar over time or

across contexts is unknown. Movement decoders cannot assume that the low-dimensional

manifolds representing motor output will be stable across time and context, and e�ciently

estimating and tracking changes in the low-dimensional structure of motor cortex remains

an open problem. In the case that low-dimensional manifolds change, the larger subspace

over which these manifolds vary constitutes an additional source of variability. Because

short-timescale variability remains con�ned to a lower-dimensional subspace, statistically

sampling this larger, slowly-varying space is especially challenging. Continuous recali-

bration of decoders could address this issue (Bishop et al., 2014).
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Figure 1.4: Neural representations in motor cortex. (A) Georgopoulos et al. (1982) found that, during reach-

ing movements, neurons in motor cortex are approximately cosine tuned to a single reaching direction. (B)
Georgopoulos et al. (1986) showed that the direction of reaching can be decoded from populations in mo-

tor cortex by taking a population average of neurons’ preferred directions, weighted by their �ring rates.

Therefore, movement representations in motor cortex are distributed over many neurons. This �gure has

been denoised and value-inverted from the original version to improve readability. (C) Adapted from Figure

3 from Hatsopoulos et al. (2007). Hatsopoulos et al. (2007) show that neurons in motor cortex encode not

“instantaneous” motor output, but rather extended trajectories re�ecting recent and upcoming motor dy-

namics. (D) Motor cortex is now thought to encode dynamical trajectories related to motor processing and

pattern generation. For example, Figure 7 in Vargas-Irwin et al. (2015) shows that reaching and grasping tra-

jectories lie in a low-dimensional state space. Preparatory activity in response to visual cues correlates with

trajectories in motor state space, which con�gure the system to generate upcoming reaching and grasping

movements.
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1.2 Collective dynamics and variability during move-
ment

Motor cortex is the primary source of cortical innervation to the spinal motor neurons that

drive muscle contraction, and is fundamentally involved in the generation of movement.

However, it is still not known exactly what computational problems are solved by motor

cortex, and how neurons in motor cortex implement solutions to these problems. We

investigate this question by considering the statistical relationships between the neural

signals that we observe in motor cortex and behavioral output.

1.2.1 Variability in the nervous system

Understanding what information is contained in the �ring output of motor cortical neu-

rons is a crucial step for understanding the function of motor cortex. Decoding informa-

tion from spiking units in motor cortex is complicated by the fact that neurons exhibit

a large amount of variability that cannot be related directly to movement. Cortical re-

sponses recorded in vivo can be highly variable (Azouz and Gray, 1999): a single neuron

can �re very di�erent sequences of spikes in response to the same stimulus. Sponta-

neous collective dynamics, in the form of spatiotemporal patterns of activity, are likely to

arise in the highly recurrent neuronal networks found in cortex. A major contributor to

the variability of single neurons in vivo may be the intrinsic collective dynamics (Arieli

et al., 1996; Stevens and Zador, 1998) of the brain. Therefore, variability in motor cortex

unrelated to movement may relate to other cognitive processes. Motor output is condi-

tioned on behavioral, motivational, and cognitive state, as well as environmental and task

context and sensory feedback. We expect to �nd correlates of these processes in motor

cortex, which could explain the apparent variability of spiking activity. However, spik-

ing variability may also arise purely from noise and stochasticity, and it is important to

understand what components of neural variability are noise, and what components are

signatures of perceptual and cognitive processes.
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Figure 1.5: Noise in the nervous system. Noise in the nervous system gives rise to neural variability.

All stages of sensorimotor processing exhibit noise to some extent. Sensory transduction (a) and muscle

activation (c) exhibit noise. Noise may arise during sensorimotor processing from cellular and electrical

noise (b) within the brain, as well as synaptic release failure. Distinguishing neural variability arising from

noise from that arising from intrinsic neural processes is important for understanding neural computation.

Additionally, understanding how the motor system solves sensorimotor control problems robustly in the

face of noise is important for clarifying the computational mechanisms of motor cortex. (Figure 1 from

Faisal et al. 2008)
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The contributions of various processes to neural variability has been widely stud-

ied. It is known that stimulus onset reduces neural variability in a variety of brain areas

(Churchland et al., 2010a), and that naturalistic stimuli give rise to less variable neural

responses than arti�cial stimuli (Hasson et al., 2010; van Steveninck et al., 1997). These

results suggest that neural variability depends on stimulus and behavioral context. Intrin-

sic sources of noise in the nervous system include synaptic release failure, thermal and

electrical noise, and chaotic and stochastic e�ects (Figure 1.5; Faisal et al. 2008). Neural

populations exhibit noise correlations: correlated variability that is seemingly unrelated

to sensory input (Abbott and Dayan, 1999; Averbeck et al., 2006; Averbeck and Lee, 2006;

Maynard et al., 1999). Correlated variability in motor cortex that is unrelated to motor

output can be thought of as a dual phenomenon to noise correlations in sensory systems.

Variability in neural systems can arise spontaneously as a feature of the highly recurrent

nature of networks in the brain (Arieli et al., 1996). For example, Litwin-Kumar and Do-

iron (2012) demonstrated that neuronal spiking networks can exhibit two timescales of

variability: slow dynamics, and fast spiking irregularity (see also Churchland and Abbott

(2012)). In this work, the slow components of variability related to persistent state attrac-

tor dynamics, and re�ected shared variability across the population. The fast components

of variability arose from the stochastic nature of spiking and intrinsic and ensemble his-

tory e�ects.

1.2.2 Implications of variability and redundancy for decoding

The fact that motor cortex exhibits variability apparently unrelated to motor output has

implications for our ability to build stable decoding models based on random, sparse sub-

samples of the neural population. In the case where motor-cortical representations are

distributed, i.e., the number of units demonstrating movement modulation is much larger

than the total degrees of freedom associated with the task, one can in theory exactly de-

code movements based on a sample of only a few neurons. As long as each neuron encodes
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a more or less random combination of motor degrees of freedom, a su�ciently large ran-

dom sample will form a complete basis for encoding motor output. However, decoding

is more challenging if there are a large number of unobserved degrees of freedom also

represented in neural �ring rates (e.g. context, planning, attention). A dramatic example

of this can be seen in hippocampal place cells. For a given environment, place cells in

the hippocampus �re maximally when an animal is in a location corresponding to the

place cell’s receptive �eld. One can accurately decode position based on place cell �ring

rates (Brown et al., 1998; Jensen and Lisman, 2000). However, place cells re-map when an

animal enters a new environment, or when aspects of an environment or task goal are

changed (Moser et al., 2008), making across-condition decoding from place cells challeng-

ing or impossible. Slowly varying contextual e�ects encoded in motor cortex �ring rates

may appear as slow �ring rate nonstationarities, and impair generalization of decoding

models over time and across conditions.

1.2.3 The local �eld potential re�ects collective dynamics

The local �eld potential (LFP) is an important signal for understanding information pro-

cessing in motor cortex. In order to understand the computational processes of motor

cortex, it is useful to examine the relationship between inputs and outputs of motor cor-

tex. Microelectrode array recording approaches record both spiking output and LFPs.

LFPs are believed to contain a signature of average synaptic activation (Buzsáki et al.,

2012) and therefore re�ect information about the inputs to a neural population. Deter-

mining the relationship between spikes and the LFPs observed in motor cortex remains

an open problem, and the relationship between average electrical potentials and single-

neuron activity has been an open problem since the early days of electroencephalography.

For example, in 1934 Adrian and Matthews wrote, in relation to EEG recordings:

It has been shown that the potential waves are generated in the cortex... there

is no doubt that they are due to the activity of the cortical neurones. Record-
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ing them would seem to o�er the most direct method of investigating cortical

activity, but for the di�culty that they are certainly summated e�ects com-

pounded out of the potential changes in many neurones. It is most unlikely

that the change in each neuron is an exact copy, on a smaller scale, of the

massed e�ect. (Adrian and Matthews, 1934)

LFPs are believed to re�ect in part synaptic input to the local neural population (Buzsáki

et al., 2012), but also contain signi�cant contributions from local spiking activity (Bedard

and Destexhe, 2013; Denker et al., 2011; Destexhe and Bedard, 2012; Reimann et al., 2013;

Waldert et al., 2013). Therefore, LFPs contain signatures of both the local population ac-

tivity and neural signals arriving from other brain structures. In MEA recordings, the

population of isolated single spiking units re�ects the output of the computation of mo-

tor cortex. The LFP, containing in it signatures of synaptic inputs from local and remote

sources, re�ects in part the input to this computation. Observing the relationship between

these signals may shed light on the information transformations occurring in motor cor-

tex.

1.2.4 Decoding from local �eld potentials

Perge et al. (2014) found that LFP ensembles recorded on MEAs can provide compara-

ble decoding accuracy to unsorted multi-unit spiking activity for a cursor-based brain-

machine interface, and Bansal et al. (2011) found that reaching and grasping movements

could be decoded from motor cortex LFPs. Bansal et al. (2012) demonstrated that motor

cortex LFP has, overall, less movement-related information than the spiking population.

In regards to relating LFP and spiking signals, Rasch et al. (2008) successfully inferred

low-frequency structure in spike trains from low-frequency LFPs and power modulation

in gamma-frequency (γ-) LFP, but noted that fast-timescale spiking variability is poorly

predicted by LFP. Rasch et al. (2009) also showed that LFP can be inferred from spiking,

con�rming that spiking and LFP re�ect common sources of shared variability to some ex-

tent. Although Bansal et al. (2012) and Perge et al. (2014) showed that motor cortex LFP
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contains information about kinematics, they do not explicitly address whether kinematics

explain all of the shared variability between spikes and LFP.

1.2.5 The LFP can re�ect intrinsic sources of variability

Neural variability arising from intrinsic collective dynamics can interfere with decoding.

This problem can be mitigated by �nding ways to sample variability along “noise” di-

mensions and explicitly modeling e�ects of intrinsic sources of variability on the neural

population. Kelly et al. (2010) provide a good example of this in estimating the tuning

functions of neurons in visual cortex. In the anesthetized state, the neural population

responses to natural videos exhibit trial-to-trial variability due to slow population rate

�uctuations (Figure 1.6A). Kelly et al. (2010) found that slow �uctuations in the local �eld

potential correlate with the intrinsic �uctuations in population �ring rate (Figure 1.6B). By

using the LFP as an indicator of collective dynamics, and incorporating it as a co-regressor

in their tuning models, they were able to identify sharper (i.e. more informative) models

of neural tuning to the natural video stimulus (Figure 1.6C). Banerjee et al. (2012) have

also demonstrated that ongoing LFP activity in area LIP can be used to explain variability

in neural responses to sensory input, and Haslinger et al. (2006) demonstrated that the

phase of slow oscillations a�ects the response of barrel cortex to sensory input.

1.2.6 A note on the output-null space

This discussion of neural variability is related to another concept that that has been pro-

moted in recent publications: the so-called “output-null” subspace of neural population

dynamics in motor cortex (Churchland et al., 2010b; Shenoy et al., 2011, 2013). If the di-

mensionality of neural activity in motor cortex is larger than that required for movement,

many neural states will map to the same motor output. In this case, dimensions of neural

variability in motor cortex can be factored into “output-potent” and “output-null” sub-

spaces, with the output-null (i.e. movement-null) subspace representing degrees of free-
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Figure 1.6: Local �eld potentials explain neural variability. In primary visual cortex of macaques under

anesthesia, neural �ring exhibits considerable trial-to-trial variability arising from intrinsic collective dy-

namics. (A) Spike rasters of population responses of neurons in primary visual cortex to three repeated

presentations of the same natural movie. Slow �uctuations in the population rate arise from intrinsic neu-

ral dynamics, and are mixed with the visually evoked activity. (B) The low-frequency local �eld potential

(bottom) correlates with �uctuations in the population �ring rate (top). Thus, the low-frequency local �eld

potential can be used as a proxy for the intrinsic dynamics that give rise to neural variability unrelated to

visual input. (C) By accounting for the intrinsic of variability re�ected in the LFP and population �ring

(thick curve, adjusted PSTH), it is possible to estimate more precise orientation tuning properties of single

neurons in visual cortex. (Selected �gures from Kelly et al. 2010)
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dom in cortical activity that have no e�ect on muscle output (Kaufman et al., 2014). The

output-null space proposed in Kaufman et al. (2014) refers to dimensions of neural activity

that are unrelated to motor output, but still serve an important cognitive function. This

is to be distinguished from dimensions of neural variability that are simply “noise”. The

output-null space was proposed to explain how motor cortex might prepare, observe, and

imagine movements without generating the corresponding motor output. If motor output

were simply gated by inhibition, one would expect inhibitory interneurons to �re more

during preparatory states. However, putative FS inhibitory interneurons in motor cortex

do not show such elevated �ring (Kaufman et al., 2010). It is important to note that Vi-

gneswaran et al. (2011) found that inhibitory FS cells cannot be unambiguously identi�ed

from extracellular recordings in motor cortex, and so the results in Kaufman et al. (2010)

may be confounded by fast-spiking PTNs. Despite this, the output-null space is an impor-

tant concept for reasoning about movement-related and movement-independent neural

variability in motor cortex.

There are two related senses of output-null activity which must be clari�ed. On one

hand, motor cortex is able to prepare and simulate movements without giving rise to

motor output, and this activity occurs in an output-null subspace. On the other hand, if

motor cortex is a pattern generator, it must encode dynamical states, and these additional

degrees of freedom also constitute an output-null space. For example, if motor cortex im-

plements an ensemble of oscillatory pattern generators, the “real-valued” component of

which drives motor output, and the “imaginary-valued” component of which relates to

the dynamics of pattern generation, we would expect the output-null subspace of neural

variability to contain the “imaginary” components (Churchland and Cunningham, 2015;

Shenoy et al., 2013). Preparatory and “dynamical” null-spaces can be reconciled if move-

ment preparation is accomplished by setting the initial conditions in a “dynamical” null

space (Churchland et al., 2010b). The extent of output-null variability in motor cortex

during movement execution remains an open question. Output-null dimensions during
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movement execution are expected to contain at minimum the correlates of dynamical

state for pattern generation, and could re�ect additional cognitive variables. Both true

noise and variability in movement-null subspaces would appear as “noise” to a decoder.
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1.3 β-LFP oscillations in steady-state motor control

Two modes of motor control may be distinguished: a kinetic mode associated with move-

ment and large �uctuations in �ring rates, and a steady-state mode associated with main-

tenance of steady posture and isometric force, which is di�erent from the relaxed state of

quiet wakefulness. This steady-state mode is associated with a prominent increase in beta

(β-) LFP power, which ranges from 15-30 Hz but is more typically observed around 20 Hz

(Baker, 2007; Chen et al., 2007; Jenkinson and Brown, 2011; ?). This section brie�y covers

the history of research into beta oscillations, including issues that remain to be clari�ed. It

covers potential roles for beta oscillations in motor control, as well as proposed cognitive

roles, and potential computational roles for oscillations in the brain. Finally, it covers what

is known about the origins of beta oscillations and the relationship between single-unit

activity and β-LFP.

More thorough discussions of motor system β-LFP are available in several recent re-

views. Salenius and Hari (2003) and van Wijk et al. (2012) provide reviews of oscillations

and synchrony in the motor system, including beta oscillations. Baker (2007) focuses

on the relationship of beta oscillations to the peripheral motor system. Jenkinson and

Brown (2011) review previous literature and hypothesize that beta suppression is medi-

ated by dopamine signaling, and is a correlate of the likelihood that a new voluntary action

will occur. Engel and Fries (2010) suggest that beta oscillations “signal the status quo” in

the motor system. Beta oscillations have received considerable attention for their role in

Parkinson’s disease (Brittain and Brown, 2014; Brown, 2007; Eusebio and Brown, 2009;

Hammond et al., 2007; Stein and Bar-Gad, 2013; Weinberger et al., 2009). Kilavik et al.

(2013) provides a thorough review of modulation of beta oscillations during visually cued

tasks with instructed delays, and is especially relevant to Chapters 3 and 4 of this the-

sis. Khanna and Carmena (2015) review beta oscillations and propose new experimental

directions.
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Figure 1.7: Figure 3 from Jasper and Andrews (1938) "Electro-encephalography: III. Normal di�erentiation of
occipital and precentral regions inman". Beta oscillations are identi�ed as a characteristic oscillation recorded

on EEG over sensorimotor cortex (trace 1), to be distinguished from lower-frequency alpha oscillations

seen over occipital cortex (trace 2). These are the �rst recordings showing beta oscillations in sensorimotor

cortex in humans. (A) It was observed that, unlike alpha oscillations, sensorimotor beta oscillations are not

strongly modulated by light. (B,C) Frontal cortex beta could, however, be suppressed by a sound stimulus.

(D) Sensorimotor cortex also exhibited alpha oscillations, which modulated independently from the occipital

alpha oscillations.
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History of research into beta oscillations β-LFP oscillations were �rst de-

scribed in the original electroencephalography (EEG) experiments of Hans Berger (Berger,

1929), and subsequently studied in greater detail by Herbert Jasper and colleagues. It

was noted by Rheinberger and Jasper (1937) that β-frequency oscillations in EEG record-

ings from awake behaving cats were “correlated with increased restlessness or alertness,

preparation for movement, or movement itself.” Subsequently, Jasper and Andrews (1938)

demonstrated that 25-50 Hz oscillations could be identi�ed over human sensorimotor cor-

tex, and were dissociated from 10 Hz alpha oscillations (Figure 1.7). Jasper and Pen�eld

(1949) found that sensorimotor cortex beta was suppressed during voluntary movement,

but was elevated during sustained contraction. Thus, it has been known since the early

20
th

century that the beta rhythm associated with sensorimotor cortex is absent during

quiet wakefulness, is elevated during attentiveness, postural maintenance, isometric force,

and movement preparation, and is suppressed surrounding the initiation of voluntary

movements. Despite this long history of research into β-LFP, the origin and function of

beta oscillations in motor cortex has not been fully clari�ed.

1.3.1 The functions of beta in motor control

The fact that β-LFP power is enhanced during postural maintenance and isometric force

may lead one to presume that beta serves primarily to inhibit movement. Modulations

in beta power outside of isometric force or steady posture would then be explained by

variations in the extent to which planned movements would need to be inhibited. The

observation that beta oscillations are enhanced not only during isometric force and pos-

tural maintenance, but also during attentive waiting, has led to the hypothesis that beta

is a correlate of the maintenance of motor steady-states, representing an e�cient way to

drive downstream targets, enhancing proprioception, or facilitating sensorimotor compu-

tations required for corrective movements. Studies of Parkinson’s disease, which displays

abnormalities in beta synchronization, have also shed some light on the role of beta os-
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cillations in steady-state motor control.

Recruitment of downstreamunits Baker et al. (1999) suggested that one func-

tion of beta synchrony in motor cortex is the e�cient recruitment of muscle activity.

Spikes synchronized to arrive within a short time window can act synergistically to re-

cruit more muscle activity at lower �ring rates. Supporting this theory is evidence that

beta oscillations are coherent between motor cortex and downstream targets (Baker et al.,

1999; Kristeva et al., 2007; Riddle and Baker, 2006; van Wijk et al., 2009; Witham et al., 2011;

Witte et al., 2007), and that even weakly synchronized units sum up to yield measurable

coherence between cortex and the periphery (Baker et al., 2003). Baker (2007) posit that

the reason beta oscillations are observed only during motor steady-states is that the os-

cillations impair neural processing associated with movement, and thus are only feasible

when the motor system is idle.

Improvedproprioception and somatosensation The observation that tran-

sient beta oscillations are seen during di�cult manual tasks requiring somatosensory

feedback (e.g. Murthy and Fetz 1996a), and that the power of beta oscillations appears

to be proportional to lever compliance in isometric force tasks (Kilner et al., 2000), raises

the possibility that beta oscillations play a role in facilitating somatosensation. Schaefer

et al. (2006) found that membrane potential oscillations can have an important role in re-

ducing spike-train variability by improving the precision of action potentials. Oscillatory

drive creates spike-timing precision by reducing stochastic history e�ects that give rise to

spiking variability. Beta oscillations may render the e�ects of cortical output on muscles

predictable, such that changes in muscle stretch due to motor output can be distinguished

from external perturbations (Baker, 2007; Khanna and Carmena, 2015).

Facilitating feedback control The motor system is not, strictly speaking, "idle"

during motor steady-states. These positions are activity stabilized against gravity and
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other outside forces by continually applying corrective movements. The mapping be-

tween sensory signals and the appropriate corrective movements varies with the posi-

tion stabilized and the forces at work, and therefore requires rapid context-dependent

sensorimotor transformations. Beta synchronization in the motor system might support

stabilization of motor positions through rapid negative feedback mechanisms. Androul-

idakis et al. (2006) �nd that visually guided corrective movements are potentiated dur-

ing beta oscillations, suggesting that beta oscillations have a facilitatory role not just in

somatosensory-motor stabilization, but in generating corrective movements based on sen-

sory feedback in general. Androulidakis et al. (2007) �nd that beta power increases when

anticipating a postural challenge and that this increase improves performance, indicating

that beta oscillations can be an internally gated mode of motor cortex and that they fa-

cilitate processing needed to maintain motor steady-states against perturbation. Solving

how (or whether) beta oscillations mediate corrective feedback computations would be a

major breakthrough in our understanding of motor control.

Parkinson’s disease: a case of over-stabilization? Related to the theory

that beta oscillations stabilize corticospinal output is the conjecture that beta oscillations

have a functional role in inhibiting movement. For example, beta oscillations could impair

information transmission through the basal ganglia (Cruz, 2012; Hammond et al., 2007)

and therefore prevent the dynamics that would normally cause the system to evolve along

the dynamical trajectories associated with movement. In Parkinson’s disease, hyper-

synchronous beta is associated with rigidity and bradykinesia (Chen et al., 2007; Kühn

et al., 2009; Weinberger et al., 2009), and the disruption of hyper-synchronous beta oscil-

lations is thought to mediate the therapeutic e�ects of deep brain stimulation (Brittain and

Brown, 2014; Mallet et al., 2008; McIntyre and Hahn, 2010; Mehanna and Lai, 2013). Beta

oscillations have a causal role in bradykinesia, as boosting beta power over motor cortex

via transcranial magnetic stimulation (TMS) leads to movement slowing (Pogosyan et al.,

2009). Although movement is impaired in Parkinson’s, re�exive responses of motor cortex
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to muscle stretch are preserved, and in fact exhibit a reduced latency compared to con-

trols (Pasquereau and Turner, 2013). Consistent with this, Gilbertson et al. (2005) found

that beta oscillations in healthy subjects correlate with slowed movement and potentiated

long-latency stretch re�exes which stabilize motor steady-states. Leventhal et al. (2012)

conjecture that beta oscillations stabilize the neural representation of planned motor ac-

tions, and that motor rigidity in Parkinson’s is an instance of ‘over-stabilization’.

1.3.2 Cognitive functions of beta oscillations

Maintaining motor steady-states may be a special case of more general neural mechanisms

for stabilizing neural states in the brain. This conjecture is motivated by a collection of ob-

servations. First, the variation in motor cortex beta power is more complex than what can

be explained by motor-control demands alone (Kilavik et al., 2013), and appears to depend

on cognitive variables. Second, beta oscillations are enhanced and task-modulated during

instructed delay periods in visually cued tasks. Third, beta oscillations can be observed

in brain areas not directly involved in motor output, where they appear to be a correlate

of attention or working memory. Although there is a general consensus that beta has

something to with "maintaining the status quo" (Engel and Fries, 2010), the relationship

between motor-control and cognitive functions of beta needs to be clari�ed. With the

exception of Jenkinson and Brown (2011), current models remain somewhat abstract.

Sources of variation in beta power A variety of cognitive processes appear

to in�uence beta power. Observation and imagination of movements evoke similar �ring

rate modulations as movement in single units in motor cortex (‘mirror neurons’, Rizzolatti

and Craighero 2004). Similarly, beta oscillations are suppressed both during movement

and imagined movement (Chatrian et al., 1959; Kühn et al., 2006; Pfurtscheller et al., 2005).

van Ede et al. (2010) found that elevated beta power in anticipation of a tactile stimulus

was greater when attending to the stimulus, implying that beta power is modulated by
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attention. Beta oscillations are also enhanced in anticipation of visual cues (Saleh et al.,

2010), and van Wijk et al. (2009) found that beta desynchronization accompanies selection

of a behavioral response. Fujioka et al. (2012) and Fujioka et al. (2015) showed beta re�ects

the timing of auditory beats. None of these conditions are directly associated with changes

in motor output, suggesting that stabilizing motor steady-states is not the only function

of beta.

Beta oscillations in cuedmotor taskswith instructed delays Chapters

3 and 4 of this thesis explore beta oscillations during a cued reaching and grasping task

with instructed delays, and several studies have examined how beta oscillations modulate

in similar tasks (e.g. Alegre et al. 2004, 2006; Doyle et al. 2005; Haegens et al. 2011; Kilavik

et al. 2012; Saleh et al. 2010; Sanes and Donoghue 1993; van Wijk et al. 2009). Kilavik

et al. (2013) report a number of common trends across studies. They note that beta os-

cillations are enhanced in anticipation of cues, even before an explicit motor plan forms

(Kilavik et al., 2013; Saleh et al., 2010). Sensory cues are often followed by a period of beta

suppression, putatively corresponding to cue processing. Kilavik et al. (2013) note that

β-rebound commonly occurs following cue-related beta suppression, and that beta power

is often sustained across delay periods. The frequency of beta oscillations seen during

cue-anticipation (before movement planning) is lower than that seen during instructed

delays immediately preceding the go cue (Kilavik et al., 2012). Beta oscillations may play

slightly di�erent roles in the pre-cued vs post-cued delay periods, with the latter re�ecting

stabilization of preparatory state. Overall, Kilavik et al. (2013) propose that beta re�ects

“anticipatory up-regulation of sensorimotor processing beyond somatosensation.” It is

not clear whether the beta states seen during motor preparation, which may subserve a

working memory-like role, are functionally similar to those seen during isometric force:

the need for motor cortex to sustain a cued preparatory state may result in very di�erent

beta dynamics than the maintenance of steady isometric force or posture.
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Beta oscillations outside primary motor cortex Ohara et al. (2000) found

that beta suppression occurs also in the supplementary motor cortex during self-initiated

movements, preceding motor cortex beta suppression, and indicating that more cogni-

tive areas of frontal cortex can also exhibit beta dynamics reminiscent of primary motor

cortex. Beta oscillations are observed in prefrontal cortex (Van Aerde et al., 2009), where

they are correlated with rule (context) selection (Jensen and Bonnefond, 2013) and in-

hibition (Hwang et al., 2014). Beta power and synchrony in association areas of frontal

cortex are correlated with attention (Sacchet et al., 2015). Abnormally low beta power rel-

ative to theta LFP power is present in subtypes of attention de�cit hyperactivity disorder

(ADHD), in which attentional control is impaired (Dockstader et al., 2008). In the visual

system, beta has been observed to behave like a “carrier of visual attention”, re�ecting top-

down in�uences of frontal areas on sensory cortices (Wróbel, 2000). Theoretical work by

(Kopell et al., 2011) suggests that β1 (∼15 Hz) oscillatory dynamics might be critical to co-

ordinating cell assemblies during working memory. These results point to the possibility

that the beta is a correlate of behavioral or attentional stabilization. It remains unclear

whether the beta oscillations observed in other frontal areas share common mechanisms

with beta observed in motor cortex, and how proposed roles for beta in attention and

working memory can be reconciled with the sensorimotor functions of beta oscillations.

1.3.3 Computational roles and mechanisms of oscillations

Several roles for beta oscillations in motor control and cognition have been proposed.

Some of these, such as recruitment of downstream areas via improved synchrony, rely on

seemingly straightforward mechanisms. However, several more sophisticated functions

for oscillations in neocortex have also been suggested, including phase coding and gat-

ing communication between cell assemblies. Oscillations also have implications for the

capacity of neural populations to encode and transmit information, and beta oscillations

may also be part of dynamics that support stabilization and long-timescale activity in the
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brain. It is not known which, if any, of these theories might apply to motor cortex beta

oscillations. This subsection reviews computational and encoding principles related to

oscillations that may be important for unraveling both the motor and cognitive roles of

beta oscillations.

Phase coding

Neurons can encode information in the timing of spikes relative to a common background

oscillation. This phase coding has been proposed as a mechanism for conveying informa-

tion in the brain (Fries et al., 2007; Kayser et al., 2009; MacLeod et al., 1998; Montemurro

et al., 2008). Rate codes are inherently limited because neural �ring must be averaged over

time or over a population in order to extract an estimate of the instantaneous �ring rate

(Quiroga and Panzeri, 2009). Mazurek and Shadlen (2002) show that correlations within

a population of neurons can interfere with rate coding rapidly varying signals. Phase

coding might circumvent these limitations because signal intensity can be encoded in the

phase of �ring relative to an ongoing shared oscillation (Buzsáki and Draguhn, 2004).

Evidence for phase coding has been found in a number of brain systems. Place cells

of the hippocampus (O’Keefe and Recce, 1993; Skaggs et al., 1995) and grid cells in the

entorhinal cortex (Hafting et al., 2008) of rats encode aspects of an animal’s location in

terms of the phase of �ring relative to ongoing theta (6-10 Hz) oscillations. A relevant

phenomenon for Chapter 3 is the phase drift between place cells’ theta membrane po-

tentials and the population theta LFP (Figure 1.8). Additionally, there is evidence that

information is encoded in the phase at which neurons �re relative to stimuli-entrained

low-frequency (delta) oscillations in both visual (Montemurro et al., 2008) and auditory

(Kayser et al., 2009) cortex. In visual cortex, the sequence in which neurons �re relative

to 20-60 Hz gamma oscillations also encodes stimulus information (Havenith et al., 2011).

It is not known whether single units exhibit phase coding relative to ongoing LFPs in

motor cortex, although the phase of ongoing beta oscillations can a�ect the timing of ar-
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Figure 1.8: Phase coding in the hippocampus, adapted from Harvey et al. (2009). Place cells in the hippocam-

pus �re periodic bursts at theta frequency (6-10 Hz). The phase of place cell �ring relative to ongoing theta

LFP oscillation varies and encodes information about the animal’s position relative to the cell’s place �eld.

(A) Intracellularly recorded potentials (top trace, left) reveal that place cells �re bursts of action potentials

phase-locked to the peak of an intracellular theta oscillation. This intracellular oscillation can occur at a

di�erent frequency from the LFP theta oscillation (bottom trace, left). When extracellular spike times are

viewed relative to the LFP oscillation, their phase of �ring appears to drift. (B) Hippocampal place cell �ring

is tightly locked to the phase of intracellular theta oscillations (left). Relatively little stable phase locking

is observed between spiking and the LFP theta oscillation, as the preferred phase of �ring varies in a way

that depends on the animal’s position (center). Phase precession of place �eld �ring relative to LFP theta

oscillations is mediated by shifts in the phase of intracellular theta oscillations (right). This indicates that

ensembles of neurons responsible for the input to place cells can shift their preferred �ring frequencies

relative to the ongoing theta oscillations, providing an example in which the activity of subpopulations can

be dissociated from the collective activity recorded in the local �eld potential.
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rival of sensory information in motor areas (Reimer and Hatsopoulos, 2010), and Canolty

et al. (2012) �nd that preferred phase of �ring of single neurons relative to β-LFP can shift

across task conditions.

Whether spike-LFP phase relationships are instrumental in neural computation, or

merely an epiphenomenon, remains unclear in some cases. For example, Ray and Maun-

sell (2010) note that the frequency of gamma oscillations in visual cortex depends on stim-

ulus contrast, and di�erences in contrast across the visual �eld give rise to gamma oscil-

lations at di�erent frequencies, limiting their utility in communication. Gamma phase-of-

�ring coding may be an epiphenomenon of gamma-timescale neural processing. Never-

theless Besserve et al. (2015) found that gamma-band phase shifts organized themselves

along the direction of local, lateral spiking information transfer in V1, indicating that the

relationship between spiking activity and LFP phase may be an important signal for un-

derstanding neural information processing, even if it is epiphenomenonal. It is therefore

useful to explore spike-LFP interactions in motor cortex, both for the potential of extract-

ing additional information to aid in decoding, and from the standpoint of understanding

the relationship between spiking and local �eld potentials.

Gating communication between neural assemblies

Another potential role for oscillations in the nervous system is to bind groups of neurons

together into functional assemblies and control communication between such assemblies

(Akam and Kullmann, 2014; Maris et al., 2016; Singer, 1993; Singer and Gray, 1995; Varela

et al., 2001). Population oscillations can create regular time windows in which neurons are

more or less sensitive to external inputs. For example, Dugué et al. (2011) found that the

likelihood of perceiving visual phosphenes induced by transcranial magnetic stimulation

(TMS) varied with the phase of ongoing alpha (∼10 Hz) EEG oscillations. Neurons may

be less sensitive to inputs during phases where neural �ring is suppressed, either due to

recurrent inhibition or refractory and recovery e�ects. By this mechanism, Fries (2005)
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propose that “only coherently oscillating neuronal groups can interact e�ectively, because

their communication windows for input and for output are open at the same times.” Simul-

taneous beta oscillations at di�erent frequencies have been observed in di�erent somato-

topic regions of motor cortex, suggesting that beta oscillations may involve synchronous

sub-assemblies of neurons (Neuper and Pfurtscheller, 2001; Pfurtscheller et al., 2000). Au-

mann and Prut (2015) propose that cell assemblies in motor cortex oscillate at slightly

di�erent beta frequencies that depend on which muscle groups they innervate, and that

di�erent characteristic frequencies represent functional cell assemblies associated with

di�erent muscle synergies. In addition to frequency diversity, phase diversity may also

play a role in binding together cell assemblies (Maris et al., 2016).

Information coding capacity of synchronized networks

If neurons are constrained to �re synchronously and at the same frequency, the capac-

ity for the population to encode information is reduced. Rate coding requires diversity

in �ring rates, which requires that units either �re at di�erent frequencies (leading to

asynchronous population activity), or �re only during some oscillation cycles. This has

been related to motor system beta oscillations in two ways. First, Baker (2007) propose

that beta synchronization is a metabolically e�cient way to drive muscles during motor

steady-states, but that this synchrony limits the capacity of the system to plan and execute

new movements. Second, in Parkinson’s disease hypersynchrony in beta oscillations has

been proposed to limit the amount of information that can propagate through deep brain

structures, impairing motor function (Cruz, 2012; Hammond et al., 2007).

Steady-states and long timescales

Maintenance of a static posture or of isometric force requires sustained output from the

motor system. If beta oscillations have a causal role in maintaining �ring rates at con-

stant levels, they may correspond a general mechanism for sustaining information in cor-
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tex. Understanding the origin of the long timescales and persistent information of neural

steady-states remains an open problem. For review of these topics, see Brunel (2003) and

Vogels et al. (2005), as well as the “persistent activity” issue of Cerebral Cortex (Wang,

2003). Network oscillations and neural steady-states are often treated as distinct phe-

nomena in neural networks (Vogels et al., 2005), but limit cycle attractors can combine

features of steady-states with oscillations. Neural steady-states are assumed to require

some degree of self-excitation to maintain neural �ring, but balancing this self-excitation

in a way that leads to stable states that can store information can be challenging. In

order for a neural system that exhibits steady-states to encode information, it must ex-

hibit multiple stable con�gurations, and it must not drift from one stable state to another.

Beta oscillatory activity correlates with maintenance of not only a continuum of postu-

ral con�gurations, but also dimensions of cognitive and preparatory information. Models

of motor steady-state must therefore re�ect this structure and also exhibit a continuum

of stabilized states, as well as be compatible with oscillatory dynamics. Neural network

models that exhibit a continuum of steady states have been demonstrated by �ne-tuning

the balance of excitation and inhibition to yield manifold attractors (e.g. Brunel (2003);

Camperi and Wang (1998); Compte et al. (2000); Goldman et al. (2003); Seung (1996); Vogels

et al. (2005)). Bump attractors, a special case of a mutually-inhibitory network topology,

can yield a continuum of stable states (Kilpatrick and Ermentrout, 2013; Laing and Chow,

2001; Lim and Goldman, 2014; Wimmer et al., 2014; Wu et al., 2008b), but appear to be

very di�erent from the neural dynamics observed during motor steady-states.

Rule et al. (2011) demonstrated a neural �eld model which exhibits both oscillatory

dynamics and a continuum of limit-cycle solutions as a consequence of rotational and

translational symmetries in the solution space. Rule (2014) (unpublished, Woods Hole

Methods in Computational Neuroscience course project) showed that this model can, with

minor modi�cation, also apply to neural networks that display a large number of disjoint

limit cycle attractors, and that information can be written into and stabilized in such a
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network by controlling the level of extrinsic oscillatory drive. These models may o�er a

way of reconciling long-timescale stabilization of neural states with oscillatory dynamics.

However, Rule et al. (2011) studied neural dynamics in the mean-�eld case, in which it is

assumed that the individual actions of spiking units are asynchronous and “average out”

to yield population �ring rate �uctuations. If similar dynamics are at play in motor steady-

states, we would expect highly synchronous neural activity at a single common frequency.

In models like Rule et al. (2011), di�erent oscillatory solutions are distinguished not by

variations in the mean rates in units, but in how di�erent subpopulations of units organize

their relative phase of oscillations. This is incompatible with observation that �ring rates

can exhibit some diversity in motor steady-state (Chapter 3) and that planned information

can be decoded from �ring rates during preparatory steady-states (Vargas-Irwin et al.,

2015).

A tantalizing clue may lie in models that achieve neural steady states using negative-

derivative feedback control (Lim and Goldman, 2013, 2014). These models stabilize ar-

bitrary network states by monitoring neural �ring and applying compensatory feedback

when this �ring changes. Gating mechanisms that turn on and o� the negative feedback

can allow the system to be more or less sensitive to input at di�erent times, and activation

of feedback stabilizes �ring rates at their current level. This model is a neural analogue

of the electronic sample-and-hold circuit, which uses negative feedback from operational

ampli�ers to stabilize an arbitrary voltage. If the negative feedback mechanisms can be

generalized to respond not only to deviations in local �ring rates, but also to visual and

somatosensory feedback carrying information about errors from external perturbations,

negative-derivative feedback control may o�er a promising model to unify the motor con-

trol and the cognitive dimensions of motor cortex steady-states. However, the model in

Lim and Goldman (2013) is a �ring rate model that does not exhibit oscillations during

steady-states, and is therefore inconsistent with the beta oscillations observed in motor

steady-states. It seems that the regular β-timescale �ring observed during motor steady-
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states lends naturally to population oscillations, and it may be that spike timing e�ects are

critical to the mechanisms for stabilizing motor steady-states. It may be that beta oscilla-

tions in motor steady states are not limit-cycle attractors in the conventional sense, but

rather an emergent phenomenon that results from highly regular spiking activity within

a system that is otherwise using �ring-rate coding.

Kopell et al. (2011) addresses a mechanism for oscillatory working memory at β1 (∼15

Hz) timescales in a spiking model. This mechanism allows for multiple cell assemblies

to store information without competition. Kopell et al. (2011) note that they investigate

association cortex beta, and that it is not known whether this mechanism applies to motor

steady-states. Clarifying the structure of spiking and network oscillations during motor

steady states may help resolve this uncertainty. The mechanism of Kopell et al. (2011)

encodes information in the presence or absence of �ring relative to a common network

oscillation, and further work is needed to verify whether this mechanism can be reconciled

with the diverse �ring rates observed during motor steady-state beta oscillations seen in

Chapter 3.

1.3.4 The Origins of Cortical Beta Oscillations

The origins of beta oscillations in the motor system remain unclear, and the oscillations

appear to arise in a number of brain structures simultaneously. Beta oscillations can

be synchronized between many brain structures, including motor cortex, parietal cor-

tex, deep brain structures, and the cerebellum (Cassidy et al., 2002; Engel and Fries, 2010;

Schnitzler and Gross, 2005). How the level of beta oscillatory power and synchrony is

regulated or gated is not known.

Studies of the laminar origin of beta oscillations in motor cortex point to layer V PTNs

as being the source of motor cortex β-LFP, with the highest beta power being found be-

tween a depth 1 and 2 mm (Murthy and Fetz, 1996a; Witham and Baker, 2007). Consistent

with this, the motor cortex pyramidal tract neurons that send their e�erents to the spinal
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cord can exhibit intrinsic β-rhythmicity, and contain subthreshold membrane currents

that support β-periodic �ring without requiring collective network reverberation (Chen

and Fetz, 2005; Wetmore and Baker, 2004). Kopell et al. (2011) also proposed a model in

which beta oscillations arise from intrinsic currents. In slice preparations, Roopun et al.

(2006) found an intrinsic β2 (20-30 Hz) oscillation in layer V, mediated by subthreshold

currents and synchronized by gap junctions. Roopun et al. (2008) have proposed that one

period of this β2 oscillation concatenates with the gamma oscillations in super�cial lay-

ers to generate a slower β1 (∼15 Hz) rhythm. Any of these mechanisms may confer a

tendency to �re rhythmically in the beta range. However, the level of β-LFP power and

β-rhythmic spiking varies considerably, and it is not the case that intrinsic β-rhythmicity

necessarily gives rise to population beta oscillations. Other mechanisms must be at play

to control the level of overall beta oscillations at the level of the population.

Beta oscillations appear also in somatosensory cortex. They may be conveyed from the

spinal cord (Baker, 2007) or arise locally as a result of ∼10 Hz thalamic drive (Jones et al.,

2009). The Granger causality analysis of Brovelli et al. (2004) suggests that somatosensory

beta oscillations entrain motor cortex β-LFP, although interpretation issues with Granger

causality mean that this cannot be taken as a de�nitive causal connection. Reconciling

the observation that motor cortex β-LFP signals appear to be related to somatosensory

cortex inputs with the observation that layer V PTNs in motor cortex exhibit their own

intrinsic β-rhythmicity remains an open problem in understanding the origins of motor

cortex β-LFP. It will be important to clarify the relationship between PTN β-rhythmicity

and the β-LFP recorded in the same population in order to understand the signi�cance of

these neural signals.

1.3.5 The relationship between β-LFP oscillations and spiking

Understanding the relationship between single-unit spiking and β-LFP oscillations may

reveal how synchronized beta activity emerges in motor cortex, and provide clues as to
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Figure 1.9: Spike-LFP beta phase locking in motor cortex based on spike-triggered averages of LFPs. (A)
Adapted from Murthy and Fetz (1996a) and Murthy and Fetz (1996b) Figure 1. Transient beta oscillations

were observed while a monkey retrieved raisins from a Kluver board, and less frequently during repetitive

wrist �exion, or while at rest. (B) Adapted from Murthy and Fetz (1996b) Figure 2E. Spike triggered averag-

ing of LFP reveals phase-locking to beta oscillations, both during and outside of periods where beta power

is elevated. (C) Adapted from Baker et al. (1997) Figure 9B. (D) Adapted from Murthy and Fetz (1996b)

Figure 2B,C. The spike trains of an example neuron show beta rhythmicity only during high-beta events.

(E) Adapted from Donoghue et al. (1998), Figure 7. Beta rhythmicity in single-unit spike trains in motor

cortex is observed primarily during a premovement delay period, coinciding with elevated β-LFP power.
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how high- verses low-beta states are gated. Elevated beta oscillations are associated with

reduced PTN �ring rates, with units tending to �re at rates around the beta band (Baker,

2007). Although many studies report some amount of phase locking between single units

and β-LFP oscillations (Figure 1.9; (Baker et al., 1997; Donoghue et al., 1998; Murthy and

Fetz, 1996a,b), there is evidence that β-LFP and single-unit spiking in motor cortex may

often be dissociated.

β-LFP oscillations are often observed as variable transients, rather than as sustained

ongoing oscillations (Denker et al., 2007; Donoghue et al., 1998; Feingold et al., 2015). The

origin of the transient nature of β-LFP has not been fully explained. Beta transients may

be a correlate of brief synchronization between motor areas, or may represent bursts of

oscillatory activity conveyed between di�erent brain areas. The relationship between beta

transient activity and single-unit spiking has yet to be studied in detail, and may point to

important clues about the computational mechanisms at work during elevated beta states.

Donoghue et al. (1998) found that β-LFP modulations surrounding movement onset

may overlap the movement-related �ring rate increases, indicating that β-LFP oscillations

may not necessarily be locked to the local neuronal �ring. Witham and Baker (2007) found

that β-LFP power need not correlate with β-rhythmic spiking. During motor steady-states,

PTN �ring is only weakly coherent with β-LFP oscillations, but this weak coherence may

be su�cient to account for the observed coherence between cortical β-LFP and beta os-

cillations in the electromyograph (EMG) of e�ector muscles (Baker et al., 2003). Taken

together, it seems that either the beta oscillations observed in LFP arise from the sum-

mation of a large number of weakly coupled neurons, which individually are much more

variable, or β-LFPs in motor cortex re�ect inputs from other brain areas.

1.3.6 Reconciling cognitive and motor roles of beta oscillations

To summarize, beta oscillations are prominent during motor steady-states and suppressed

during movement. Beta oscillations facilitate computation of re�exive stabilizing move-
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ments, including stretch re�exes, and both visual and somatosensory feedback. This in-

dicates that the high beta state is not idle, and that it is not output �ring rates that are

stabilized per se but rather a particular postural or isomeric force con�guration. Beta oscil-

lations appear during steady-state instructed delays, and are brie�y suppressed following

cues in a manner reminiscent of movement. They may play an active role in working

memory and attention. A uni�ed model that explains all functional roles of beta remains

elusive, and the complexity of beta oscillations may stem from multiple beta sources serv-

ing di�erent functions.

A weak consensus is emerging that beta oscillations are a correlate of stabilized neural

states. Brittain et al. (2014) propose that “the manipulation of computational capacity

by beta activity may itself present a mechanism of action selection and maintenance”.

To date, no uni�ed model has been proposed that could explain how beta could both

facilitate feedback stabilization of motor steady-states, while also maintaining cognitive

information locally within cortex. Although some theoretical models of working memory

use beta oscillations or incorporate the concepts of negative feedback, no work has been

done to evaluate whether these are consistent with the observed neural activity.
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Figure 1.10: Traveling waves in motor cortex. (A) Adapted from Rubino et al. (2006). Traveling waves can

be observed in beta (∼20 Hz) oscillations in motor cortex of rhesus macaques during an instructed delay

period following preparation of reaching movements (left: example wave event). The directions in which

these waves travel cluster along anatomical axes (right), which may be related to the structure of lateral

connections in motor cortex, or be associated with functional connectivity facilitating communication be-

tween motor areas. (B) Traveling waves in β-LFP were subsequently con�rmed to occur also in human

cortex (adapted from Takahashi et al. 2011). (C) Adapted from Lu et al. (2015). Constant pulse optogenetic

stimulation in motor cortex induces gamma oscillations that organize as traveling waves. Shown here is

an example of a radiating wave emanating from the edge of the stimulated region. Spiral waves were also

observed.
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1.4 Waves in motor cortex

The recurrent connectivity of the cortex, combined with the fact that cortex is organized

locally as a two-dimensional sheet, gives rise to a system that can support a diversity of

spatiotemporal wave phenomena. Emergent wave dynamics in the brain may play a role

in neural computation and communication. Waves can spatially organize subpopulations

of neurons into synchronous groups, and therefore impact phase coding (Lubenov and

Siapas, 2009), detection of sensory inputs (Ermentrout and Kleinfeld, 2001; Reimer and

Hatsopoulos, 2010) and communication between brain areas (Maris et al., 2016; Prechtl

et al., 1997; Rubino et al., 2006). A number of the proposed functional roles for oscil-

lations in the brain depend on phase relationships between oscillations in di�erent ar-

eas. Phase coding requires that the downstream target experience oscillations coherent

with the source. Oscillations can set up time windows where a neural population is re-

ceptive or insensitive to input, and so the relative phase lag between brain areas has an

impact on their ability to communicate. Characterizing the spatiotemporal organization

of oscillatory activity in motor cortex is therefore important for understanding the func-

tional signi�cance of oscillations across motor cortex. To date, two spatiotemporally or-

ganized wave phenomena have been reported in MEA recordings from primate motor

cortex (Figure 1.10). In 2006, Rubino et al. reported that beta oscillations in motor cortex

are organized as traveling waves. In 2015, Lu et al. showed that γ-LFP can also exhibit

spatiotemporal organization in primate motor cortex. Lu et al. (2015) show that motor

cortex exhibits waves at gamma (γ) frequency (∼50 Hz) in response to a constant pulse

of optogenetic stimulation during rest, movement preparation, and movement execution.

Understanding the spatiotemporal organization of beta oscillations in motor cortex is of

potential clinical relevance. Closed-loop cortical stimulation may provide a less invasive

alternative to deep brain stimulation for suppressing pathological beta synchronization

associated with Parkinson’s disease (Beuter et al., 2014). If beta oscillations display spatial

diversity in their phase across motor cortex, closed-loop feedback stimulation may bene�t
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from accounting for this diversity. This section provides background on spatiotemporal

activity in motor cortex relevant for the study presented in Chapter 4. It covers historical

background with a focus on what analysis of spatiotemporal waves can tell us about the

underlying system, and what is known about waves in beta and gamma oscillations in

motor cortex.

1.4.1 Origins of cortical waves

The interactions between large populations of neurons gives rise to emergent collective

e�ects not evidenced at the single-unit level. Freeman III (1972) outlined a theory of col-

lective “mass” action of neurons, writing:

"... when neurons strongly interact in su�ciently large numbers (on the order

of 10 or more), new collective properties emerge that demand a di�erent kind

or level of conceptualization. An analogy equivalent to that given above is

the notion that temperature and pressure exist only for a mass, in contrast to

the thermal kinetic energy of molecules in the mass."

This analogy is not to be taken too literally, as the spatiotemporal phenomena arising

from collective neural dynamics are far richer and more complex than thermodynamic

properties. Spatiotemporally patterned activity in cortex may arise through a number

of di�erent mechanisms. Ermentrout and Kleinfeld (2001) enumerate three possibilities

for traveling waves in cortex: (a) delayed excitation from a common source, (b) propa-

gation of neural activity in an excitable network, and (c) organization between coupled

local oscillations (Figure 1.11). Traveling waves arising from signal propagation were �rst

observed by Adrian (1936), who demonstrated that electrical stimulation in anesthetized

cortex propagates away from the stimulation site as a radiating wave traveling approx-

imately 25-35 cm/s. These radially propagating potentials are likely a combination of

conduction delays and propagating pulses of excitation. Other mechanisms of spatiotem-

poral pattern formation are possible. Center surround inhibitory interactions give rise to

connectivity that promotes spatial pattern formation (Ermentrout and Cowan, 1979), in
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a mechanism analogous to Turing’s mechanism for biological pattern formation (Turing,

1952), or the "resonance patterns" discussed in Freeman III (1972). This mechanism may

play a role in abnormal states, for example drug and migraine related geometric visual

hallucinations (Ermentrout and Cowan, 1979), or the Purkinje lights (Purkyně, 1819)
4
, ge-

ometric phosphene hallucinations induced by �ickering light (Rule et al., 2011). In a col-

lection of recent papers, Heitmann and colleagues have proposed that center-surround

interactions between coupled phase oscillators could mediate beta synchronization and

desynchronization in motor cortex (Breakspear et al., 2010; Heitmann et al., 2013; Heit-

mann and Ermentrout, 2015; Heitmann et al., 2012). In addition to lateral interactions and

signal conduction e�ects, waves may also arise from emergent collective dynamics in the

form of waves or wavefronts re�ecting changes in neural state (e.g. cortical spreading

depression observed by Leão 1944).

A great variety of traveling wave phenomena have been observed in cortex. Prechtl

et al. (1997) describe stimulus evoked waves at 10-20 Hz in turtle visual cortex, and �nd

plane waves, spiral waves, and complex waves. Huang et al. (2004) observe wave phe-

nomenon in tangential slides of rat visual cortex spanning layers III-V, and report planar,

radiating, and complex waves. In their work, higher LFP oscillation amplitudes are more

typically associated with spiral waves. Like Prechtl et al. (1997), they speculate that spa-

tially organized wave dynamics are important for organizing oscillatory activity. Huang

et al. (2010) report spiral waves during sleep and drug induced oscillations. Siapas et al.

(2005) observe that hippocampal theta oscillations are organized as a traveling wave. Be-

cause place cells encode information relative to the phase of theta, a spatial gradient in

theta phase implies that, at each instant, a segment of space is encoded (Lubenov and Sia-

pas, 2009). Ermentrout and Kleinfeld (2001) note that traveling waves observed in sensory

cortices while “idle” could in e�ect scan the sensory space for novel stimuli.

4
Purkyně is the Czech orthography, Purkinje the German. Purkinje is the more common spelling (e.g.

“Purkinje cells”), but the original reference can be found under Purkyně.
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Figure 1.11: Three origins of traveling waves in cortex (Figure 1 from Ermentrout and Kleinfeld 2001.). (A)
Apparent traveling wave phenomena arise if adjacent regions of cortex are driven by a single source with

varying conduction latencies. This mechanism does not require local interactions. (B) Recurrent lateral

connectivity in cortex can allow excitatory pulses to propagate across cortex. In this diagram, a single

feed-forward chain is shown. Propagating excitatory waves are also possible in the case of bi-directional

or two-dimensional connectivity. (C) Traveling waves arise as organized phase gradients between local,

coupled oscillators. In this case, apparent wave motion does not re�ect propagating excitation, but rather

the spatial organization of oscillator phases. In the case where there is a gradient in frequency of coupled

oscillators, oscillator coupling can entrain phase relationships such that traveling waves appear to radiate

from high-frequency regions to low-frequency regions.
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Rubino et al. (2006) was the �rst study to report traveling wave phenomena in motor

cortex of macaques. They analyze traveling plane waves and �nd that they occur along

preferred anatomical axes in M1 and PMd. Takahashi et al. (2015) �nd that, when beta

power is elevated in motor cortex, there is directed spiking information transfer (Quinn

et al., 2011) that aligns with the axis of wave propagation. Both the wave propagation

axis and the direction of spiking information transfer align with the putative anatomical

axis of longer-range lateral connectivity. It is interesting to note that the emergence of

the directed spiking statistical relationship was conditional on the presence of beta activ-

ity, suggesting that the collective wave statistics are in�uencing single-unit spiking. The

spatiotemporal wave phenomena may be modulating the e�ective, or functional, connec-

tivity between units in motor cortex. Takahashi et al. (2011) �nd traveling plane waves at

β frequency (15-30 Hz) in human subjects as well. These waves were found to propagate

with velocities ranging from 10 to 35 cm/s. They also suggest that waves may be re�ect-

ing o� the boundary between primary motor and somatosensory cortices, similar to the

phenomenon at the boundary of V1 and V2 analyzed by Goulet and Ermentrout (2011).

1.4.2 Waves as an indicator of collective dynamics

Given that spatiotemporal wave activity arises from the collective dynamics of neural

populations, can we infer important information about neural dynamics by observing

wave activity? Schi� et al. (2007) note that changes in wave dynamics may re�ect changes

in underlying "biological order parameters". The velocity, frequency, spatial wavelength,

and pattern of organized wave activity depend on underlying neural states, and provide

another important summary of the network activity. Several papers have inferred network

parameters from spatiotemporal wave dynamics. For example, Goulet and Ermentrout

(2011) model the relationship between network parameters and the patterns of re�ection

and compression of cortical waves observed at the V1/V2 boundary by Xu et al. (2007).

González-Ramírez et al. (2015) �t a neural �eld model to wave propagation preceding
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seizure termination. Rubino et al. (2006) extract wavelengths and propagation velocities

from traveling waves in motor cortex.
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1.4.3 A computational role for beta waves in motor cortex

Heitmann et al. (2012) considered a population of neural oscillators coupled with center-

surround or (“Mexican hat”) style lateral coupling (Figure 1.12A). They found that the

system could exhibit both traveling waves and zero-lag spatial phase synchrony, depend-

ing on the strength of the surround inhibition (Figure 1.12). They also identi�ed a regime

exhibiting bistability, and found that transient perturbations could switch the system be-

tween synchronized and plane-wave solutions (Figure 1.12B). This is a potential model

of transitions between high-beta motor states associated with stabilized positions, and

low-beta motor states associated with movement. They noted that modulations in appar-

ent LFP power in motor cortex may be due to changes in the synchronization dynamics.

Heitmann et al. (2013) speculated that these emergent oscillatory dynamics themselves

might play a role in encoding and generating motor commands. Heitmann and Ermen-

trout (2015) further analyzed the laterally coupled neural oscillator model and found mul-

tiple stability between wave solutions and synchronized solutions, and also observed a

third state which they termed “ripple,” consisting of spatially patterned deviations from

zero-lag spatial phase synchrony without bifurcation to true traveling wave dynamics

(Figure 1.12C,D, fourth example). It is not known whether the dynamical transitions ob-

served in motor cortex correspond to those in this model. For example, it is not known

whether motor cortex exhibits a ripple state as a transitional mode between spatial syn-

chrony and traveling waves. The neural oscillator model in Heitmann et al. (2012) and

Heitmann and Ermentrout (2015) used center-surround connectivity, which has not been

demonstrated to exist anatomically in motor cortex, but functionally equivalent inhibitory

interactions between phase oscillators could still arise from network e�ects.
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Figure 1.12: A model for spatiotemporal waves in beta oscillations (Figure 1 from Heitmann et al. 2012).
Inhibitory surround interactions may give rise to spatiotemporal patterns in β-LFP oscillations. Shown

here is a coupled oscillator model for spatial pattern formation in β-LFP. (A) Center-surround interactions

can give rise to pattern formation via a Turing mechanism. Local excitatory interactions promote local

synchronization between adjacent oscillators, while more distant inhibitory surround interactions push

adjacent larger patches of cortex out of phase. (B) Depending on the strength of inhibition, di�erent spatial

patterns can be stabilized. With weak inhibition strengths, oscillations are spatially synchronous (a). With

strong inhibition, spatially patterned states are stable (f). At intermediate strengths, the system exhibits

multiple stability between synchronized and patterned solutions (b-f). (C) Example spatially pattern states

for oscillations in motor cortex. In addition to spatially synchronous states and both planar and complex

wave patterns, this model also exhibits a state termed ‘ripple’, which is similar to the synchronous state

with the exception that subpopulations of oscillators lead or lag the average phase in a way that creates

spatial patterns. (D) Distributions of the population of oscillator phases for the spatiotemporal states in

(C). Spatially synchronized states can be identi�ed by a highly concentrated distribution of phases. Both

complex and plane waves exhibit a uniform distribution of phases. Ripple states exhibit an intermediate

level of phase concentration.

58



1.4.4 Optogenetics

Optogenetic methods, which allow for ionic currents to be induced via optical stimula-

tion, have recently been re�ned and popularized by Deisseroth and colleagues (Boyden

et al., 2005). Optogenetic research in primates is an emerging �eld subject to ongoing in-

vestigation (Berdyyeva and Reynolds, 2009; Gerits and Vandu�el, 2013; Han, 2012). Initial

studies (Diester et al., 2011; Galvan et al., 2012; Han et al., 2009) attained single-unit mod-

ulation but no behavioral e�ects. Subsequently, behavioral e�ects of optogenetics in the

visual system were observed. Dai et al. (2014) observed response biasing by stimulation in

area LIP, and saccade generation can be modi�ed by optogenetic stimulation in superior

colliculus (Cavanaugh et al., 2012), V1 (Jazayeri et al., 2012), and arcuate sulcus (Gerits

et al., 2012). Because sensory cortices are by design sensitive to inputs, these �ndings in

the visual system may depend on the capacity of sensory systems to detect and use slight

perturbations for decision making, and behavioral e�ects of optogenetic stimulation in

motor cortex might be very di�erent.

Lu et al. (2015) found that short constant pulse optogenetic stimulation in primary

motor cortex elicits traveling gamma waves and �ring rate modulations, but that these

optogenetically evoked responses could be overridden by the intrinsic dynamics of motor

cortex during movement. In the future, optogenetics may enable new experiments that

modulate collective neural dynamics in motor cortex, for example increasing or decreas-

ing the amplitude of di�erent narrow-band oscillations, or altering their spatiotemporal

synchronization. In the long term, we would like to develop closed-loop stimulation ap-

proaches that use optogenetic methods to stabilize neural states, for example, promoting

or inhibiting β-frequency synchronization. Such closed-loop control of neural activity

in motor cortex may ultimately be important for more e�ective neuroprosthetics for the

treatment of movement disorders. In order to do this, we must build an accurate model of

the response of neural tissue in motor cortex to optogenetic perturbations. Lu et al. (2015)
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have done initial work analyzing the structure of optogenetic responses in motor cortex,

and this thesis further explores optogenetically-evoked wave structure in Chapter 4.
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1.5 Statistical methods
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This section covers the statistical methods used in this thesis, including methods for

analyzing LFP signals, their relationship to neuronal spiking, and their spatiotemporal

structure. Figure 1.13A brie�y diagrams the recording of kinematic variables during a

reach and grasp task. (Chapters 2 - 4 provide detailed information on the behavioral

tasks.) We begin with an overview of the signal processing steps used to extract features

of LFP oscillations such as power and instantaneous phase. We then brie�y review point

process generalized linear models for predicting spiking, and cover methods for assessing

spike-LFP phase coupling. Finally, we cover methods for analyzing LFP spatiotemporal

patterns recorded via MEAs, including methods for identifying and characterizing spa-

tiotemporally organized wave dynamics.

1.5.1 Extraction of LFP oscillations

Figure 1.13B illustrates the neural signal processing used in this thesis. Narrow-band com-

ponents can be identi�ed as peaks in the LFP power spectrum. Additionally, narrow-band

LFP oscillations can modulate independently of the background power spectrum, even

when power in these bands does not appear as discrete peaks. In these cases, narrow-band

LFP oscillations may be identi�ed by subtracting LFP power spectral densities across two

conditions. LFP power spectra are considered a mixture of a power-law distributed back-

ground, and a collection of narrow-band oscillations. These two e�ects can be dissociated

using a variety of methods (e.g. Yamamoto and Hughson 1993). In our data, however,

theta, alpha, beta, and gamma peaks were at times su�ciently enhanced against back-

ground LFP power that they could be identi�ed from local maxima in the power spectral

density. Once the frequency band of a LFP oscillation has been identi�ed, it is straightfor-

ward to extract the LFP oscillation using band-pass �ltering. We elected to use primarily

4
th

-order Butterworth band-pass �lters, applied both forwards and backwards so as to

create zero net phase distortion or delay. The 4
th

order Butterworth �lter provides a bal-

ance of numerical stability, low distortion and ringing, and adequate roll-o� in the stop
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Figure 1.13: Signal processing for reaching and grasping. (A)Kinematics are recorded using a motion capture

setup, which tracks the position of infrared re�ective markers mounted on the forearm. Motion capture

data is cleaned, and occluded markers are inferred based on a model of arm kinematics. Smoothed velocity

trajectories are extracted, and normalized “pathlet” features as in Hatsopoulos et al. (2007) are generated for

the grip aperture and wrist endpoint separately. The drawing of the monkey is credited to John Mislow and

is from Figure 2 in Vargas-Irwin et al. (2010). (B) Neural signals are recorded on implanted microelectrode

arrays (MEAs). Spikes are extracted from the high frequency components of the electrical signal, and sorted

o�-line. Local �eld potentials are extracted from the low-pass electrical signal, and separated into various

bands. The Hilbert transform can be used to construct the analytic signal from narrow-band LFP oscillations,

from which the instantaneous phase and amplitude envelope can be extracted.

63



band. If down-sampling is to be performed, it is important to note that a 4
th

order But-

terworth low-pass �lter at the Nyquist frequency is not su�cient to prevent aliasing, and

one should instead low-pass �lter at half the Nyquist frequency in this case.

In some cases, we employ causal (forward only) band-pass �ltering, in order to en-

force time-causality when assessing predictive information about spiking in LFPs. This

was done both because it simpli�es interpretation issues that may arise from spiking con-

tamination of the LFP (see section 1.5.1.1 Spike contamination artifacts), and because

translational applications for real-time brain machine interfaces can only make use of

time-causal information. Causal �ltering is not zero phase, but the 4
th

-order Butterworth

�lter exhibits nearly linear phase shift in the passband such that the signal is delayed but

not distorted. In the case of ongoing narrow-band LFP oscillations, this delay has minimal

impact as there is relatively little amplitude modulation from one cycle of the oscillation

to the next, and phase tuning models can account for any shift in the LFP phase. We

note also that phase shifts are inherent to these recordings, since LFP signals themselves

may be phase-shifted compared to the neural phenomena that generate them (either as

a result of the mechanism generating the LFP currents, or through phase shifts due to

the impedance of the tissue and the electrode itself). Therefore, it is advantageous to use

models that can account for arbitrary phase relationships, and the phase delay introduced

into a narrow-band LFP feature from �ltering does not a�ect the results here.

1.5.1.1 Spike contamination artifacts

Chapters 2 and 3 of this thesis deal with predicting single-unit spiking from local �eld

potentials recorded on the same electrode. Although LFP re�ects primarily the collec-

tive dynamics of the local population, it is also contaminated by the single-unit spiking

that we wish to predict. In some cases, it may be extremely di�cult to dissociate spiking

contamination e�ects from true correlations between spiking and the population activ-

ity as re�ected in the LFP. Spiking contamination of low-frequency LFPs occurs primarily
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through three mechanisms: (1) single-unit extracellular spikes have a large, fast, and sharp

spike waveform that contributes to broad-band LFP power, (2) slow afterpotentials follow-

ing a spike contain power at lower frequency bands, and (3) spike train rhythmicity at low

frequencies can contribute to LFP power at said frequencies.

It is di�cult to dissociate network e�ects from spiking contamination based on ex-

tracellular potentials alone. Consider the case of single-unit �ring phase-locked to an

ongoing LFP oscillation. A spike-triggered LFP average will reveal both the spike wave-

form itself (due to contamination), as well as the low-frequency oscillatory component. It

may be that the neuron itself contains an intrinsic resonance at that frequency, in which

case the oscillatory component may correspond to a subthreshold mechanism related to

spiking. Alternatively, the oscillation may be mediated entirely by network e�ects, and

oscillatory components in the spike-triggered average emerge only because of the sta-

tistical relationship between the spike timing and the network oscillations. Similarly, it

can be di�cult to distinguish e�ects of intrinsic spiking history from network e�ects, as

apparent rhythmicity in spiking could be generated either by an intrinsic mechanism or

through a population oscillation. Therefore, to a certain extent, both spiking history and

low-frequency LFP components contain combined representations of network e�ects and

intrinsic history e�ects. Because of this, we address spiking contamination using causal

�ltering of LFP signals. This ensures that spiking contamination is con�ned to the past,

and that any predictive information about future spiking re�ects a true predictive history

e�ect.

1.5.1.2 The analytic signal: instantaneous phase and amplitude

The instantaneous phase and amplitude envelopes of narrow-band LFP oscillations can be

extracted using the Hilbert transform, which rotates each frequency component by π/2

in the Fourier domain. The complex-valued combination of the original signal x (t ) and its

Hilbert transform y (t ) is termed the analytic signal z (t ) = x (t ) + iy (t ), and the instanta-
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neous phase φ (t ) and amplitude envelope ρ (t ) can be extracted from the polar form of the

analytic signal z (t ) = ρ (t )eiφ (t ) . Numerically, the analytic signal can be generated using

the function hilbert in MATLAB and in Python’s scipy.signal.signaltools,

which zeros out the negative frequency components of the Fourier transform and doubles

the power in the positive frequency components. For real-valued data, the negative fre-

quency components are complex conjugate to the positive frequency components, such

that the imaginary terms of the positive and negative frequency components cancel to

yield a real-valued signal. Removing the negative frequency components (and doubling

the positive) eliminates this cancellation, and yields the π/2 phase-shifted signal as the

imaginary component. The Hilbert phase can only be interpreted as the literal phase of a

true oscillation if the signal consists of a single narrow-band sinusoidal component that

modulates slowly in amplitude or frequency. Other procedures exist for extracting phase

from LFP measurements that deviate signi�cantly from sinusoidal in waveform shape,

but in this work we band-pass LFP with narrow-band �lters to ensure that the Hilbert

transform is well de�ned. Throughout this work, we will frequently represent the instan-

taneous phase φ (t ) in terms of the unit-length complex phase vector eiφ (t ) . Representing

directional information in this form makes it easy to calculate summary statistics, like the

circular mean and standard deviation.

1.5.2 Stochastic point process modeling of spiking activity

The vast majority of neurons generate their output signal in the form of sequences of

spikes in their membrane potentials. Relating these binary, point-like �ring events to

other continuous covariates, like stimuli, behavior, or local �eld potential features, re-

quires statistical models explicitly designed to re�ect the point-like nature of the spiking

signal.
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1.5.2.1 Point process GLMs

Conditionally Poisson generalized linear point-process models (Poisson GLMs or point

process GLMs; Truccolo et al. 2005) can estimate the instantaneous �ring rate (intensity

function), λ(t ), conditioned on measured covariates such as sensory inputs, motor out-

put, spiking history, and other neural signals. If X (t ) = [X1(t ),X2(t ), . . . ,Xn (t )]
>

denotes

a covariate vector sampled over time, then a point process GLM (Poisson, log-link func-

tion) for the conditional intensity function (CIF), λ(t |X (t )), with an o�set parameter µ

(related to a background spiking rate) and feature coe�cient vector B = [β1, ..,βn], can be

expressed as

ln[λ(t |X (t ))] = µ + β1X1(t ) + β2X2(t ) + ... + βnXn (t ) = µ + BX (t ). (1.1)

We note that X (t ) can include any nonlinear function of the original covariates. Other

GLMs are also possible (e.g. binomial with logistic link function), but here we focus on the

log-link (Poisson) case. The probability of a model {µ,B}, given data {X (t )} and spiking

{Y (t )} (represented here as a sequence of Dirac delta functions at the spike times), can be

expressed via Bayes’ rule as

Pr(µ,B|{X (t )}, {Y (t )}) =
Pr(µ,B)

Pr({X (t )}, {Y (t )})
Pr({X (t )}, {Y (t )}|µ,B). (1.2)

As the data are �xed, the term Pr({X (t )}, {Y (t )}) is constant. Often we assume a non-

informative prior such that Pr(µ,B) is also constant, although regularized GLM point-

process models can be formulated in terms of selecting appropriate priors for (µ,B). With-

out regularization, �tting the GLM point-process model reduces to maximum likelihood

estimation, i.e. to �nding the parameters (µ,B) that maximize the likelihood of observing

the data

µ̂, B̂ = argmax

µ,B

[
L ({Y (t )}|{X (t )},µ,B)

]
. (1.3)

67



In continuous time, the log-likelihood of observing spikes {Y (t )}, given an intensity func-

tion λ(t ) , λ(t |X (t ),µ,B), is composed of a term based on the probability of observing

each spiking event, minus a term re�ecting the overall expected average number of spikes

lnL (Y |λ(t )) =

∫
Y (t ) ln(λ(t ))dt −

∫
λ(t )dt . (1.4)

In practice, these models are �t for discrete time bins of width ∆. For a given model,

the probability of observing k spikes in a time interval [t ,t + ∆) is Poisson distributed

conditionally on the history

Pr

(∫ t+∆

t
λ(t )dt = k

)
∼ (∆λt )

k e
−∆λt

k!

+ o(∆). (1.5)

Conditioned on the spiking history and covariates, the likelihood of observing a sequence

of (discrete-time) events factorizes, resulting in the product of the likelihoods of each event

L (Y |X ,µ,B) =
∏
t

(∆λ(t ))Yte−∆λ(t )/Yt !. (1.6)

For numerical e�ciency, we minimize the negative log-likelihood, rather than maximize

the likelihood. This converts the product to a sum

argmin

µ,B



∑
t

− ln

(
(∆λ(t ))Yte−∆λ(t )/Yt !

)
. (1.7)

If ∆ is chosen su�ciently small such that Yt ∈ {0,1}, this expression simpli�es because

Yt ! = 1. For notational simplicity, we will also let λt = ∆λ(t ) have units of 1/∆, such that

the multiplication by the time window ∆ is now implicit.

argmin

µ,B


−

∑
t

Yt ln(λt ) − λt


. (1.8)

As indicated above (Equation 1.1), the point process GLM framework considers models in
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which ln(λt ) is a linear function in the model parameters

ln(λt ) = µ + BX (t ), i .e . λt = exp[µ + BXt ]. (1.9)

In this case the problem takes the form

argmin

µ,B


−

∑
t

Yt [µ + BXt ] − e
µ+BXt


. (1.10)

The software MATLAB (glmfit) and the Python package statsmodels contain built-

in functions for solving this minimization problem using Newton’s method and iteratively

reweighted least squares. At the time of writing this (MATLAB R2015b, statsmodels 0.6.1),

it is in practice faster to solve the problem using gradient descent. Either MATLAB’s

minimize function or the newton-CG option of the minimize function in SciPy

(Jones et al., 2001) perform well (∼3× faster than iteratively reweighted least squares).

The gradient and Hessian functions to provide to the gradient solver are:

∂

∂µ
[− lnL (Y |X ,µ,B)] =

T∑
t=1

[eµ+BXt − Yt ],

∂

∂βi
[− lnL (Y |X ,µ,B)] =

T∑
t=1

[eµ+BXt − Yt ]Xt ,i ,

(1.11)

H =



∂2

∂µ2

∂2

∂µ ∂β1

· · ·
∂2

∂µ ∂βn

∂2

∂β1 ∂µ

∂2

∂β2

1

· · ·
∂2

∂β1 ∂βn

...
...

. . .
...

∂2

∂βn ∂µ

∂2

∂βn ∂β1

· · ·
∂2

∂β2

n



[− lnL (Y |X ,µ,B)]

=

T∑
t=1

eµ+BXt



1

Xt


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1
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>

(1.12)
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where T corresponds to the total number of samples (time bins). The above corresponds

to the empirical expectation (average w.r.t. the observations Yt ) of the Hessian matrix.

1.5.2.2 Incorporating spiking history

The intrinsic properties of neurons, like refractoriness and recovery times, in addition

to fast-timescale variability imposed by network dynamics (e.g. network oscillations),

can induce autocorrelations in spike trains. Therefore, it is important to incorporate the

intrinsic spiking history of a neuron when predicting its �ring pattern. Spiking history

can be incorporated into the point process GLM framework by adding terms depending

on the spiking activity at previous times i.e. β1Yt−1 + β2Yt−2 + ... + βnYn. Although in

theory one might model the e�ect of the entire spiking history, in practice we consider

only a �nite time window and use a basis function representation in order to reduce the

total number of history parameters to estimate (e.g. Figure 1.14A). These basis functions

are both a computational convenience (lower dimensional models can be estimated more

rapidly) and a form of regularization to enforce smoothness in the estimated �lters and

prevent the over-�tting that can be induced by a large number of parameters.

1.5.2.3 Assessing predictive power

Predictive power can be assessed using receiver operating characteristic (ROC) curve anal-

ysis. The area under the ROC curve (AUC) provides a summary of the ability of a model

to predict the observed neural spiking (Fawcett, 2006). It is related to the probability of

correctly ranking two randomly selected time bins, one that does and one that does not

contain a spike. The accuracy of the AUC estimate depends on the extent to which the

distributions of predicted intensity λ, conditioned on both the presence and absence of

spikes, is well sampled. In general, there is negligible �ring-rate dependent bias in the

AUC estimate, although the variance of the estimator can increase for small sample sizes.

Combined with the fact that point process GLMs explicitly model the mean �ring rate
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Figure 1.14: Point-process modeling of spiking activity. (A) Conditionally Poisson generalized linear models

predict neural spiking as a function of extrinsic covariates and spiking history. These models predict the

logarithm of the instantaneous spike rate (“conditional intensity”) as a function of the covariates that is

linear in the model parameters. These models accept a matrix of features, which can relate to extrinsic (e.g.

stimuli and behavior) or intrinsic (e.g. attentional and cognitive processes) features of interest. Recursive

models can be generated by including intrinsic and population spiking history covariates. Typically, spiking

history is convolved with a set of basis functions to reduce the dimensionality of the history feature vector

and enforce smoothness. (B) The predictive power of GLM point-process models can be assessed using

receiver operator characteristic (ROC) curve analysis. The ROC curve re�ects the trade-o� between false

positive and false negative predictions when using the estimated conditional intensity function to predict

the occurrence of single spikes. When �tting models with a large number of parameters, chance correlations

between spiking and covariates can cause over-�tting and lead to spurious assessments of model predictive

power. Cross-validation approaches, in which predictive power is assessed on data not used for model

training, are important to avoid spuriously elevated estimates of predictive power. Regularization reduces

over-�tting by de�ning prior assumptions about the likely distribution of model parameters. The strength

of regularization is another free parameter that must be estimated. One approach to setting the strength

of regularization is to test the extent of over-�tting using a second level of internal cross-validation on the

training data.
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of a neuron, this means that point process GLM performance as assessed by ROC curve

analysis is insensitive to variations in spike rate. This is useful if one wishes to com-

pare e�ects, like the degree of phase coupling or amount of spiking variability explained,

between neurons with di�erent �ring rates, or in the same neuron across conditions.

1.5.2.4 Cross-validation

When using statistical models to assess the extent to which individual covariates explain

neural spiking, it is important to properly address over-�tting. Models �t to a small

amount of training data can often predict the training set, but this accuracy might be due

to over-�tting. It is therefore necessary to assess predictive power under cross-validation.

Cross-validation, in general, entails validating the statistical model on data that has not

been used in model estimation. K-fold cross-validation breaks a dataset into K groups, for

each group trains a model based on the remaining K-1 groups, and then tests the perfor-

mance of this model on the withheld data (Figure 1.14B). As the assessment of predictive

power under generalization itself exhibits some variance, repeating this procedure for all

K groups can be used to reduce the variance in the estimation of model performance. In

cases where predictive power is lower under cross-validation compared to the training

data, regularization can often improve the accuracy of model estimation.

1.5.2.5 Regularization

In the case where model performance is worse on test data compared to training, it may

be appropriate to incorporate regularization into the model estimation procedure. This

can be achieved by adding a penalty term, which is a function of the parameter values, to

the negative log-likelihood, such that larger parameter values are discouraged. Common

regularization terms include the L2 and L1 norm of the parameter vector, corresponding

to a Gaussian and Laplacian prior on the distribution of the parameters, respectively. The

L0 penalty, which incorporates a constant penalty for every nonzero parameter, may be
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approximated by greedy algorithms (e.g. Li et al. 2015), or by L1. Penalties that combine

L1 and L2 regularization, and penalties over groups of parameters together, are also used.

Determining which penalty is appropriate to use is something of an art. In general, one

would use a L1 penalty when one expects most parameters to be 0, as is the case when the

informative features are sparse. Greedy approximation of the L0 penalty is computation-

ally expensive, but is sometimes used when one wishes to identify an informative subset

of the features without introducing a magnitude-dependent penalty on the parameters.

Approximations of the L0 penalty are often used to select an informative subset of neurons

out of a larger population (e.g. Bansal et al. 2012; Menzer et al. 2014). The L2 penalty is

appropriate when one expects parameters to be small, but not necessarily sparse. The L2

penalty was found to be especially appropriate in this research for cases where there was

some redundancy (correlation) between features, and the parameter vector B is expected

to be dense, as was the case for predicting spikes based on movement trajectories.

The selection of a regularization procedure and setting the strength of regularization

can also be subject to over-�tting. It is therefore important to either �x the regularization

strength in advance, or identify the strength of the regularization based on the training

data alone. There are several ways to do this, but the one that we employed here is to test

the generalization of models under a second level of simulated cross-validation, and to

select the regularization strength that led to the best generalization under this procedure

(Figure 1.14B). In Chapter 2, this two-tier cross-validation approach with regularization

prevented the predictive power of models from degrading even when a large number non-

informative features were added.

1.5.3 Characterizing spike-LFP phase coupling

Characterizing the relationship between spikes and local �eld potentials is a common

statistical problem in neuroscience. Traditional signal-processing methods such as coher-

ence su�er from a number of undesirable biases when applied to point-process data. In
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particular, applying the usual signal-processing de�nition of coherence to spike trains is

biased both by the underlying �ring rate of a neuron, and by the presence of variations in

�ring rate correlated with LFP power �uctuations (Lepage et al., 2013). Several estimators

have been designed to circumvent this problem, and each has its bene�ts and drawbacks.

In this work, we use two recently developed estimators of spike-LFP phase coupling that

avoid �ring rate biases: point process GLMs for phase tuning, and the Pairwise Phase

Consistency (PPC).

1.5.3.1 Point process GLMs for spike-LFP phase coupling

The point process GLM framework can be used to estimate a phase-tuning model based

on the instantaneous phase φ (t ) of ongoing narrow-band LFP oscillations. Lepage et al.

(2013) introduce GLM phase tuning models as an alternative to spike-�eld coherence.

Zhou et al. (2015) have con�rmed that the point process GLM based measures of spike-LFP

phase tuning exhibit lower bias than spike phase histogram approaches, and are especially

advantageous if intrinsic history terms are added to dissociate e�ects of �ring history from

those of population oscillations. In this work, we employ GLM phase tuning models to

examine the relationship between spiking and ongoing LFP oscillations. Taking φ (t ) to

represent the phase of a narrow-band LFP oscillation, φo to represent the preferred phase

tuning, and α to represent the strength of this tuning, the form of the model for phase

tuning to narrowband LFP oscillations z (t ) = ρ (t ) exp(iφ (t )), with no history, is:

ln(λt ) = µ + α cos(φ (t ) − φ0) = µ + β1 sin(φ (t )) + β2 cos(φ (t )). (1.13)

1.5.3.2 Pairwise phase consistency

In 2010, two papers addressing the �ring-rate bias in spike-�eld coherence emerged:

Grasse and Moxon (2010) proposed a bias-corrected version of the power spectrum of

the spike-triggered LFP average, and Vinck et al. (2010) suggested a measure based on

74



the distribution of phase di�erences between all pairs of spike-triggered LFPs. It turns

out that this pairwise phase consistency (PPC) measure is remarkably similar to the bias-

corrected coherence of Grasse and Moxon (2010), and that the measure is equivalent to

estimating moments of circularly distributed data (Aydore et al., 2013). Vinck et al. (2010)

de�ne Pairwise Phase Consistency (PPC) as the average dot product between all pairs

j , k of N spike-triggered phase measurements φ1, ...φN :

PPC =
2

N (N − 1)

N−1∑
j=1

N∑
k=j+1

cos(φ j − φk ). (1.14)

A more computationally e�cient form of the PPC is given by Equation 11 in Aydore et al.

(2013), and can be derived as follows. Let a collection ofN phase measurements be denoted

by the complex phase vectors zj = exp(iφ j ) = cos(φ j ) + i sin(φ j ), j = 1,2, . . . ,N . If z̄ is the

population average phase vector, then

N 2 |z̄ |2 = *.
,

N∑
j=1

cos(φ j )
+/
-

2

+
*.
,

N∑
j=1

sin(φ j )
+/
-

2

(1.15)

The sum of the cosine of all pairwise phase di�erences (including self pairsk = j) is related

to the squared magnitude of the sum over all phase vectors:

N∑
j=1

N∑
k=1

cos(φ j − φk ) =
N∑
j=1

N∑
k=1

cos(φ j ) cos(φk ) + sin(φ j ) sin(φk )

=
*.
,

N∑
j=1

cos(φ j )
+/
-

2

+
*.
,

N∑
j=1

sin(φ j )
+/
-

2

= N 2 |z̄ |2.

(1.16)

Because each pair of phases enters into the above expression twice, and because the dot-

product of a unit vector with itself is 1, Equation 1.16 relates to the sum in the right-hand
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side of Equation 1.14:

N∑
j=1

N∑
k=1

cos(φ j − φk ) = N + 2

N−1∑
j=1

N∑
k=j+1

cos(φ j − φk ) (1.17)

Equations 1.16 and 1.17 imply that (see also Aydore et al. (2013) Equation 11)

PPC =
N |z̄ |2 − 1

N − 1

. (1.18)

This is the form that we use to compute PPC in this thesis. In this form, the relationship

between PPC and other bias-corrected coherence measurements is more obvious. Com-

pare Equation 1.18 to Equation 10 (1.19 below) from Grasse and Moxon (2010), de�ning a

bias-corrected measure of spike-�eld coherence:

c =
N ĉ − 1

N − 1

, (1.19)

where

ĉ =
PowerSTA
〈PowerLFP 〉

. (1.20)

Power in this case is computed from the squared magnitudes of the Fourier coe�cients

from the spike-triggered (PowerSTA) and the whole-session (PowerLFP ) power spectrum

using a multi-taper approach. The primary di�erence here, then, is that the PPC removes

e�ects of power modulation by normalizing spike-triggered LFP analytic signal measure-

ments individually, whereas Grasse’s coherence normalizes the �nal estimate by an ex-

pected power based on the background LFP power spectrum.

1.5.3.3 Addressing remaining source of bias

Although there are a number of approaches for removing the spike-rate dependent bias

from spike-LFP phase coupling estimates, some sources of residual bias remain. Tradi-
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tional coherence estimators normalize the coherence by autospectral power, and there-

fore automatically correct the coherence magnitude for autocorrelations in the signal.

The spike-�eld phase coupling estimators discussed here do not incorporate this, and

therefore care must be taken to address biases resulting from autocorrelation in the spike

trains. This can arise from highly rhythmic neural �ring, in which the strong periodicity

of the spike train may cause it to appear phase locked to transient LFP oscillations at the

same frequency by chance. As suggested by Vinck et al. (2010), it is necessary to deter-

mine the timescale over which the spike train and LFP are autocorrelated, and exclude

spikes that occur too close together (with respect to the autocorrelation decay time) from

the phase locking calculation. To verify that the e�ects of signal autocorrelations are ad-

equately addressed, one can perform random permutation tests using surrogate data that

mimic the autocorrelation structure of the spike trains and LFP signals, but contains no

phase locking. In experimental designs that include multiple trials, and in which neither

spikes nor LFP are strongly locked to the trial structure, it is su�cient to compute the

phase locking between the spikes and the LFPs from unrelated trials. We use such an

approach in Chapter 3 to evaluate the chance level of β-frequency spike-LFP phase cou-

pling, as the timing and phases of beta transients during the steady state periods in our

experiment showed no stable phase relationships across trials. In the case where trials are

not independent due to trial-locked neural activity, phase randomization can generate a

surrogate LFP signal that has the same autocorrelation structure as the true data, but no

stable spike-LFP phase relationship.

1.5.4 Classi�cation of oscillatory LFP spatiotemporal patterns

Multielectrode array recording techniques provide an opportunity to observe how pop-

ulations of neurons interact collectively across cortex. Methods for summarizing multi-

channel activity, like population coherence and phase synchrony, provide summary statis-

tics that may re�ect features of the underlying neural dynamics. Methods borrowed from
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�uid �ow analysis and computer vision can let us analyze geometric relationships between

LFP phases and allow us to characterize spatiotemporal wave activity.

1.5.4.1 Characterizing population activity

Population coherence The coherence spectrum is the frequency-space analogue

of the cross correlation between two signals. While the cross correlation re�ects the ten-

dency for �uctuations in signal A to predict �uctuations in another signal B at some time

lag, coherence re�ects the extent that �uctuations inA within a particular frequency band

predict (linearly) �uctuations in that same band in B. Formally, coherence is the power

spectrum of the cross correlation, normalized by the power spectra of the autocorrela-

tion functions of each signal. On K-channel multielectrode arrays, there are potentially

K (K −1)/2 pairwise coherence spectra. To summarize the overall coherence across a pop-

ulation of electrodes, one can take them leading (largest) eigenvalue(s) from the pairwise

coherence matrix at each frequency.

Measures of population zero-lag spatial phase synchrony Coherence,

by design, allows for individual channels to oscillate at a relative phase lag. It there-

fore cannot distinguish between a large number of di�erent spatiotemporally organized

wave phenomena. Zero-lag spatial phase synchrony, traveling waves, and stable radiat-

ing, rotating, and complex waves, can all exhibit the same overall coherence. A number

of statistics exist to distinguish states exhibiting zero phase lag spatial synchronization

from these other cases. One such statistic, from the coupled oscillator literature, is the

Kuramoto order parameter (Kuramoto, 2012). If a population of oscillations with phases

φ j are represented by their complex-valued unit phase vectors eiφ j , then let

R · eiφo =
1

N

N∑
j=1

eiφ j , (1.21)
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where R is commonly called the Kuramoto order parameter, and φo is the mean phase. R

is 1 when the phases of all oscillators are perfectly aligned, and tends toward 0 when the

distribution of population phases approaches a uniform distribution.

The distribution of phases in a population of coupled oscillators may be described

by a circular distribution. The von Mises distribution and the circularly wrapped nor-

mal distribution are two common cases. The circular standard deviation S , in particular,

is a circular analogue to ordinary linear standard deviation and can be computed from

the Kuramoto order parameter S =
√

ln(1/R2). The main advantage of circular standard

deviation in this work is that the familiar intuition about normally distributed data car-

ries over to some extent. For example, approximately 95% of normally distributed data

lie within two standard deviations of the mean. Similarly, circularly distributed data for

which the circular standard deviation is less than π/4 will have approximately 95% of data

concentrated within the same quadrant of phase space.

The complex Gaussian So far we have discussed two related measures of popu-

lation zero-lag phase synchrony: Kuromoto’s order parameter and the circular standard

deviation. These apply to populations of phase oscillators. The narrow-band analytic

signal that we extract from LFP also has both phase and magnitude components, and �uc-

tuations in the magnitude and phase of ongoing oscillations may be of interest. At times,

it may be appropriate to attempt to model the distribution of analytic signals across a

population. The complex Gaussian is one such distribution, and simply treats the real and

imaginary components of the analytic signal as a two-dimensional normally distributed

variable.

1.5.4.2 Spatiotemporal pattern analysis

Challenges Several caveats must be addressed when examining spatiotemporal dy-

namics using MEA data. There are four main issues addressed here. First, the spatial
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scale of cortical wave phenomena can be larger than the size of the MEA, introducing an

aperture problem. Second, the Nyquist sampling theorem dictates that we should sam-

ple at at least twice the resolution as the highest spatial frequency in our data. Third,

LFP signals are subject to some amount of noise, and there is currently no clear proce-

dure for establishing ground truth as to which signals should be considered noise. Fourth,

spatiotemporal LFP oscillations may exhibit complex structure, including harmonic rela-

tionships with other LFP bands, which can cause the apparent spatiotemporal dynamics

to depend on band-pass �ltering used in data pre-processing. The following sections will

elaborate on these problems and discuss workarounds as well as interpretation caveats

that remain. Figure 1.15 illustrates the main concepts and quantities used in the analyses

of spatiotemporal wave patterns.

Hilbert phase gradients In analyzing spatial structure in MEA recordings, a chal-

lenge arises as the spatial scale of the wave activity can be larger than the size of the

recording area. Huang et al. (2004) introduce the spatial phase gradient as a method of

categorizing wave spatial structure, which circumvents these issues to some extent. The

main issue is that the lowest non-DC Fourier component for a discretely sampled array

has a wavelength equal to the size of the array. For example, for the 4 × 4 mm arrays

used in this thesis, we can resolve up to 5.7 mm waves at best, if they are aligned to

the diagonal of the array. However, phase gradient methods introduced by Rubino et al.

(2006) can extract information about ongoing spatiotemporal wave dynamics and circum-

vent the aperture limit. While we have limited samples in the spatial domain, we have

high-resolution information in the time domain. In cases where the relevant spatiotempo-

ral activity is con�ned to a narrow-band oscillation, we extract an instantaneous Hilbert

phase for each electrode. If we assume that traveling wave activity moves directly along

the phase gradient, we can interpret gradients in the Hilbert phase as re�ecting ongoing,
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Synchronized stateA Plane waveB

C

Figure 1.15: Detection and categorization of spatiotemporal structure in LFP oscillations. (A) States with zero

lag spatial phase synchrony can be detected as times when the distribution of Hilbert phases across the MEA

is unusually concentrated. The circular standard deviation of the phase distribution is one measure of phase

dispersion. (B) Globally organized plane waves can be detected by taking the gradient of the Hilbert phase

across the MEA and identifying times when the phase gradient vectors are aligned. Circular statistics can

also be used to identify times when the distribution of phase gradients is unusually concentrated. (C) More

complicated wave states, such as radiating, rotating, and complex waves, cannot be readily distinguished

using the statistics of the Hilbert phases or the Hilbert phase gradients. Instead, a smoothed estimate of

the Hilbert phase gradient is constructed, and complex waves are identi�ed based on critical points in the

phase gradient �eld. The arrows in this illustration have been reversed in these plots to demonstrate the

direction of wave propagation, which is opposite that of the Hilbert phase gradient. Local maxima in the

Hilbert phase map correspond to the centers of radiating waves. Saddle points and local minima can also be

identi�ed, but in our analysis do not correspond to true stable features in the organization of LFP phases and

so are not considered. The centers of rotating waves can be identi�ed as points around which the Hilbert

phase cycles by ±2π . Such points can be found by taking a line integral of the Hilbert phase gradient around

the vicinity of the point, which will be zero in the case that there is no net rotation.
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traveling spatiotemporal wave phenomena (Rubino et al., 2006)

∇φ · v =
∂φ

∂x

dx

dt
+
∂φ

∂y

dy

dt
= −
∂φ

∂t
. (1.22)

Identifying plane waves: Phase gradient directionality Similarly to

how time periods of zero-lag spatial phase synchrony can be identi�ed based on the dis-

persion of Hilbert phase vectors, traveling plane waves can be identi�ed as times when

the direction of phase gradient vectors is unusually concentrated. In analogy to assessing

zero-lag spatial phase synchrony, the circular standard deviation of phase gradient direc-

tions can be used to assess phase gradient alignment and to detect plane waves. Rubino

et al. (2006) de�ne a measure of phase gradient directionality (PGD) as the magnitude of

the array-averaged phase gradient normalized by the average phase gradient magnitude

(Equation 1.23). This measure ranges from 0 for a disordered state to 1 in the event that

all phase gradient vectors point in the same direction. See Figure 1.15B for illustration.

PGD (t ) = |∇φ (t ) |/|∇φ (t ) |. (1.23)

Identifying complex wave structures from phase gradients Circular

statistics can be used to identify spatial synchrony and traveling plane waves, but spatially

organized wave activity in cortex can take on many other forms. Radiating and rotating

waves are possible, and the overall spatiotemporal dynamics might not exhibit global

organization. Radiating and rotating waves, and combinations thereof, can be identi�ed

by treating the gradient of the Hilbert phase as if it were a vector �eld, and identifying

critical points in this �eld. Radiating waves occur at local minima of the phase map, and

rotating waves are centered at phase singularities, around which the oscillation phase

rotates an integer multiple of 2π . Townsend et al. (2015) have recently used critical point

methods to characterize the emergence of complex wave states in delta LFP. Critical point
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methods are susceptible to noise, which can generate spurious local extrema and phase

singularities. To address this problem, Townsend et al. (2015) applied a smoothness prior

in their estimation of phase gradients. In this work, we spatially low-pass �lter the array

data to examine spatiotemporal activity below 2 mm in wavelength.

The Nyquist limit in spatial sampling of LFP The multielectrode arrays

have a 400 µm electrode spacing, and therefore cannot resolve wavelengths shorter than

800 µm. If the LFP exhibits spatial organization at �ner scales, aliasing artifacts could

confound the analysis. LFPs are, to a large extent, averages over the activity of large

neural populations, and also propagate (“instantaneous” volume conduction) some dis-

tance within the brain. The tendency for local collective activity to act synchronously,

as well as this volume conduction, sets a minimum resolution for the LFP. However, we

have anecdotally observed large LFP phase di�erences between adjacent electrodes, indi-

cating that our spatial sampling is not always dense enough to fully resolve LFP spatial

structure. Nevertheless, the spatial sampling density of the MEA is su�cient when the

population activity itself becomes locally synchronous. The beta and gamma oscillations

that we observe here tend to exhibit wavelengths larger than the electrode spacing, and

so the spatial Nyquist limit is less of an issue. This is an assumption, and transient wave

activity may exhibit high spatial frequency structure that could confound our analysis.

Particularly dramatic artifacts occur when there is a spatially coherent oscillation higher

than the Nyquist frequency, which can appear as a lower frequency wave due to aliasing.

Heuristically, spatial coherence of wave phenomena in cortex scale with their wavelength.

Therefore, high-frequency wave activity that is above the spatial Nyquist limit is typically

localized, and the aliasing e�ects are more likely to result in simple per-channel ‘noise’

rather than an artifactual lower-frequency wave. Also to our bene�t is the fact that, when

frequencies exceed the Nyquist limit, they alias down into higher frequencies �rst, with

only much higher frequencies aliasing into low-frequency components. If the expected

wave structure is spatially low-pass it is possible to denoise the wave activity using spatial
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smoothing, which removes both true noise and some of the aliasing artifacts.

Biases and confounds in spatial analysis arising fromnoise Presently,

we have no ground truth for assessing the signal-to-noise ratio in LFP recordings. It is

not so much that we do not understand the physics of the recording setup, as it is that

the distinction between signal and noise is blurry. Spike trains contribute to the LFP and

also tend to be highly localized, meaning that LFP e�ects localized to a single electrode

may arise from both noise and true neural activity. For the analysis of beta waves, we can

get a rough estimate of the noise level by examining the minimum beta power observed

during movement-related beta suppression, in which we �nd it is about 10-20 µV. The

presence of noise can obscure spatially organized LFP phenomena, like synchrony and

plane waves. Noise can be especially problematic for estimating plane-wave wavelength

using the Hilbert phase gradient. Without noise, the local Hilbert phase gradient is di-

rectly related to wavelength. Noise adds spurious high-frequency spatial structure that

in�ates the local estimate of the gradient. One workaround is to estimate wavelength

from the global activity, by either �tting a plane-wave model to the observed data, or es-

timating the wavelength from the average Hilbert phase gradient, for which local noise

sources average out. This approach is used by Rubino et al. (2006). However, if the wave

is not perfectly planar, averaging the gradient over the array leads to an incorrectly low

estimate of the average gradient, because regions of the wave propagating in di�erent

directions cancel out. This in�ates the estimated wavelength.

In summary, naïvely estimating wavelength from local phase gradients can cause spu-

riously high estimates due to noise, and estimating wavelength from globally averaged

phase gradients can cause spuriously low estimates due to deviations from the plane wave

structure. If the local phase gradients are perfectly aligned, the two approaches are equiv-

alent. Rubino et al. (2006) consider waves only above a PGD threshold of 0.5, e�ectively

requiring that the wavelength estimated from local versus global phase gradients agree

within a factor of two. In our work, we wished to examine correlations between wave-
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length and amplitude, and so this confound is especially problematic. To address this,

we required that phase gradient vectors be even more highly aligned, such that the po-

tential discrepancy between the two wavelength estimation approaches is at most 30%,

approximately two orders of magnitude less than the amplitude-dependent variability in

wavelength observed. With this approach, biases arising from varying SNR remain small

relative to the overall e�ect size.

Interaction between spatiotemporal �ltering and apparent wave ac-

tivity When using Hilbert phase gradients to estimate spatiotemporal wave proper-

ties, the time domain �ltering can interact with the spatial analysis. These e�ects are

potentially quite subtle and complex, and are not fully yet understood. The apparent spa-

tiotemporal dynamics of the LFP can depend on frequency. In general, lower-frequency

oscillations are also the most spatially coherent. Multiple narrow-band oscillations may

coexist in cortex, and each may display di�erent spatiotemporal dynamics. For example,

in the examination of optogenetic stimulation in motor cortex in Chapter 4, we �nd four

frequency bands of optogenetically induced oscillations. Two of these bands display ap-

parently no consistent spatial organization relative to the stimulation site over time. The

other two each have a di�erent characteristic spatial organization.

Selecting appropriate �ltering is essential not only for separating di�erent spatiotem-

poral components from each-other, but also for separating narrow-band spatiotemporal

oscillations from background noise. In all of the analyses here, we concentrate on nar-

row LFP peaks identi�ed separately for each cortical area, such that the observed wave

phenomena correspond to true narrow-band activity and not spatiotemporally band-pass

noise. Nevertheless, in one of the studied monkeys, the beta band appeared to exhibit

overtones at higher frequencies, indicating that even a single oscillation can have com-

plex structure that might be a�ected by choice of �ltering. In Chapter 4, we focus on

spatiotemporal structure of the fundamental frequency, but how spatial structure might

relate to the higher-frequency overtone remains unresolved.
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Filter bandwidth can also interact with spatiotemporal analysis. The uncertainty prin-

ciple creates a trade-o� in our ability to resolve signals in time and frequency. Narrow-

band signals have poor time resolution of amplitude and phase �uctuations. In cases

where resolving amplitude �uctuations in a LFP band is important, band-pass �ltering

can have a dramatic e�ect on the analysis. More subtly, narrow band �ltering can also

generate a signal that is more autocorrelated, and for which the so called "instantaneous"

phase estimate is not instantaneous at all, but instead results from an average over several

oscillation cycles. For example, the Hilbert phase from a 2 Hz band centered at 20 Hz will

be related to approximately ten periods of the underlying 20 Hz oscillation. If the “instan-

taneous” phase is the quantity of interest, then it is necessary to select a broader �lter

band in order to ensure temporal locality. Excessively narrow-band �ltering can obscure

the extent to which spatiotemporal wave patterns change dynamically over time. Exces-

sively broad-band �ltering increases the uncertainty in the Hilbert phase estimate, and

increases the amount of noise introduced into the signal. As a heuristic, we choose bands

that are no larger than a quarter of the peak frequency, meaning that the instantaneous

phase is re�ective of the current activity plus and minus two oscillation cycles.

Another issue to note is that �lter selection interacts with spatial phase gradient anal-

ysis by virtue of the fact that each frequency band has a potentially independent contri-

bution to the spatial distribution of the local �eld potential. Consider the case where the

apparent spatiotemporal LFP activity represents broadband noise in time, and indepen-

dent per-frequency narrow-band noise in space, resembling waves. A narrow band-pass

�lter will select a subset of spatially similar components, leading to apparent wave ac-

tivity. On the other hand, a broad-band �lter will sum over many independent spatial

components and lead to less spatially organized activity. In the case of true narrow-band

activity, broadening the �lter band, or moving the band such that the signal-to-noise ra-

tio becomes poorer, can introduce more noise components and lead to apparently less

synchronous or more complex wave activity. This is another source of coupling between
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spatial analyses and temporal �ltering that must be addressed. In the case of the studies

here, we focus on stable narrow-band peaks in the LFP oscillations and use �xed frequency

bandwidths when comparing across conditions. We also verify that our analysis is robust

to the selection of �lter bandwidth.

87



Chapter 2

Contribution of LFP dynamics to spik-
ing variability in motor cortex during
movement execution
Michael Rule, Carlos Vargas-Irwin, John Donoghue, Wilson Truccolo

This chapter has been published: Rule, M. E., Vargas-Irwin, C., Donoghue, J. P., and Truc-

colo, W. (2015). Contribution of LFP dynamics to single neuron spiking variability in

motor cortex during movement execution. Frontiers in Systems Neuroscience, 9:89
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Abstract

Understanding the sources of variability in single-neuron spiking responses is an

important open problem for the theory of neural coding. This variability is thought to

result primarily from spontaneous collective dynamics in neuronal networks. Here,

we investigate how well collective dynamics re�ected in motor cortex local �eld po-

tentials (LFPs) can account for spiking variability during motor behavior. Neural

activity was recorded via microelectrode arrays implanted in ventral and dorsal pre-

motor and primary motor cortices of non-human primates performing naturalistic

3-D reaching and grasping actions. Point process models were used to quantify how

well LFP features accounted for spiking variability not explained by the measured

3-D reach and grasp kinematics. LFP features included the instantaneous magni-

tude, phase and analytic-signal components of narrow band-pass �ltered (δ , θ , α , β)

LFPs, and analytic signal and amplitude envelope features in higher-frequency bands.

Multiband LFP features predicted single-neuron spiking (1 ms resolution) with sub-

stantial accuracy as assessed via receiver operating characteristic (ROC) curve analy-

sis. Notably, however, models including both LFP and kinematics features displayed

marginal improvement over kinematics-only models. Furthermore, the small pre-

dictive information added by LFP features to kinematic models was redundant to

information available in fast-timescale (<100 ms) spiking history. Overall, informa-

tion in multiband LFP features, although predictive of single-neuron spiking during

movement execution, was redundant to information available in movement param-

eters and spiking history. Our �ndings suggest that, during movement execution,

collective dynamics re�ected in motor cortex LFPs primarily relate to sensorimotor

processes directly controlling movement output, adding little explanatory power to

variability not accounted by movement parameters.
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2.1 Introduction

The variability of neuronal responses at the level of single-neuron spiking is a funda-

mental problem in neuroscience (Shadlen and Newsome, 1998; Churchland et al., 2010;

Churchland and Abbott, 2012). Neuronal responses in neocortex to repeated stimuli pre-

sentation or behavioral tasks show substantial variability. Determining the sources of this

variability is particularly important for understanding encoding of stimuli and behavioral

parameters in neuronal ensembles. The issue is also critical for the development of reliable

brain machine interfaces for the restoration of movement, communication, and sensory

function in people with sensorimotor impairments (e.g. Hochberg et al., 2012). Beyond in-

trinsic stochasticity due to, for example, thermal noise and synaptic release failure (Faisal

et al., 2008), variability in cortical neural responses has been proposed to arise from �uc-

tuations in spontaneous, ongoing neural dynamics (Arieli et al., 1996; Worgotter et al.,

1998; Truccolo et al., 2002; Carandini, 2004). Although often neglected, spontaneous and

ongoing neural dynamics are likely to a�ect how neurons respond to sensory inputs or

even how they modulate their activity during behavior. In this way, spontaneous neural

dynamics can provide a background of contextual e�ects which otherwise may appear as

spiking variability due to noise (Fiser et al., 2004; Goris et al., 2014; Hermes et al., 2012).

Local �eld potential (LFP) oscillations in di�erent frequency bands result, to a large

extent, from ongoing collective dynamics, i.e. modes of coordinated or coherent activity in

neuronal populations (Buzsaki et al., 2012; Nunez and Srinivasan, 2006). Previous studies

have investigated how features in multiband LFP oscillations relate to sensory stimuli and

behavior and how decoding based on LFP features compares to decoding based on spiking

activity (Belitski et al., 2008; Bansal et al., 2012). Additionally, some studies have examined

how well LFP features predict spiking activity (e.g. Rasch et al., 2008; Montemurro et al.,

2008; Kayser et al., 2009; Kelly et al., 2010; Haslinger et al., 2006). However, most of these

studies have focused on early sensory cortices and most have been conducted during

anesthesia, a neural state distinct from alert and active behavior. More importantly, none
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of the above studies have addressed how well ongoing collective dynamics re�ected in

LFPs account for single-neuron spiking variability that is not explained by behavioral

parameters (e.g. movement kinematics). For example, the result in Bansal et al. (2012)

showing LFP and spiking activity are redundant with respect to decoding kinematics does

not address the issue of excess variability in single-neuron spiking.

Here, we examined and quanti�ed how well features in multiband LFP oscillations

account for single-neuron variability not explained by behavioral parameters in a natu-

ralistic 3-D reach and grasp task performed by rhesus macaques (Macaca mulatta). The

behavioral task elicited diverse reaching and grasping kinematics, and included reaching

to grasp di�erent objects with di�erent styles of grip.

We examine various LFP features, such as the amplitude envelope and phase, of sev-

eral LFP bands. The frequency bands included low (<2 Hz; delta) frequency components

that are common in this task, including primarily motor related responses associated with

these continuously performed sequences of reach and grasp actions (Bansal et al., 2011).

In addition, these low frequency signals tend to be highly correlated to the neuronal popu-

lation spike count (e.g. Bansal et al., 2012, Fig. 1). Other bands included the theta (2–7 Hz),

alpha (7–15 Hz), beta (15–30 Hz), gamma (30–60 Hz), high gamma (60–100 Hz), and higher

frequency bands (100–200 Hz and 200–400 Hz). Although beta band oscillations dominate

motor cortex LFP activity during movement preparation (Jasper and Pen�eld, 1949; Sanes

and Donoghue, 1993; Murthy and Fetz, 1992; Broveli et al., 2004; Rubino et al., 2006),

they are also characteristic during execution of isometric force tasks and other steady

state conditions (Baker et al., 2001) and, less frequently, during the execution of reach and

grasp actions (Reimer and Hatsopoulos, 2010). Neocortical LFP activity in higher (>100

Hz) frequency bands is generally considered to re�ect �uctuations in multi-unit activity

resulting from coordinated activity in neuronal populations (Buzsaki et al., 2012; Zhuang

et al., 2010; Bansal et al., 2012; Sche�er-Teixeira et al., 2013), and thus is also a re�ection

of ongoing collective dynamics.
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We quanti�ed the amount of variability accounted for by LFP features by �tting point

process models (Truccolo et al., 2005; Truccolo et al., 2010) in which the conditional in-

tensity function (‘instantaneous’ conditional spiking rate) was modeled as a function of

covariates, including the ongoing LFP features mentioned above. To assess the amount of

spiking variability explained by various models, we compare the relative predictive power

of LFP features, reach and grasp kinematics, intrinsic spiking history, and combinations

of these covariates, using receiver operating characteristic (ROC) curve analysis.

2.2 Methods

Behavioral task. Data from three male rhesus macaques were examined in this

study, C, R, and S. Data from C have been used previously in Vargas-Irwin et al. (2010).

All experimental procedures were conducted as approved by the local Institutional An-

imal Care and Use Committee (IACUC). This study employed a task termed Free-Reach

and Grasp (FRG). In FRG, an experimenter pseudo-randomly swings within the monkey’s

reach one of various small (3–5 cm) objects of di�ering shapes attached to a string, and

the monkey is rewarded for grasping the object. The FRG task was designed to elicit

naturalistic and continuous three-dimensional reach and grasp behaviors that require on-

line motor control (Vargas-Irwin et al., 2010). Reach and grasp actions were organized in

blocks within each experimental session. We analyze data from the entire FRG block, and

so our data contains a diversity of behavioral conditions, including visually guided reach-

ing (including online corrections as the objects’ movement is unpredictable), the grasping

and holding of the object, and the period of juice reward (see Vargas Irwin et al. 2010).

Kinematic feature extraction. Arm and hand kinematics were recorded at 240

frames per second using a Vicon motion capture system (Vicon Motion Systems; Oxford

Metrics Group) as detailed in Vargas-Irwin et al. (2010). This system employs infrared-

re�ective markers to track arm and hand positions in real time, and is capable of inferring
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missing data from brie�y occluded markers. For our analysis, we focus on the 3-D kine-

matics measured at the wrist, as well as the distance between the thumb and fore�nger

(grasp aperture), as indicators of the kinematics related to reaching (i.e. hand position in

space) and grasping. We analyzed kinematics features similar to those used in Hatsopou-

los et al. (2007). These are normalized velocity trajectories of both the wrist endpoint and

grip aperture in time, combined with zero lag position and speed. For comparison, we

also analyze position trajectories of these markers over time. The velocities of motion

capture markers were estimated using a Savitzky-Golay �lter generated by �tting a 5th

order polynomial to a discrete di�erentiation operator at the sampling rate of the kinemat-

ics. The polynomial extended 25 samples (10 ms) to either side of the current time-point.

The polynomial order was selected such that frequencies higher than 20Hz were attenu-

ated, so that the resultant velocity trajectories were su�ciently smooth to down-sample

at 40 samples-per-second. Velocity trajectories were sampled from the smoothed velocity

every 25 ms, starting 100 ms before the current time-point and extending 300 ms into

the future. Similarly, a smoothed position estimate was extracted using Savitzky-Golay

�lters based on a 5th order polynomial �t to a discrete impulse. For the normalized ve-

locity feature set, we followed the steps in Hatsopoulos et al. (2007), i.e. velocities were

normalized by the L2 norm of the velocity trajectory. 3-D wrist position and grip aperture

were normalized separately. The average speed and position over the trajectories were

added as additional features. A separate feature set based on position trajectories was

used for comparison. Position trajectories were taken from the position estimates, sam-

pled at 40 samples-per-second, covering the same period (100 ms before to 300 ms after)

as the normalized velocity trajectories.

Neural recordings. Recordings were made using microelectrode arrays (Blackrock

Microsystems), as previously described in Vargas-Irwin et al. (2010). Electrodes were 1.5

mm long, likely targeting layer V of motor cortex. Monkey G was implanted with 4x4

mm 96-microelectrode arrays in both M1 and PMv. Two monkeys (R,S) were implanted
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with one 96-microelectrode array in PMv, and a 3.2x2.4 mm 48-microelectrode array in

each of M1 and PMd areas. Electric potential signals were recorded broadband (analog

band-pass �ltered to 0.3 Hz – 7.5 kHz; digitized at 16bit and sampled at 30 kilosamples per

second) using a Cerebus Data Acquisition System (Blackrock Microsystems). For spike

detection, recorded signals were digitally �ltered with a 250 Hz fourth-order high-pass

Butterworth �lter. For each electrode, candidate spikes (action potentials) were identi�ed

online via threshold crossing detection in the amplitude of the high-pass �ltered signal

(Cerebus Data Acquisition System). Preliminary spike sorting was performed by a cus-

tom automated spike sorter (Vargas-Irwin and Donoghue, 2007), and veri�ed using the

commercial Plexon O�ine Sorter (Plexon Inc.). Candidate units to be included in the

analysis had a minimum signal-to-noise ratio (SNR) of 3.0 (de�ned as in Vargas-Irwin and

Donoghue, 2007). In addition, we required that (a) the inter-spike-interval (ISI) histogram

display a clear refractory period to exclude potential multi-unit clusters; (b) that there be

at least 500 inter-spike-interval events smaller than 100ms within the task data, to pro-

vide accurate estimates of spike-history �lters; and (c) that units be clearly separated into

di�erent clusters in the PCA feature space. Electrodes exhibiting cross-talk or excessive

noise were excluded from analysis. For monkey C, LFPs were extracted during recording

sessions from the broadband signal using a causal 500 Hz fourth-order low-pass Butter-

worth �lter, and stored at two kilosamples per second. LFP data from monkeys R and S

were �ltered o�-line to match this processing.

LFP feature extraction. For analysis of band-limited LFP oscillations, LFP signals

were �ltered using causal (forward only) fourth-order Butterworth low-pass and band-

pass �lters, with cuto� frequencies 0.3–2 Hz (δ ), 2–7 Hz (θ ), 7–15 Hz (α ), 15–30 Hz (β),

30–60 Hz (γ ), 60–100 Hz (high γ ), 100–200 Hz (MUA1), 200–400 Hz (MUA2). The 0.3–

2 Hz low-pass signal captures slow motor-evoked potentials (MEPs). The two highest-

frequency bands are likely to re�ect a substantial contribution from multi-unit activity

(MUA) to neocortical LFPs, as well as other possible high-frequency source signals. For
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the narrow delta, theta, alpha, and beta frequency bands, we considered four features:

the instantaneous phase and amplitude of the analytic signal, and the real and imaginary

component of the analytic signal. The LFP analytic signal was computed from the band-

pass �ltered LFP using the Hilbert transform. LFP instantaneous phase and amplitude

were computed as the complex argument and modulus of the analytic signal, respectively.

(The real component of the analytical signal corresponds to the band-pass LFP itself.)

For the broader, higher frequency gamma and multi-unit bands, we use only the analytic

signal and the amplitude envelope. Feature extraction was performed on the LFP sampled

at 2 kilosamples per second, and decimated to 1 kilosample per second for neural point

process modeling.

Spike contamination. In this analysis, we predict single-unit spiking from fea-

tures of the LFP recorded on the same electrode as the isolated unit. Because of this,

when predicting neuronal spiking from LFP features, it is important to prevent action po-

tentials from contaminating the �ltered LFP. We elected not to use existing spike removal

procedures (e.g. Zanos et al. 2012) because the broadband LFP data were unavailable for

monkey C, and because spike-removal methods make implicit assumptions about which

features of the LFP relate to the spike waveform as opposed to collective dynamics locked

to spiking. Instead, we employed causal �ltering to extract LFP features. Although spike

contamination can occur as low as 10 Hz (Waldert et al. 2013), causal �ltering restricts

this contamination to times following a spike, avoiding the confound of predicting spikes

from themselves (i.e. via their contamination of the LFP features). Although the discrete

Hilbert transform used to compute phase and amplitude features is non-causal, the e�ec-

tive �lters created by the composition of the Hilbert transform with the causal band-pass

�lters remain predominantly causal. As a further precaution, and to guard against impre-

cision in localizing spike times, we added 1 ms delay to LFP features. Under this approach,

the noncausal contribution to the imaginary component of the analytic signal was neg-

ligible: less than 0.14% of the impulse response (measured as the percentage of the area
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under the absolute impulse response) was non-causal. Since causal �lters can add ampli-

tude and phase distortions, we addressed this concern by comparing the predictive power

of causally �ltered LFP and that of zero-phase (non-causal) �ltered LFP, which contains

no delay. We determined that the choice of causal verses zero-phase �ltering did not alter

the conclusions of this paper for frequencies below 30 Hz. Zero-phase �ltering for higher

frequencies resulted in higher predictive power in some cases, which was likely the result

of action potential contamination as supported by the recent studies mentioned above.

Intrinsic spiking history. To assess the extent to which a neuron’s own spiking

history explains spiking variability, and to compare its predictive power to that of kine-

matic and LFP features, we included features of spiking history in our modeling (Truc-

colo et al., 2005). In addition to intrinsic biophysical processes (refractory/recovery pe-

riod, bursting, etc.), spiking history can potentially also re�ect indirect neuronal network

dynamics e�ects. For example, spiking history models are capable of capturing spiking

rhythmicity that may arise as a result of oscillatory input. We used raised cosine bases in

logarithmically scaled time, covering the past one-hundred milliseconds of spiking activ-

ity, to estimate temporal �lters (see Truccolo et al., 2010, and Pillow et al., 2008, for more

details). The resulting temporal �lters were convolved with the past spiking activity to

capture history e�ects on the spiking probability at a given time. Ten basis functions were

used. More recent spiking history, typically related to after-spike refractory and recov-

ery periods, and bursting, was modeled with more localized (�ner temporal resolution)

basis functions. Longer-term history e�ects can capture intrinsic rhythmicity and also,

implicitly, network dynamics.

Stochastic neural point process models. We used a generalized linear point

process model (Truccolo et al., 2005) to explore the extent to which di�erent covariates

explain spiking variability. The probability of a neuron spiking in a su�ciently small time
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interval, indexed by t , of duration ∆, can be written as

Pr(Yt = 1|λt ) = λt∆ + o(∆), (2.1)

where Yt corresponds to the spiking activity at time t , Yt=1 for a spike, 0 otherwise, and

λt is the conditional intensity function (‘instantaneous conditional spiking rate’, in spikes

per second) of the modeled neuron. The bin size ∆ must be chosen small enough such

that the probability of two spikes occurring within the same time bin is negligible. Here

∆=1 ms. We used a regularized maximum likelihood approach to model the logarithm of

the conditional intensity function as a linear combination of model features:

ln(λt ) = µ +A · Xt , (2.2)

where Xt is the covariate vector at time t , A is a vector of model parameters, and µ is a

parameter related to background activity level. Xt can refer to LFP features at time t , past

and future kinematics, convolutions of intrinsic spiking history up to but not including

time t with temporal �lters, or combinations of these covariates. For example, for a given

Hilbert-transform of an LFP band, z (t ), the feature vector

Xt = ( |zt |, Re(zt ), Im(zt ), cos(Arg(z)), sin(Arg(z))) (2.3)

corresponds to a model with cosine tuning to a preferred Hilbert phase θ0, as well as

amplitude envelope and analytic signal features, i.e.

ln(λt ) = µ + a1 |zt | + a2 Re(zt ) + a3 Im(zt ) + a4 cos(θ0 − Arg(z)) (2.4)

Model �tting. Model estimation is solved by �nding parameters A and µ that max-

imize the L2-regularized log-likelihood of the observed spiking activity (Truccolo et al.,
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2005):

argmax

A,µ
[ln(Pr(Y |X ,A,µ ))] =

1

T

T∑
t=1

[Yt ln(λt∆) − λt∆] − α ‖A‖2, (2.5)

where α is a penalty or regularization parameter. The log-likelihood is normalized by the

number of samplesT so that the strength of regularization does not depend on the amount

of data. The parameter µ is not penalized. All features are z-scored prior to model �tting

to ensure that all features are zero mean and of comparable scale, which ensures that the

L2 penalty is applied equally to all features and improves numerical accuracy.

We used a gradient descent approach for the minimization of the negative log-likelihood

under L2 regularization. Models were �t under a two-tier cross-validation scheme. An

outer level of 10-fold cross-validation ensures that results are not over-�t. An inner level

of cross-validation selects the regularization parameter α . Ten values of the regulariza-

tion parameter α , base-10 logarithmically spaced between 1e-9 and 1e2 inclusive, as well

as α=0, were tested. On each of the 10 outer-level cross-validations, 90% of the data were

taken as training data, and 10% were reserved for testing. The training data were split

randomly into two equal groups. For each group, models were generated for each value

of the regularization parameter α . The value of the regularization parameter that led to

the best generalization (in terms of predictive power, see below) in this internal cross-

validation step was selected for �tting a model on all of the training data. This model

was then validated on the remaining 10% of the data that had been withheld for test-

ing. This two-tier cross-validation procedure was repeated 10 times, such that all of the

available data was used for model validation and assessing predictive power. To con-

�rm that L2 regularization su�ciently prevented over-�tting when adding LFP features

to the kinematics model, we shu�ed LFP features in 100ms blocks with respect to the

spiking activity. We found that adding these non-informative features to the kinematics

and kinematics-history combined models reduces the predictive power very little, by at

most 0.03, and with the population mean decrease ranging from 0.001 and 0.006 across all

sessions. This di�erence is too small to alter the conclusions of our study. In preliminary
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analysis, we also explored L1 regularization and also a mixed L1-L2 regularization (�t-

ted via elastic net, Friedman et al. 2010). We found that L2 regularization outperformed

these alternatives, both in terms of computational time and predictive power under gen-

eralization. Additionally, we found that L2 regularized generalized linear models (GLMs)

outperformed simpler approaches, such as naive Bayes and spike-triggered average and

covariance analysis.

Assessment of predictive power. Model performance was evaluated using the

area under the ROC convex hull (AUC) measured on testing data, using the model (Equa-

tion 2) to compute the conditional spiking probability, Pr(Yt=1|Xt ,A,µ ) ≈ λt (Xt ,A,µ )∆,

from observed covariates (Truccolo et al., 2010). ROC analysis assesses predictive power

in the context of binary (in this case spike train) sequences (Fawcett, 2006). We report

predictive power (PP) as 2×AUC−1, which ranges from 0 (no predictive power) to 1 (com-

plete prediction of single-neuron spikes in 1 ms time bins). Note that this predictive power

measure is based on both true and false positive rates, since is derived from the ROC anal-

ysis.

2.3 Results

We are interested in how well collective neural dynamics, as re�ected by features in on-

going and evoked multi-band LFP signals, can explain motor cortex single-neuron spiking

variability not accounted for by motor behavioral covariates such as reach and grasp kine-

matics. We �rst demonstrate that the examined LFP features can predict single-neuron

spiking in motor cortex, then we assess the extent to which this predictive power com-

pares and is redundant to information available in 3-D kinematics. We also assess the

extent to which intrinsic spiking history, i.e. temporal dynamics or correlation in the mod-

eled spiking activity itself, adds predictive power to kinematics, and evaluate whether LFP

features remain predictive conditioned on kinematics and intrinsic spiking history.
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Datasets from seven experimental sessions were used in these analyses: two each

from monkey C and R, and three from monkey S. Sessions from monkeys R and S were

collected within a week of each-other. The two sessions from monkey C were collected

three months apart. Between three and nine reach and grasp blocks, averaging 140 sec-

onds long, were collected on each session. Each session included 15–42 successful free-

reach-to-grasp trials or reaches in each block. This yielded 7–17 minutes of FRG task data,

averaging ten minutes of data per session. A detailed statistical description of the kine-

matics and examples of kinematic trajectories in these experimental blocks can be found

in Vargas-Irwin et al. (2010) and Bansal et al. (2012), who reported some of the data from

monkey C in this task. An example of kinematics trajectories with the corresponding

neuronal ensemble spike raster is shown in Figure 2.1. For each array in each session,

between 19 and 83 well-isolated units were identi�ed for analysis (mean=52, σ=16). For a

given monkey and area, some of the neurons are thought to be the same across sessions,

for this reason we do not combine sessions when we perform statistical signi�cance tests,

as this could falsely in�ate p-values due to repeated sampling of the same neurons.

2.3.1 Features of LFP oscillations predict single-neuron spiking

with substantial power

First, we evaluated the ability for multiband LFP features to predict single-neuron spik-

ing. We �t a regularized generalized linear model to predict single-unit spiking (1 ms

time resolution) from multiband LFP features. Spiking probability at any given 1 ms time

interval was modeled as a function (Equations 1-2, Methods) of features of ongoing LFP

activity. LFP features included instantaneous phase and amplitude envelope as well as the

analytic signal, extracted via a Hilbert transform, from four narrow LFP bands (Methods),

δ (0.3-2 Hz, motor related potentials), θ (2–7 Hz), α (7–15 Hz), β (15–30 Hz), as well as

the amplitude envelop and analytic signal for four broader, higher frequency bands: γ1

(30–60 Hz), γ2 (60–100 Hz), and two multi-unit activity (MUA) bands MUA1 (100–200 Hz),
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Figure 2.1: Behavioral and neural signals during the free-reach and grasp task. Kinematic, spiking,

and LFP data from a single trial of the free reach to grasp task (monkey S, area M1). (a) Velocity of 3D wrist

endpoint (‘X’, ‘Y’, ‘Z’) and distance between the thumb and fore�nger (‘Aperture’). (b) Broadband LFP, low-

pass �ltered at 500 Hz during two reach and grasp movements. (c) Instantaneous amplitude envelope (bold

trace), via Hilbert transform, from the bandpass �ltered LFP (grey trace). This particular example is �ltered

in the 7–15 Hz range. (d) Corresponding instantaneous phase extracted from the same bandpass �ltered

signal as in (c). (e) Spiking population raster during this trial: spikes from 47 units are plotted along the y

axis. Neurons show di�erent task-related modulations.
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and MUA2 (200–400 Hz). Figure 2.1 illustrates the signal processing steps involved in the

computation of the instantaneous phase and magnitude for a single frequency band.

We report the extent to which a model explains spiking variability in terms of "pre-

dictive power" (PP). Predictive power is the normalized area under the receiver operator

characteristic (ROC) curve such that 0 corresponds to chance level and 1 to perfect predic-

tion of spike times at 1ms resolution (see Methods: Model �tting; Methods: Assessment of

predictive power). Figure 2.2 shows PPs obtained from three example neurons from di�er-

ent monkeys and areas. For illustration and comparison, we also show the corresponding

PPs based on a model including only kinematics features related to lagged 3-D velocity

and position (similar to ‘pathlets’ in Hatsopoulos et al. 2007) and grasp aperture (Meth-

ods). The examples show a case (Figure 2.2, left) in which LFP features and kinematics

both explained a substantial fraction of spiking variability (PP = 0.73, 0.75, respectively)

and two other examples in which LFP features did better and worse than kinematics, re-

spectively. Overall, we found that LFP features were typically predictive, and that for

some neurons LFP accounted for a substantial (i.e. PP>0.5) fraction of variability. We per-

formed a permutation test to assess chance level LFP predictive power by shu�ing LFP

features in 100ms blocks relative to spiking, and found that the 95% chance predictive

power ranged from 0.03 to 0.06 across sessions. Across sessions and areas, between 85%

and 100% of units showed LFP predictive power higher than this chance level. As shown

in Figure 2.3, high predictive power from LFP was consistent across all monkeys, motor

cortical areas (PMv, PMd and M1) and sessions. This �nding demonstrates that collective

dynamics re�ected in ongoing and evoked LFP oscillations can account for a substantial

fraction of single-neuron spiking variability.
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Figure 2.2: Features of ongoing and evoked multiband LFP oscillations predict single-neuron
spiking: examples. ROC curves (solid) for neural point process models based on multiband LFP features

(Methods: LFP feature extraction). Examples correspond to di�erent neurons, areas, monkeys and sessions.

From left to right: M1, PMv, and PMd. For comparison, ROC curves (dashed) corresponding to models based

on kinematics features are shown. Both LFP features and kinematic features achieve substantial single-unit

spiking predictive power. LFP features include the instantaneous phase, amplitude envelope, and analytic

signal, in the δ=0.3–2 Hz, θ=2–7 Hz, α=7–15 Hz, and β=15–30 Hz LFP bands, as well as amplitude envelope

and analytic signal in the γ1=30–60 Hz, γ2=60–100 Hz, MUA1=100–200 Hz, and MUA2=200–400 Hz bands

(see Methods: LFP feature extraction). Predictive power is the area under the ROC curve normalized, i.e.

2×AUC−1, such that 0 is chance level and 1 is perfect prediction. Predictive power was evaluated under

10-fold cross-validation.

103



0 1
0

50

N
u
m

b
e
r 

o
f 

u
n
it

s

M1

Monkey R

S1 : µ=.26 σ=.17 m=.17

S2 : µ=.27 σ=.18 m=.21

0 1
0

30

N
u
m

b
e
r 

o
f 

u
n
it

s

PMv

S1 : µ=.26 σ=.16 m=.23

S2 : µ=.24 σ=.16 m=.21

0 1
Predictive Power

LFP Features

0

40

N
u
m

b
e
r 

o
f 

u
n
it

s

PMd

S1 : µ=.14 σ=.08 m=.12

S2 : µ=.16 σ=.09 m=.14

0 1
0

50

Monkey S

S1 : µ=.18 σ=.08 m=.18

S2 : µ=.12 σ=.08 m=.10

S3 : µ=.16 σ=.08 m=.17

0 1
0

60
S1 : µ=.18 σ=.12 m=.14

S2 : µ=.14 σ=.08 m=.12

S3 : µ=.20 σ=.13 m=.17

0 1
Predictive Power

LFP Features

0

50
S1 : µ=.11 σ=.07 m=.09

S2 : µ=.09 σ=.07 m=.07

S3 : µ=.12 σ=.08 m=.10

0 1
0

60

Monkey C

S1 : µ=.19 σ=.14 m=.14

S2 : µ=.22 σ=.12 m=.20

0 1
Predictive Power

LFP Features

0

30
S1 : µ=.15 σ=.09 m=.13

S2 : µ=.15 σ=.10 m=.13

Figure 2.3: Features of ongoing and evoked multiband LFP oscillations predict single-neuron
spiking: summary across animals and areas. Histogram counts of the predictive power of point-process

models based on LFP features, for all isolated units. LFP features include the instantaneous phase, ampli-

tude envelope, and analytic signal, in the δ=0.3–2 Hz, θ=2–7 Hz, α=7–15 Hz, and β=15–30 Hz LFP bands, as

well as amplitude envelope and analytic signal in the γ1=30–60 Hz, γ2=60–100 Hz, MUA1=100–200 Hz, and

MUA2=200–400 Hz bands (see methods: LFP feature extraction). LFP was consistently predictive of spiking

variability for a subset of neurons in all sessions. In the plot legends, “S” indicates the session, µ is the mean

of each distribution,m is the median, and σ is standard deviation. Sessions have di�erent numbers of units,

and the di�erences in bar height also re�ect di�erences in sample size (e.g. monkey C area PMv).
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2.3.2 LFP features contributing to prediction of single-neuron spik-

ing

We examined whether some of the multiband LFP features contribute more to prediction

of single neuron spiking than others. Analysis based on estimated model coe�cients

is complicated because of the nonlinear (multiplicative) interactions between di�erent

features (amplitude, phase, or analytical signal) in di�erent frequency bands. Instead, we

performed an analysis based on �tting a single model for each feature separately and

assessing how well each separate model and feature predicted spiking. This allowed easy

visualization of the predictive power of each individual LFP feature.

This analysis revealed some trends common to all animals and motor cortex areas, but

also some variations (Figure 2.4). Consistently across animals and areas, low-frequency

local �eld potentials (δ , 0.3–2 Hz) showed predictive power in the time domain signals and

phases, but not amplitude envelopes. Additionally, the amplitude envelope in the multi-

unit (100–200 Hz and 200–400 Hz) bands was predictive, more-so than the signal. The

low-frequency <2 Hz analytic signal was the most predictive for 49% of units (486 units out

of 991), and the instantaneous amplitude envelope and phase the most predictive for 13%

and 8% of units (133 and 82 units out of 991), respectively. The amplitude envelope in the

200–400 Hz band was the most predictive for 14% of units (142 units out of 991). Features

from intermediate 2–100 Hz bands generally performed poorly, with the exception of beta

(15–30 Hz) amplitude, which although less predictive than the aforementioned features,

was still amongst the top 4 most predictive features for 23% of units (227 units out of 991).

The �nding that LFP amplitude was predictive for the beta-frequency LFP was strongest in

monkey R for areas M1 and PMv. To understand in more detail how the predictive power

in beta amplitude varies across monkeys and areas, we examined the distribution of the

model parameter weights for beta amplitude (in the case of the amplitude-only model,

the parameter matrix A in Equation 2 is simply a single scalar parameter). Model weights
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for beta amplitude in monkey R areas M1 and PMv were more negative (mean ± 2SD for

M1 and PMv were -0.18±0.4 and -0.23±0.4) than those from other monkeys and areas (-

0.04±0.16), indicating that a reduction in beta amplitude is typically associated with an

increase in �ring rate.

2.3.3 Predictive power of kinematics during naturalistic reach and

grasp movements

We next quanti�ed the predictive power of motor behavior, speci�cally kinematic features

of the 3-D reach and grasp movements. We found that kinematics trajectories can also pre-

dict single-neuron spiking with substantial accuracy, at times achieving predictive power

levels around 0.8 (e.g. Figure 2.5, monkey R area M1). However, similarly to LFP features,

there was considerable diversity in the extent to which kinematics predicted spiking, with

some units being predicted poorly. Similar results were obtained by using position tra-

jectories (i.e. position at multiple time lags with respect to spiking; Methods). The 95%

chance level predictive power for kinematics ranged from 0.03 to 0.08, as assessed by shuf-

�ing kinematics features in 100ms blocks relative to spiking. Across sessions and areas,

between 49% and 100% of units showed LFP predictive power higher than this chance

level. These e�ects were consistent across all animals, sessions, and motor areas (Figure

2.5), with mean predictive power ranging between 0.16 to 0.36 across sessions and areas.

The fact that the task kinematics predict single-unit spiking variability con�rms that we

are recording from motor cortex populations that exhibit task-modulation and tuning to

motor output.

Figure 2.6 directly compares the predictive power of LFP and kinematics features.

Overall, the predictive power of LFP features was typically less than that of kinemat-

ics during this free reach and grasp task: the di�erence between the predictive power of

models based on kinematics and LFP features ranged from -0.20 to 0.45. With exception of

monkey S area PMv, units for which LFP features explain more variability than kinematics
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Figure 2.4: Breakdown of LFP predictive power by frequency band and LFP feature. Box-plots over

the population of isolated units (all sessions combined) showing the predictive power of models based on

phase, amplitude, or analytic signal features in isolation from each of eight bands. To better assess the

individual predictive power of each LFP feature, models were �tted for each feature separately. Certain

features, such as the instantaneous phase and analytic signal for the 0.3 – 2 Hz band, as well as the analytic

signal amplitude modulation above 100 Hz, consistently predict spiking across all animals and areas.
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Figure 2.5: Kinematic features predictive power for single-neuron spiking: summary across an-
imals and areas. Histogram counts of the predictive power of point-process models based on kinematics

features, for all isolated units. Kinematics features are normalized velocity trajectories of wrist endpoint

and grip aperture, extending from 100 ms in the past to 300 ms in the future, sampled every 25 ms, as well as

the average speed and zero-lag position for wrist endpoint and grip aperture (Methods: Kinematic feature

extraction). In the plot legends, “S” indicates the session, µ is the mean of each distribution,m is the median,

and σ is standard deviation. Sessions have di�erent numbers of units, and the di�erences in bar height also

re�ect di�erences in sample size (e.g. monkey C area PMv).
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are rare. The mean di�erence in predictive power within each session ranged from -0.04

to 0.14, and the median di�erence from -0.02 to 0.12, with all (session, area) pairs except

monkey S area PMv session 3 displaying signi�cantly better median predictive power for

kinematics. (Wilcoxon signed-rank test with p<0.05, corrected for multiple comparisons

using Bonferroni correction for 19 (session, area) pairs.) Furthermore, across all monkeys

and areas, predictive power of LFP was highly correlated with that of kinematics: the

Pearson correlation coe�cient between the predictive power of kinematics and LFP fea-

tures ranged from 0.52 to 0.96, with a mean of 0.86 and a median of 0.88. This raises the

possibility that LFP and kinematics shared some common e�ect, which we address below.

2.3.4 LFP features are mostly redundant to kinematics when ex-

plaining single-neuron spiking variability

In order to determine whether LFP features can account for single-neuron spiking vari-

ability not explained by kinematics, we asked whether the predictive information carried

in the examined LFP features about single-neuron spiking variability was redundant to

the predictive information carried in kinematic features. To assess redundancy we com-

pare the predictive power of point process models based only on kinematics features to

models that included both kinematics and LFP features. We used L2 regularization to

control for over�tting to the training data due to the larger number of parameters in the

models that combined both kinematics and LFP features (Methods). We found that forgo-

ing L2 regularization led to over�tting, in which the larger number of parameters in the

combined LFP-kinematics model generalized less well to the evaluation data. Tests using

shu�ed LFP features con�rmed that the L2 regularization approach adequately prevented

over�tting (Methods).

Figure 2.7 compares, on a unit-by-unit basis, the relative predictive powers of kinemat-

ics and LFP features. The analysis reveals that, with a few exceptions (e.g. some neurons

in PMv in monkey S), LFP features added little predictive power to kinematics. This �nd-
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Figure 2.6: Kinematics and features of ongoing and evoked multiband LFP oscillations achieve
similar predictive power on a neuron by neuron basis. Scatter plots compare the predictive power of

LFP features (x-axis) to that of kinematic features (y-axis). LFP features include the instantaneous phase,

amplitude envelope, and analytic signal, in the δ=0.3–2 Hz, θ=2–7 Hz, α=7–15 Hz, and β=15–30 Hz LFP

bands, as well as amplitude envelope and analytic signal in the γ1=30–60 Hz, γ2=60–100 Hz, MUA1=100–

200 Hz, and MUA2=200–400 Hz bands (see methods: LFP feature extraction). Each data-point is a single

unit from one session. The diagonal line indicates equality. Most units lie above the diagonal line, indicat-

ing that kinematic features better predict single-unit spiking variability. In the plot legends, “S” indicates

the session, ρ is the Pearson correlation coe�cient between the predictive power for kinematics and LFP

features. Predictive power from both LFP and kinematics are highly correlated, i.e. neurons that are well

predicted by LFP features tend also to be well predicted by kinematics.
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ing suggests that although LFP features were able to account for a substantial fraction of

spiking variability, this information was highly redundant to information available in the

examined kinematics features. This �nding con�rms the conjecture raised earlier, based

on the high correlation between LFP and kinematics predictive power (Figure 2.6), that

the information available in these two signals was redundant in terms of prediction of

single-neuron spiking activity. Nevertheless, for each session, after adding LFP features,

the mean change in predictive power was positive, ranging from 0.008 to 0.07, and the

median change in predictive power ranged from 0.006 to 0.06. This median increase was

statistically signi�cant for all sessions. (Wilcoxon signed-rank test, p < 0.05 corrected for

multiple comparisons using Bonferroni correction for 19 (session, area) pairs).

2.3.5 Intrinsic spiking history adds substantial power to kinemat-

ics in the prediction of single-neuron spiking variability

The above �ndings suggest that the examined features of LFP collective dynamics during

movement re�ect primarily sensorimotor processes related to motor representations and

computations associated with the measured reach and grasp kinematics. Nevertheless,

these LFP features accounted for a small, but statistically signi�cant, fraction of neural

variability not accounted by the examined kinematics features. To investigate the po-

tential sources of this additional predictive power, we take a detour in this section and

consider �rst the predictive power of a neuron’s own spiking history. Here we focused

on the preceding 100 ms spiking history, which can capture fast intrinsic biophysical pro-

cesses such as refractory and recovery periods after an action potential, and also bursting

dynamics, which are common in certain types of motor cortex neurons (Chen and Fetz,

2005). In addition, temporal autocorrelations within single-neuron’s spiking activity can

be induced, for example, by both intrinsic rhythmicity and rhythmicity due to ongoing

neuronal network dynamics a�ecting spiking. We used temporal �lters to capture the

e�ects of intrinsic spiking history. Temporal �lters were estimated with semi-parametric
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Figure 2.7: LFP features add little predictive power to a kinematics model. Scatter plots comparing,

on a unit-by-unit basis, the predictive power of the kinematics model (x-axis), to the predictive power of

a model that uses both LFP and kinematics features (y-axis). Although LFP features by themselves can

achieve high predictive power for single-neuron spiking (Figure 2.3), their combination with kinematics

typically results in only a small increase in predictive power, suggesting that most predictive information

in the examined LFP features is redundant to predictive information in kinematics features. In the plot

legends, “S” indicates the session, µ∆ is the mean change in predictive power, andm∆ is the median change

in predictive power.
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models using raised cosine functions (Truccolo et al., 2010; Pillow et al., 2008; Methods).

Ten logarithmically-spaced raised cosine functions on the past 100 ms were used.

When information about a single neuron’s own spiking history is added to the model,

there is a signi�cant improvement in predictive power compared to a model including

only kinematics features (Figure 2.8). Within each session and area, the mean increase

in predictive power ranged from 0.04 to 0.17. The median increase in predictive power

ranged from 0.03 to 0.16, and was statistically signi�cant for all sessions and motor ar-

eas (Wilcoxon signed-rank test, p<0.05 with Bonferroni correction for 19 (session, array)

multiple tests). This result demonstrates that fast-timescale spiking history can explain

variability in single-neuron spiking that is not redundant to variability examined by the

kinematic features in this motor task.

2.3.6 Conditioned on spiking history, contribution of LFP features

to kinematic models is further reduced

Having demonstrated that intrinsic spiking history adds predictive power to kinematic

models, we �nally assessed whether LFP features can account for variability in single-

neuron spiking not accounted for by kinematics and intrinsic history features. Figure 2.9

shows that, across monkeys and motor areas, adding LFP features to models based on

kinematics and intrinsic spiking history did not lead to a large improvement in predic-

tive power. Across sessions and areas, the mean change in predictive power when adding

LFP features to a model containing both kinematics features and intrinsic spiking his-

tory features ranged from 0.002 to 0.02, and the median change ranged from 0.001 to 0.02.

Nevertheless, this median improvement was statistically signi�cant for all but one ses-

sion (monkey C area PMv session 1) (Wilcoxon signed-rank test, p<0.05 with Bonferroni

correction for 19 (session, array) multiple tests).

This result demonstrates that LFP predictive power that was non-redundant to kine-

matics was primarily redundant to information available in the recent 100 ms spiking
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history in this motor task. In other words, additional single-neuron variability not ex-

plained by kinematics seems to be better explained by fast-timescale features in intrinsic

spiking history than by the examined motor cortex LFP features in this reach and grasp

task.
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Figure 2.8: Intrinsic spiking history carries complementary information to kinematics features.
Scatter-plots showing a unit-by-unit comparison of the predictive power of the kinematics model (x-axis)

to that of a model that uses both kinematics features and intrinsic spiking history features (y-axis). Adding

100 ms of intrinsic spiking history information improves prediction substantially for almost all units, con-

sistently across animals and areas. In the plot legends, “S” indicates the session, µ∆ is the mean change in

predictive power, andm∆ is the median change in predictive power.
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Figure 2.9: Conditioned on intrinsic spiking history, the contribution of LFP features to kinematic
models is redundant. Scatter plots comparing the predictive power of a model based on kinematics and

intrinsic spiking history (x-axis) to that of a model based on kinematics, intrinsic history, and LFP features

(y-axis). LFP features add negligible predictive power after accounting for behavioral and intrinsic spiking

history e�ects. In the plot legends, “S” indicates the session, µ∆ is the mean change in predictive power, and

m∆ is the median change in predictive power.
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2.4 Discussion

Neocortical neurons are embedded in large networks possessing highly recurrent con-

nectivity. Recurrent connectivity typically leads to rich spontaneous collective dynamics.

The extent to which these spontaneous dynamics contribute to single neuron variability

in awake behaving primates, and how these dynamics interact with sensory inputs and

behavioral outputs, is an important open question in neuroscience. Here we examined

this problem in the context of collective dynamics re�ected in LFP oscillations at multiple

frequencies in three di�erent areas of motor cortex in monkeys performing naturalistic

3-D reach and grasp actions. These LFPs are thought to result, to a large extent, from

collective modes of activity driving spatially coherent postsynaptic potentials at multi-

ple spatiotemporal scales (Nunez and Srivivasan, 2006; Buzsaki et al., 2012). LFP features

(e.g. amplitude envelope, phase, and analytic signal) in eight di�erent frequency bands

predicted single neuron spiking (1 ms time resolution) with signi�cant predictive power

for many neurons in all of the three examined motor cortex areas (PMv, PMd and M1).

Neurons for which LFP predictive power was high tended also to show high kinematics

predictive power. In fact, this relationship was close to linear (Pearson correlation coe�-

cient ranging from 0.52 to 0.96 across all the studied areas, monkeys and sessions). More

importantly, predictive information in the examined LFP features was mostly redundant

to the predictive information available in kinematics. In other words, models combin-

ing both LFP features and kinematics typically improved only marginally over models

using only kinematics in the studied 3-D reach and grasp task. These results should not

be dismissed as over�tting artifacts since they were obtained under well controlled L2

regularization aiming to preserve generalization of models with larger number of param-

eters. Furthermore, in the few cases for which LFP features seemed to add predictive

information with respect to kinematics, this information turned out to be redundant to

the information available in short term correlations in the intrinsic spiking history. Over-

all, our �ndings suggest that multiband LFP oscillations in motor cortex of alert behaving
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primates, although predictive of single-neuron spiking during movement execution, are

primarily related to collective dynamics controlling aspects of motor output (e.g. kine-

matics) rather than other potential ongoing dynamics not directly related to the task (e.g.

arousal levels).

Several previous studies have looked at the relationship between single-neuron spik-

ing and features of LFP oscillations, mostly in sensory cortices and during anesthesia (e.g.

Kelly et al., 2010; Haslinger et al., 2006). Recent work by Ecker et al. (2014) has shown that

previously reported high correlations between neuronal pairs and strong phase locking

to ongoing LFPs in primary visual cortex during stimulation were highly dependent on

the anesthesia state, with neuronal ensemble spiking becoming much more asynchronous

during awake stimulation tasks. Our analysis goes beyond previous studies by examining

motor cortex LFP and spiking in awake behaving non-human primates. Furthermore, to

our knowledge, this is the �rst time that the redundancy between the information avail-

able in multiband LFP features and the information available in behavioral output (kine-

matics) has been systematically assessed in motor cortex. It remains to be seen how much

of the residual variability is inherent to stochastic aspects of the biophysics (e.g. noise due

to synaptic failure and ampli�cation e�ects during spike generations; Carandini, 2004), to

other motor-related covariates (e.g. torques and muscle activations) not examined in this

paper, or to network dynamics not faithfully re�ected in LFP features. In the latter, it is

possible that the cortical layer from which the electrode tips recorded (likely layer V in

our data) may impact LFP predictive power. For example, LFPs recorded from layers 2/3

of motor cortex may potentially exhibit di�erent spike prediction performance and dif-

ferent levels of redundancy with respect to kinematics. In addition, we note that typically

recorded LFPs might not be as ‘localized’ as previously thought (Kajikawa and Schroeder,

2011). In particular, rhythmic oscillations in electric potentials recorded intracellularly

and on broad extracellular �elds may share similar frequencies, and yet show very dif-

ferent phase-locking dynamics with respect to neuronal spiking (e.g. Harvey et al., 2009).
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Thus, the broader LFP spatial average might result in signals that are less predictive of

single-neuron spiking and more related to population activity.

The relationship between single-neuron spiking and ongoing LFP oscillations, in par-

ticular the locking of neuronal spiking to the phase of oscillations in speci�c frequency

bands, might be highly dependent on the neuron types (e.g. pyramidal vs. fast spiking

interneurons; Buzsaki et al. 2012). Recent work by Vigneswaran et al. (2011) has demon-

strated that certain types of pyramidal neurons in primary motor and premotor cortices

can show features of action potential waveforms and spiking statistics that are indistin-

guishable from features in inhibitory interneurons. Therefore an analysis based on such

putative classi�cation would remain highly questionable in our motor cortex data.

In our analysis, low frequency (0.3–2 Hz) and higher (>100 Hz) frequency LFP bands

tended to contribute the most to prediction of neuronal spiking. The former relate to

motor evoked potentials, which are known to be highly correlated with the population

spiking (Bansal et al., 2012), and the latter to multi-unit activity, whose movement-related

modulation also re�ects correlated spiking in neuronal populations. Intermediate fre-

quency bands tended to contribute little during movement execution in this type of task.

One could raise the possibility that the relationship between LFP features and single-

neuron spiking in these intermediate frequency bands could be much more transient than

the relationship between spiking and kinematics during movement execution. For exam-

ple, beta oscillations, even during movement preparation, typically occur in transient, not

sustained, events lasting a few or several cycles. Thus, one would like to build models

in which spiking phase-locking should be obviously conditioned on the amplitude of the

beta �ltered LFPs, so that these transients can be properly captured. In this regard, we

note that the neural point process models used here should capture such dependence on

beta amplitude, since the log-additive form of the models allows for (nonlinear) multi-

plicative e�ects and interactions among di�erent terms (e.g. beta amplitude and phase) in

the models. We also note that, although more complex LFP features and models could po-
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tentially improve spike prediction, the same could be said about improving the predictive

power of motor behavioral covariates by using more complex or a larger set of kinematic

features, including for example kinetics (torques) and muscle activation covariates. We

hope to be able to examine more complex LFP and motor behavior-related features in the

future.

The results reported here on the redundancy between motor-cortex multiband-LFP

features and motor behavior are speci�c to execution of motor tasks in non-human pri-

mates who were highly engaged during movement execution. Multiband LFP features

also provide reliable biomarkers for broader brain states and their changes. For exam-

ple, the relationship between single-neuron spiking activity and ongoing LFPs is likely to

change substantially depending on anesthesia, drowsiness, resting vs. awake states, at-

tentional and volitional states, as well as stages during motor tasks (e.g. preparation vs.

execution). In this broader context, including a larger variety of neural states than exam-

ined in this study, we expect multiband LFP features will be an important independent

signal to account for neuronal spiking variability not explained by stimuli or behavioral

covariates.

Variability in single-neuron spiking activity has often been characterized as of two

types: private and shared (e.g. DeWeese and Zador, 2004; Litwin-Kumar and Doiron,

2012; Churchland and Abbott, 2012; Goris et al., 2014). Private variability is likely to

re�ect chaotic nonlinear dynamics in highly recurrent neuronal networks (Litwin-Kumar

and Doiron, 2012). Ampli�cation of membrane potential �uctuations by the spiking gen-

eration process (Carandini, 2004) in addition to local stochastic factors such as thermal

�uctuations and synaptic failure (Faisal et al., 2008) are also important contributors. On

the other hand, shared variability in neuronal ensembles is thought to evolve on slower

time scales and re�ect representational and computational states in neuronal networks

(Litwin-Kumar and Doiron, 2012; Churchland and Abbott, 2012). The examined �uctua-

tions in multiband LFP oscillations seem primarily to be related to this shared variability.
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Multiband oscillatory LFP activity results in large part from coherent or shared dynam-

ics in neuronal networks. In addition, features in these oscillations that are predictive of

single-neuron spiking seemed mostly redundant to parameters in motor behavior. Over-

all, our �nding was that information in the examined multiband LFP features directly re-

lates to these shared representational and computational dynamics across neural popula-

tions in motor cortex. Single-neuron activity in motor cortex populations has been shown

to be dominated by latent low-dimensional collective dynamics (Churchland et al., 2012;

Truccolo et al., 2010). We hope in the future to investigate the relationship between multi-

band oscillatory LFP activity, in particular slow �uctuations, and latent low-dimensional

rhythmic dynamics (Churchland et al., 2012) in motor cortex.
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Chapter 3
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ing β-rhythmicity and transient β-LFP
oscillations duringmovement prepara-
tion in primate motor cortex
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Abstract

The nature and strength of the coupling between single-neuron spiking activity

and collective dynamics re�ected in ongoing local �eld potential (LFP) oscillations

is an important problem in neuroscience. In primate motor cortex, beta (∼20 Hz)

frequency oscillations dominate LFP activity during the planning and preparation

of reach and grasp actions, while being largely suppressed during movement exe-

cution, except during the execution of isometric-force tasks. Previous studies have

focused on single units that show some level of phase coupling with the ongoing

β-LFP signal. Here, we report a di�erent and striking phenomenon wherein many

(43%, 125/292) well-isolated single units showed beta spiking rhythmicity but no ap-

parent or weak phase-coupling with ongoing β-LFP oscillations. The relative phase

between single-neuron spiking and β-LFP oscillations seemed to drift randomly. This

phenomenon was common in units recorded via multiple microelectrode arrays from

primary motor cortex (M1), as well as ventral (PMv) and dorsal (PMd) premotor cor-

tices in monkeys during steady-state movement preparation periods prior to reach

and grasp movements. Importantly, while beta rhythmic spiking and �ring rates were

commonly sustained during steady-state movement preparation periods, β-LFP os-

cillations emerged as transient events with considerable trial-to-trial variability. Sin-

gle neuron �ring rates within and outside these β-LFP transient events showed no

di�erences during steady-states, and no consistent correlation was found between

the beta oscillations’ amplitude and �ring rates. These �ndings indicate that the

modulations in β-LFP power were not coupled to changes in the �ring rates of the

underlying population, as was the case for movement and visual cue related beta sup-

pression in this task. Additionally, the population spiking activity was only weakly

coupled to the ongoing β-LFP. Our �ndings suggest that the relationship between

single-neuron spiking and collective dynamics as re�ected in ongoing LFP oscilla-

tions can be more complex than previously thought. Although beta spiking rhyth-

micity indicates strong beta oscillatory synaptic inputs, it does not imply signi�cant

phase-coupling with ongoing beta LFP oscillations, or even β-LFP recorded in the
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same microelectrode site. This dissociation points to two di�erent sources of varia-

tion in the level of beta activity in motor cortex, one that impacts the single-neuron

spiking dynamics, and another related to the generation of the beta LFP signal re-

�ecting the collective dynamics in the population.

124



3.1 Introduction

Sensorimotor cortex beta (β-) LFP oscillations re�ect the collective dynamics in neuronal

populations embedded in local and large-scale brain networks. In the speci�c case of mo-

tor cortex, β-LFP oscillations are especially evident during movement preparation, plan-

ning, and also during the execution of isometric-force grip tasks (Baker et al. 1997, 2001,

2003; Jackson et al. 2003; Murthy and Fetz 1992, 1996a,b; Sanes and Donoghue 1993). The

relationship between single-neuron spiking and β-LFP oscillations is an important issue

towards revealing the nature and role of these oscillations in the primate motor cortex. In

addition, addressing this issue may be critical for the development of new therapies for

movement disorders, such as Parkinson’s disease (Beuter et al. 2014; Gale et al. 2008; Yang

et al. 2014), and for the development of brain machine interfaces for people with paralysis.

Most initial studies focused on spike-triggered averages of LFPs to examine the rela-

tionship between neuronal spiking and ongoing β-LFPs. Based on this approach, several

studies have shown some level of phase coupling between spikes and LFP (e.g. Murthy and

Fetz (1996b)). However, an assessment of the coupling strength or magnitude based on

spike-triggered averages is di�cult. To address this issue, Baker et al. (2003) used spike-

�eld coherence measures and showed that, although statistically signi�cant, the coupling

magnitude between pyramidal tract neurons and β-LFP oscillations is typically weak dur-

ing isometric force tasks (average coherence values around ∼0.05). However, this study

did not examine the coupling strength between neuronal spiking and β-LFP oscillations

during movement preparation in reach and grasp actions. In addition, the transient na-

ture of β-LFP oscillations was not taken into account. More recently, preliminary analyses

in Denker et al. (2007) has shown that phase coupling may occur primarily during beta

transients during movement preparation periods, but did not explicitly investigate how

this relates to the level of rhythmicity in single neuron spiking.

The relationship between single-neuron beta (β-) rhythmicity and β-LFPs is also an

important issue. Previous studies have shown that β-LFP power is highest in layer V of
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motor cortex (Murthy and Fetz 1996a; Witham and Baker 2007) and that pyramidal tract

layer V neurons tend to �re rhythmically in the beta frequency (Wetmore and Baker, 2004).

However, Witham and Baker (2007) have found that di�erent motor areas show di�erent

levels of single-neuron spiking β-rhythmicity and β-LFP power and, more importantly,

that the level of spiking β-rhythmicity in a given motor area does not predict the level of

β-LFP power in the same area. Furthermore, it remains unclear the extent to which beta

rhythmic spiking coincides with β-LFP transients, and the extent to which beta rhythmic

spiking occurs outside periods of elevated beta power. Clarifying these issues is an im-

portant step for understanding the function and mechanisms of beta oscillations in motor

cortex. We note that previous work has addressed the coexistence of coherent population

gamma oscillations despite underlying single-neuron asynchronous and irregular spiking

activity (e.g. Ardid et al. 2010; Brunel and Wang 2003; Geisler et al. 2005; Hoseini and Wes-

sel 2015). The problem examined here, instead, is that of weak coupling between transient

coherent population oscillations and sustained regular or rhythmic spiking.

This chapter addresses these issues in the context of a visually cued reaching and

grasping task with instructed delays. Single units were simultaneously recorded via multi-

ple microelectrode arrays from areas M1, PMd and PMv, while the monkey performed 3-D

reach and grasp actions. We focused on examining the relationship between well-isolated

single units and β-LFP activity during steady-state movement preparation stages of this

task, which may potentially di�er from synchronization dynamics previously studied in

association with isometric force during precision grip. Overall, we found a striking phe-

nomenon that has been overlooked in previous studies. While β-LFP oscillations tended to

appear as short transients, even during steady-state movement preparation, beta spiking

rhythmicity, evident in the inter-spike time interval (ISI) distributions and autocorrela-

tion functions, was sustained. Furthermore, di�erent spike-LFP phase coupling measures

revealed that single-neuron beta-rhythmic spiking was at most only weakly coupled to

the β-LFP oscillations, even when the analysis was restricted to transient periods of high
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β-LFP power. We observed this phenomenon in many single units from three recorded

cortical areas. In addition, single units clustered into two groups (narrow and wide ex-

tracellular action potentials), with groups showing di�erences in �ring statistics, but no

consistent di�erences in the strength of their phase coupling to β-LFP oscillations.

3.2 Methods

TheCGID task The Cued Grasp with Instructed Delay (CGID) task investigates neu-

ral activity in motor cortex associated with sensory integration, working memory across

instructed delays, and planning of upcoming reach and grasp (Figure 3.1; see Vargas-Irwin

et al. (2015) for additional details). The task requires a monkey to reach out and grasp one

of two objects, using one of two possible grips. A sequence of visual cues instructs the

monkey which object to grasp, and which grip to use. When the task begins, the lights in

the room are turned o�, and one of the two objects is rotated into place. One second later,

that object is illuminated. The monkey now knows which object to grasp, but not which

grasp to perform. One second after that, a cue light (red or yellow, left or right position) is

illuminated, specifying the grip. If the light is red, the monkey is to perform a power grip.

If the light is yellow, the monkey is to perform a precision grip or a key grip, depending

on the object. Two seconds after the ‘Grip’ cue, a ‘Go’ cue (green light, middle position)

is given. The monkey is now allowed to reach out and grasp the object. If the monkey

moves before the ‘Go’ cue or uses the incorrect grip on the object, the trial is voided. If

the monkey uses the correct grip, he receives a juice reward.

In this Chapter, we refer to the task epochs preceding the ‘Go’ cue as the planning and

preparatory period. Movement periods were de�ned as the time from when the monkey

lifts his hand from the holding position to the time when the monkey contacts the object,

as detected by capacitive touch sensors. We concentrate our analysis on two steady-state

periods. The �rst period is the one second between the start of the trial and when the

�rst visual cue is presented. In this epoch, the monkey is waiting attentively and has not

127



Arc
uate

SulcusC
e
n
tra

l
S
u
lcu

s M1
PMv

PMd

Monkey R Right Hemisphere

5mm

Arcuate Sulcu
s C

e
n
tr

a
l
S
u
lc

u
s

M1
PMv

PMd

88
2

1
3

4
6

8
10

14
92

65
66

33
34

7
9

11
12

16
18

67
68

35
36

5
17

13
23

20
22

69
70

37
38

48
15

19
25

27
24

71
72

39
40

42
50

54
21

29
26

73
74

41
43

44
46

52
62

31
28

75
76

45
47

51
56

58
60

64
30

77
78

82
49

53
55

57
59

61
32

79
80

84
86

87
89

91
94

63
95

81

83
85

90

93
96

6 56 13 91 21 14 64 24

9 55 19 92 62 16 61 26

17 89 54 10 60 20 63 28

15 90 52 12 59 27 96 30

50 8 58 23 94 29 18 32

46 11 57 25 93 31 22 95

65

66

81

45

40

5

67

68

2

82

43

48

69

70

1

84

47

42

71

72

33

83

49

44

73

74

35

3

86

51

75

76

37

34

85

53

77

78

39

36

4

87

79

80

41

38

7

88

Monkey S Left Hemisphere

5mm

Figure 3.1: The Cued Grasp with Instructed Delay (CGID) task. The CGID task investigates integration of

visual cues and planning of upcoming reach and grasp movements across instructed delays. When the task

begins, one of two objects is presented. One second later, a cue light instructs the monkey to use either a

power grip (left panels in the photo inset) or precision grip (right panels) to lift the object. A two second

planning period follows, after which a ‘Go’ cue signals that the monkey may reach and grasp the object. The

planning and delay periods reliably elicit beta oscillations. Touch sensors detect when the monkey begins to

move. LFP data were recorded on 10x10 (ventral premotor cortex PMv) and 6x8 (dorsal premotor cortex PMd

and primary motor cortex M1) Blackrock arrays with 0.4mm electrode spacing. Data from two monkeys (R

and S) were analyzed. Broadband LFPs recorded at 30 kilosamples/s (0.3 Hz - 7.5 kHz) were downsampled

(zero-phase 4
th

order Butterworth, ≤ 250 Hz) to 1 kilosample/s for analysis. In this study, we focused on

two steady-state motor periods: the 1 second before object presentation and the 1 second preceding the go

cue. Data were collected by Carlos Vargas-Irwin and Lachlan Franquemont in the Donoghue lab.
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yet received the information needed to plan or prepare for movement. The second period

is the one second preceding the ‘Go’ cue. In this period, the monkey has been cued with

the information needed to plan the reaching and grasping action, and the transient neural

activity associated with the visual cues has passed. It is important to note that the visual

cue lights were present until the ‘Go’ cue, so this second steady-state epoch represents a

motor preparatory state and not a state that explicitly required working memory.

Neural recordings Data were recorded from triple microelectrode arrays (MEAs;

Blackrock Microsystems, Utah), with an electrode depth of 1.5 mm targeting layers II/III-V

of motor cortex. Neuronal spiking and LFP data were recorded on 10×10 (ventral premo-

tor cortex PMv) and two 6×8 (dorsal premotor cortex PMd and primary motor cortex M1)

arrays with 0.4 mm electrode spacing. Data from two monkeys (R and S) were analyzed

(see Vargas-Irwin et al. (2015) for additional details). Broadband LFPs recorded at 30 kilo-

samples/s (0.3 Hz - 7.5 kHz) were down-sampled (zero-phase 4
th

order Butterworth, ≤ 250

Hz MATLAB �lt�lt) to 1 kilosample/s for analysis.

Spike sorting For each electrode, candidate spikes (extracellular action potentials)

were identi�ed online via threshold crossing in the amplitude of the high-pass �ltered

signal (250 Hz 4
th

order high-pass Butterworth �lter, Cerebus Data Acquisition System,

Blackrock). Preliminary spike sorting was performed by a custom automated spike sorter

(Vargas-Irwin and Donoghue, 2007), and veri�ed using the commercial Plexon O�ine

Sorter (Plexon Inc.). Candidate units included in the analysis had a minimum signal-to-

noise ratio (SNR) of 3.0, de�ned as in Vargas-Irwin and Donoghue (2007). Additionally,

we required that: (1) the inter-spike-interval (ISI) histogram display a clear refractory

period to exclude potential multi-unit clusters; (2) that the units exhibit at least 100 inter-

spike interval events during each of the de�ned one-second steady-state periods of the

CGID task within a session, to provide for adequate estimation of ISI distributions; and

(3) that units be clearly separated into di�erent clusters in the waveform PCA feature
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space. Electrodes exhibiting cross-talk or excessive noise were excluded from analysis.

ISI histogram statistics Isolated single units showed diverse �ring characteristics

as assessed by the inter-spike interval (ISI) distribution and related statistics, both across

time and across units. For a given unit, these statistics were computed from the ISI distri-

bution from all inter-spike intervals pooled over all trials for a given one-second epoch of

the CGID task. We computed mean �ring rates, the ISI mode, and the coe�cient of vari-

ation (CV; i.e. the standard deviation of the ISI distribution divided by the corresponding

mean). We quanti�ed the tendency of units to �re bursts as the percentage of ISIs shorter

than 10 ms.

We estimated a single unit’s preferred �ring frequency (in Hz), by computing the in-

verse of the ISI mode, henceforth referred to mode frequency. The mode �ring frequency

was identi�ed for unimodal and bimodal ISI histograms using kernel density estimation

(Python scipy.stats.gaussian_kde). Because some units exhibited an ISI distri-

bution with an additional mode corresponding to bursts, and since we were interested in

slower ‘rhythmicities’, we considered only ISI events longer than 10 ms when estimat-

ing the mode �ring frequency. Because ISI distributions were right-skewed, we applied

kernel density estimation to the transformed variable log(5 ms + ISI). The shift of 5 ms

was added to improve numerical stability when estimating the log ISI distribution close

to zero, which was an issue in the subset of units that �red bursts of spikes.

Unit categorization Units were manually categorized based on features of their

ISI distributions during the movement preparation steady-state periods of the CGID task.

Units exhibiting a clear mode in the ISI distribution between 10 and 100 ms were classi-

�ed as unimodal. Units that showed an additional peak below 10 ms in the ISI histogram

were further classi�ed as bimodal (bursting/rhythmic) cells. Units exhibiting exponen-

tial ISI distributions (allowing for refractoriness) were classi�ed as Poisson-like. Units

displaying a mixture of these features, e.g. some amount of bursting, with an exponen-
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tial ISI distribution exhibiting a long recovery period, were classi�ed as “intermediate”.

We restricted spike-�eld phase coupling analysis to well-isolated single-units classi�ed

as unimodal or bimodal (bursting/rhythmic) that also displayed an ISI mode frequency

between 10 and 45 Hz in at least one of the steady-state movement preparation epochs,

and a mean rate at least one �fth the mode �ring frequency. Allowing these low �ring

rates permitted analysis of single units whose spiking was coupled to the beta phase, but

did not �re in every beta cycle. The distribution of mean �ring rates across units during

these epochs concentrated below 30 Hz.

Units were also classi�ed as thin- and thick-spike based on their mean extracellular

action potential waveform. In order to precisely align spikes, we upsampled waveforms

using sinc interpolation. To minimize edge e�ects during up sampling, the linear trend

in the waveform was removed, the de-trended waveforms were upsampled with re�ected

boundary conditions, and the linear trend restored. We extracted mean waveforms by

averaging peak-aligned upsampled waveforms. Waveforms were clustered based on the

voltage of the mean waveform 300 µs after the spike peak. We found this feature led

to better cluster separation than using the waveform width, since at this time post-spike,

thin spike cells have recovered (and may exhibit afterhyperpolarization), while thick-spike

cells remain depolarized. Average waveforms from all areas, sessions, and monkeys, were

combined for clustering. Clustering was performed using a 1D Gaussian mixture model,

and units were assigned as either thin- or thick-spike based on likelihood ratio.

Beta phase extraction and transient identi�cation For analysis, raw LFP

traces (30 kilosamples per second) were low-pass �ltered at 250 Hz using a zero-phase

4
th

order Butterworth, ≤ 250 Hz MATLAB �lt�lt, and down-sampled to 1 kHz (Matlab

decimate). In the Generalized Linear Model (GLM; Truccolo et al. (2005)) assessment

of spike-LFP phase coupling, the beta band was identi�ed separately for each session

and channel, and also separately for the two di�erent steady-state movement preparation

periods. Beta was selected as the 5 Hz band surrounding the highest peak between 15
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and 30 Hz in the multitaper LFP spectrogram (5 Hz bandwidth) during the one second

preceding the ‘Go’ cue. Beta was extracted using a 4
th

-order Butterworth band-pass �lter

applied forwards and backwards. Beta phase was extracted using the Hilbert transform

(SciPy hilbert, Oliphant (2007)), which generates a beta analytic signal z (t ) consisting

of a real component x (t ) (the �ltered beta signal) and an imaginary component i · y (t )

which is a π/2 phase shifted copy of the �ltered beta signal. The instantaneous phase φ (t )

and amplitude |z (t ) | can be extracted from the analytic signal z (t ) = |z (t ) | · exp(iφ (t )).

We extracted transient periods of elevated beta power by examining the amplitude

envelope of the beta analytic signal. First, the amplitude envelop |z | was smoothed with a

50 ms boxcar �lter. Events for which this smoothed amplitude signal exceeded 1.5 times

the standard deviation of the �ltered beta signal for at least 40 ms (approximately one beta

wavelength) were designated as high-beta events.

Spectral estimation We summarize the power spectra for a given epoch using mul-

titaper spectral estimation (Bokil et al. 2010; Percival and Walden 1993). Multitaper (5 Hz

bandwidth) spectral estimates were computed separately for each trial for a given epoch,

then averaged over all trials. We visualize single-trial LFP activity using wavelet spectro-

grams, which enabled good time-resolution for higher frequencies while also maintaining

good frequency resolution at lower frequencies (Torrence and Compo, 1998). We use a

Morlet continuous wavelet transform with a time-bandwidth parameter of 5.

Spike triggered LFP averages We estimate the spike triggered averages between

spikes and the 250 Hz low-pass �ltered (Butterworth, 4
th

-order, forward-backwards, Mat-

lab filtfilt) LFP sampled at 1 kilosample on the same electrode. This approach pre-

serves the spiking artifact in the LFP. (The section “Spike contamination” below address

this concern.) Stable phase coupling of neuronal spiking to ongoing LFP oscillations will

appear as oscillatory components in the spike-triggered averages (STAs). However, es-

timation of spike-LFP phase coupling is susceptible to several biases. These biases are
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exacerbated if both the spike trains and the LFP signals exhibit autocorrelations at similar

time scales. For example, if a rhythmic spike train (∼20 Hz) co-occurs with a burst of

20 Hz LFP oscillations, it might appear that the single unit is phase coupled to the LFP

even if there is no relationship. Additional biases may emerge if changes in �ring rates

are correlated with changes in LFP power. In addition, the STA does not o�er a direct

assessment of the phase coupling magnitude, as it re�ects both phase-coupling and am-

plitude e�ects, and poorly visualizes variability around the mean trend. Because of the

biases inherent in the STA, we also use two complementary approaches to get unbiased

estimates of spike-LFP phase coupling: pairwise phase consistency (PPC), and GLM point

process models for assessment of phase coupling.

Pairwise phase consistency Pairwise Phase Consistency (PPC; Vinck et al. 2010)

is an estimate of spike-LFP phase coupling that is not biased by the �ring rate or correlated

modulations in LFP power and �ring rate. Vinck et al. (2010) de�ne PPC as the average

dot product between all pairs of spike-triggered phase measurements. We computed PPC

using the equivalent expression (Aydore et al. 2013; Equation 11)

PPC =
N

N − 1

(
|z̄ |2 −

1

N

)
, (3.1)

where |z̄ | is the magnitude of the average over spike-triggered β-LFP phase vectors z̄ =

1

N

∑N
k=1

exp(iφk ), where φk represents the phase measurement at a given spike time and k

indexes over spikes. To compute PPC, we extracted instantaneous LFP phase estimates for

a range of frequencies by taking the Fourier transform of the LFP in a ±100 ms window

surrounding each spike. Each LFP segment was mean-subtracted and multiplied by a

Hanning window to reduce boundary e�ects. To attenuate temporal dependencies among

samples, spikes that occurred fewer than 200 ms after a previous spike were excluded. We

report the PPC value at the peak beta frequency, identi�ed separately for each monkey,

session, channel, and task epoch. The PPC bias correction relies on the assumption that
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successive samples are independent. Although we reduced temporal correlations between

successive samples by removing events for which the spike-triggered LFP segments would

overlap, residual correlations may remain in both the spike trains and LFP. Therefore, we

estimated the chance level empirically by phase randomizing LFP segments (Mammen

et al., 2009), which preserves the autocorrelation structure of the LFP.

Point-process GLMs for assessing phase coupling between single

neuron spiking and ongoing β-LFP oscillations We use a discrete-time

point-process generalized liner model (GLM) framework (Truccolo et al., 2005) to detect

spike-LFP phase coupling. We used 1 ms time bins. This is similar to the approach used in

Lepage et al. (2013), Zhou et al. (2015), and Rule et al. (2015). GLM point-process based esti-

mators explicitly model the conditional intensity function (CIF) λ(t ) and include an o�set

parameter µ as a separate regression term, therefore providing an estimate of spike-LFP

phase coupling that is less susceptible to variations in �ring rate. We consider GLM point

process models of the form

ln(λ(t )) = µ + α cos(φLFP(t ) − φ0) = µ + β1 cosφLFP(t ) + β2 sinφLFP(t ), (3.2)

where λ(t ) is the conditional intensity function of the neuron’s measured point process,

µ is a mean-rate o�set parameter, φ0 is the preferred phase of �ring relative to the LFP,

φLFP(t ) is the time-varying instantaneous Hilbert phase of the LFP signal, and α is a pa-

rameter measuring the strength of phase coupling. In this study we assess the predictive

power of the model using receiver operating characteristic (ROC) curve analysis (Fawcett,

2006; Rule et al., 2015; Truccolo et al., 2010). The area under the ROC curve (AUC) sum-

marizes the accuracy of spike times predicted based on the model, and typically ranges

from 0.5 (chance level) to 1.0 (perfect prediction). We report predictive power (PP) as nor-

malized AUC values such that 0 is chance level and 1 is perfect prediction. Chance level

was estimated using phase randomized LFP (Mammen et al., 2009) and by shu�ing the
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LFP trial blocks relative to the spike trains.

Point-process GLMs for relating single neuron spiking to popula-

tion spiking activity We also used CIF models to relate single units to the popula-

tion spiking activity. This population spiking activity was de�ned as the total number of

spikes across all of the recorded single units (except the predicted neuron) in a given mo-

tor area within 1 ms time bins, followed by a 25 ms boxcar �lter. The CIF model consisted

of:

ln(λ(t )) = µ + β · A(t ), (3.3)

whereA(t ) corresponds to the population spiking activity. As a second measure of popula-

tion activity, we also considered multi-unit activity (MUA) recorded in the same electrode

as the single unit. MUA was de�ned as the amplitude envelope of > 250 Hz LFP, further

bandpass �ltered in the 5 Hz band surrounding the peak beta frequency in order to focus

on the relationship to beta LFP oscillations.

Assessing coupling between population spiking activity and ongo-

ing β-LFP We assessed the relationship between the population spiking activity and

the ongoing β-LFP oscillations by computing their cross-correlation functions. Popula-

tion spiking activity was de�ned as above, except that in this case, all well-isolated single

units were included (for the spiking population history model, the unit being predicted

was excluded from the population rate). Statistical tests were applied to the peak of the

cross-correlation functions computed for time lags ranging over one beta cycle (±25 ms).

Spike contamination In this study, we examined statistical relationships between

neuronal spiking activity and local �eld potentials recorded on the same electrode. In this

case, the spikes themselves contribute to LFP power, even at frequencies as low as the ∼20

Hz beta band investigated here (Waldert et al., 2013). Waldert et al. (2013) �nd that the

spiking contribution to low-frequency LFPs can arise from both low-frequency compo-
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nents of the spike waveform, including slow afterhyperpolarization potentials (AHPs), as

well as spike-train rhythmicity at low-frequencies. We elected not to use spike removal

procedures like those of Zanos et al. (2011) for several reasons. First, we are primarily

interested in the phenomenon of apparently weak spike-�eld coherence. In this case, a

bias toward detecting coherence resulting from spiking contamination is conservative.

Additionally, it is possible that there is ambiguity between spike-locked local network os-

cillations and low-frequency components of the extracellular spike waveform (e.g. slow

afterhyperpolarization potentials). Since it is possible that low-frequency components of

the spike waveform relate to the origins of LFP, we wish to avoid erroneously removing

a true contributor to β-LFP. Nevertheless, we can distinguish between action potential

contamination and other spike-LFP phase interactions by inspecting the PPC spectrum.

True β spike-LFP phase coupling leads to a PPC peak at the beta band, whereas spiking

contamination leads to a broad-band monotonically increasing PPC spectrum.

3.3 Results

We analyzed three CGID task sessions each from two monkeys (R, S) with simultaneous

MEA implants in three motor areas (M1, PMv, PMd) (Methods ‘The CGID task’, Figure 3.1).

Each session yielded between 46 and 114 correctly executed seven-second CGID trials,

collected over twenty minutes to one hour. For each session, each MEA yielded between

7 and 48 well-isolated and high signal to noise ratio single units, for a total of 699 units.

Of these, 292 exhibited su�cient �ring rates during the steady-state delay periods of the

task to permit further analysis.

We �rst review single unit �ring statistics during the steady-state periods of the CGID

task, and show that many units displayed rhythmic spiking during steady-state periods

close to the beta (∼20 Hz) frequency range. Steady-state periods corresponded to an at-

tentive waiting period in the �rst second before object presentation, and a movement

preparation period one-second before the go-cue (Methods).
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We then show that, concurrent with the emergence of β-rhythmic spiking, β-LFP oscil-

lations are enhanced during steady state periods in the CGID task. We examine the phase

coupling between single neuron spiking and the β-LFP oscillations. Examples where the

preferred phase of �ring of these β-rhythmic units appears to drift relative to the β-LFP are

presented, showing no stable phase coupling (Figures 3.8, 3.9). Summary statistics across

neurons demonstrate that β spike-LFP phase coupling was typically negligible, even for

single units that showed strong β-rhythmic spiking. We demonstrate that β-LFP power

was substantially more variable than β-rhythmic spiking, and that the weak spike-LFP

coupling persisted even when analysis was restricted to periods when beta power was

high. Finally, we show that spike coupling to basic measures of spiking population activity

was also weaker during the steady-state periods of the CGID task than during movement

execution.

3.3.1 Single units show sustained β-rhythmic spiking during steady-

state movement preparation periods

We categorized units based on features of their ISI distributions (Methods ‘ISI histogram

statistics’) during the steady-state movement preparation periods (Figure 3.2a,b). 699 units

exhibited well-isolated spiking. Of those, 71% (499/699) met the minimum SNR cuto� of

3.0 for inclusion in the analysis, 54% (377/699) exhibited at least 100 ISI events during the

task steady-state epochs, and 42% (292/699) met both conditions and were suitable for

analysis. Out of these 292 well-isolated single units that satis�ed the inclusion criteria,

66% (192/292) showed a unimodal peak in ISI events longer than 10 ms during the two

steady-state movement preparation periods. A subset of units (25%, 72/292) exhibited

bursting as evidenced by bimodal ISI distributions with a second peak in short latency

(<10 ms) ISI events, while also exhibiting an overall slower rhythmicity. A minority of

units (7%, 21/292) showed low �ring rates and irregular Poisson-like spiking, or had an

ISI distribution that could not be clearly categorized (2%, 7/292).
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Figure 3.2: A subset of units �re rhythmically during steady-state movement preparation periods of the CGID
task. (A) Inter-spike interval (ISI) distributions from selected well-isolated units during the steady-state

periods of the CGID task. In each plot, from left to right, we see rhythmically �ring units, units that exhibit

both bursting and rhythmicity, units that exhibit Poisson-like �ring, and units that exhibit intermediate ISI

distributions. The ISI coe�cient of variation (CV) re�ects the dispersion of the ISI distribution, with low CV

correlating with rhythmicity; SNR = signal to noise ratio for unit waveform. (B) Single units were manually

categorized based on ISI features (Methods) as unimodal (rhythmic), bimodal (bursting and rhythmic), Pois-

son process-like (i.e. exponential with refractory period), or intermediate ISI distributions. In both monkeys

and all areas, single units with unimodal and bimodal ISIs were most prevalent. (C) A summary of ISI mean

and CV statistics for the same units. Statistics of ISI distributions varied continuously and did not form

discrete clusters. Mean rate was variable, with 25% of units exhibiting mean rates higher than 10 Hz. ISI

CV re�ects the dispersion of the ISI distribution, with low CV correlating with rhythmicity. Because some

rhythmic units start and stop �ring during the steady-state epochs, and because the rhythmic frequency

may change over time and across trials, the e�ective CVs can be larger than might be expected for sustained

rhythmic �ring at a single frequency.
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Figure 3.3: Single-unit ISI statistics change across di�erent stages of the task. Shown here are four examples

of how the ISI distributions change for well-isolated units over the course of the CGID task. The insets

specify the mean rate µ and the mode of the ISI distribution. Each ISI histogram was computed based on

non-overlapping one-half second time windows of the CGID task. All trials within a session were combined.

Examples, from top to bottom, illustrate: (A) a highly rhythmic unit (monkey R session 2 unit 101) that

decreased its mean �ring rate during the movement epoch ((1/2) second after ‘Go’ cue), without changing

its mode; (B) A highly rhythmic unit (monkey S session 1 unit 74) that steadily increased both its ISI mode

frequency and mean �ring rate, transitioning gradually from µ=25 Hz at the trial outset to µ=66 Hz during

the movement epoch; (C) A unit (monkey R session 3 unit 92) whose �ring became more variable, with a

slight decrease in mean rate, only during the movement epoch; (D) A unit (monkey R session 1 unit 88) that

switched from rhythmic �ring at beta frequency ∼11-17 Hz, to Poisson-like �ring at a much higher rate

(123 Hz). These examples emphasize that the rhythmicity observed in a subset of units during the steady-

state movement preparation periods of the CGID task was unlikely to arise entirely from intrinsic neuronal

properties (e.g. subthreshold resonance). Instead, this rhythmicity likely re�ected and was modulated by

the collective network state. The colored traces represent the transformed KDE estimate of the distributions

used to determine the ISI mode, and is shown to con�rm that the mode estimation procedure approximates

well the location of the ISI mode �ring frequency (Methods ‘ISI histogram statistics’).
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Figure 3.4: Well-isolated single units �re rhythmically at beta frequency, and �ring rates are stable across
trials. Shown here are three example well-isolated units that exhibited β-rhythmicity during the steady-

state movement preparation periods of the CGID task. Spike rasters, which show trial number on the y-axis

and task time on the x-axis for the two steady-state epochs, reveal that these units �red in a rhythmic

manner that was reliable over trials and sustained across the steady-state periods. We also note that in

several cases the mode frequency di�ered between the steady state period at the beginning of the trial,

before visual cues have been provided, and the one second period preceding the ‘Go’ cue. The modes of the

ISI distributions for these units, expressed in terms of frequency, show that these units were �ring with a

preferred frequency in the beta range of 15 to 30 Hz. (A) unit 43 from area PMd, monkey S session 3. (B)
unit 49 from area PMd, monkey S session 2. (C) unit 20 from area M1, monkey S session 3.
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Figure 3.6: Unimodal and bimodal units display similar statistics in the slow rhythmic component of the
inter-spike interval distribution. Shown here is a summary of the statistics of the subpopulation of units

that exhibited signatures of a slower, rhythmic preferred �ring frequency, i.e. units with unimodal (n = 192;

yellow) or bimodal ISI (n = 72; rhythmic/bursting; blue) histograms. To focus on the lower mode frequency,

the statistics for the bursting units were computed with spikes closer than 10 ms removed. The statistics

then re�ect the mean and dispersion of the slower (non-bursting) ISI peak. Unit properties are broadly

similar between monkeys and task epochs. Units tend to exhibit a CV<1 indicating some level of regularity

in their �ring patterns. Because some rhythmic units start and stop �ring during the steady-state epochs,

and because the rhythmic frequency may change over time and across trials, the e�ective CVs can be larger

than might be expected for sustained rhythmic �ring at a single frequency. Mode frequency and mean rates

are highly variable, with mean rates uniformly lower than mode �ring frequency. In the spike-LFP β phase

coupling analyses, we focused on those rhythmic units displaying a mode frequency between 10 and 45 Hz,

and a �ring rate of at least 20% of their mode frequency to allow units that may skip oscillation cycles or

cease �ring during parts of the trial.
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We considered identifying the above three classes, (refractory) Poisson-like spiking,

bimodal (bursting/rhythmic), and unimodal (rhythmic) units with the three neuron types

I, II and III described in Chen and Fetz (2005), which each exhibit di�erent characteristic

spike waveforms. However, Baranyi et al. 1993a,b describe a larger number of neuronal

subtypes in motor cortex, with potentially overlapping �ring statistics and spike wave-

form shapes, and we found that 63% (185/292) of units exhibited ISIs that could not be

clearly identi�ed with any of the categories in Chen and Fetz (2005). We tentatively iden-

ti�ed 38% (21/55) irregular Poisson-spiking units with type I, 31% (22/72) bursting units

with type II, and 33% (64/192) units exhibiting fast regular spiking with type III.

We further separated extracellular waveforms into ‘thin’ (42%, 124/292) and ‘thick’

(58%, 168/292) classes (Methods, ‘Unit categorization’, Figure 3.15a,b). We observed a par-

tial agreement between ISI features and the extracellular waveform categorizations con-

sistent with Chen and Fetz (2005): 62% (13/21) of putative type I neurons exhibited broad

spikes, and 86% (19/22) of type II (bursting) neurons, and 72% (46/64) of putative type III

(fast rhythmic) neurons exhibited thin spikes. We note that Chen and Fetz (2005) suggest

that the rhythmic �ring observed in the bursting neurons in their study was likely to arise

from network interactions and not intrinsic neuronal properties, as is the case for the type

III neurons.

The presence of intermediate examples suggested that the overlap between the distri-

butions of �ring statistics for each neuronal subtype in our data was too large to allow

classi�cation. Previous work has highlighted that intrinsic neural properties can also be

heterogeneous (Battaglia et al., 2013). Because of these ambiguities in identifying neuronal

subtypes based on spike train statistics, we focused our analysis on units that exhibited a

clear mode in the ISI between 20 and 100 ms, which may potentially exhibit rhythmicity

at the same frequencies as β-LFP. Two summary statistics: the ISI coe�cient of variation

(CV) and mean �ring rate are shown in Figure 3.2c. Further exploration of the relationship

between mean rates, ISI mode frequencies (Methods), and ISI coe�cients of variability, is
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illustrated for the unimodal and bimodal units in Figure 3.6.

Of units that exhibited rhythmic �ring during the movement preparation periods, sev-

eral dramatically changed their �ring statistics during movement execution (Figure 3.3).

Following the ‘Go’ cue, many units increased or decreased their �ring rates (examples

1,3,4; Figure 3.3). Some units did not show abrupt changes following the ‘Go’ cue, but

rather a gradual shift over the course of the preparatory period (example 2, Figure 3.3).

Some units that exhibited unimodal/bimodal ISI distributions (a potential signature of

rhythmic �ring) during the preparatory period shifted to more Poisson-like spiking fol-

lowing the ‘Go’ cue (example 4, Figure 3.3). This suggests that rhythmic spiking need

not be a �xed subthreshold resonance property of these neurons, and instead re�ects the

network state during the preparatory and delay periods.

We observed that rhythmically �ring units tended to �re in a sustained manner during

the examined steady-state periods, with high reproducibility across trials in terms of mean

�ring rates and ISIs (e.g. Figure 3.4). Inspection of the �ring mode frequency for rhythmic

units (Figures 3.5 and 3.6) revealed that the preferred �ring frequencies were concentrated

between 10 and 45 Hz, overlapping the β range. In the �rst steady-state epoch preceding

the visual cues, 76% (78/103) of units showed an ISI mode frequency between 10 and 45

Hz for monkey R, and 74% (119/161) for monkey S. In the second steady-state epoch fol-

lowing the visual cues and preceding the ‘Go’ cue, 73% (75/103) of units in monkey R and

60% (96/161) of units in monkey S fell between 10-45 Hz. Some units (e.g. Figure 3.4a,

Figure 3.3b) increased their mode frequencies to frequencies higher than 45 Hz during the

pre-go steady-state period. Mode frequencies increased somewhat between the pre-cued

and post-cued movement preparation periods, with the median mode frequency shifting

from 30 to 34 Hz for monkey R, and from 32 to 39 Hz for monkey S. (this increase was

statistically signi�cant p<0.5 in 5/6 sessions after a Benjamini-Hochberg correction for a

false discovery rate of α =0.05, Benjamini and Hochberg (1995)).
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3.3.2 β-LFPduring steady-statemovement preparationperiods can

be dissociated from β-rhythmic spiking

Given that a majority of isolated single units exhibited sustained rhythmicity at beta fre-

quencies during the steady-state movement preparation periods of the CGID task, we

next investigated the extent to which this β-rhythmicity was evident in local �eld po-

tential (LFP) oscillations. In both monkeys, the LFP showed task-related changes in its

power spectrum (Figure 3.7), especially in the beta band. (Chapter 4 addresses task-related

changes in the spatial organization of these β-LFP oscillations.) Consistent with previous

studies, the movement period was associated with suppression of β-LFP power. Impor-

tantly, beta was also transiently suppressed following the visual cues. In contrast, beta

was elevated during steady-state movement preparation periods of the CGID task, in-

cluding the �rst second of the task before object presentation, and the one second leading

up to the ‘Go’ cue. For monkey S, the beta peak was identi�ed between 22 and 25 Hz for

all areas and sessions. Monkey R exhibited two beta frequency peaks, ∼18 Hz and ∼32 Hz

in areas M1 and PMd. These two di�erent beta frequencies may potentially correspond to

the beta 1 and beta 2 oscillations previously examined in experimental and computational

studies (Kopell et al. 2011; Roopun et al. 2008, 2006). The intended distinction in these

studies between beta 1 and 2 is di�erent from the common distinction of motor mu and

beta rhythms in the EEG literature. Roopun et al. (2008) suggest that low frequency beta

emerges as a result of a concatenation of one period of a high frequency beta with one pe-

riod of a gamma oscillation. The dual β bands observed here are unlikely to be an example

of this phenomenon, as the high and low bands exhibited phase coupling and appeared to

be harmonically related. Because this phenomenon was not reproduced across subjects

or motor areas, we focused the analyses on the low beta band for monkey R.

Given that beta power was elevated during the steady-state movement preparation

periods of the CGID task, during which we observed sustained rhythmic spiking at beta
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Figure 3.7: ∼20 Hz beta oscillations are enhanced during the steady-state movement preparation periods of
the CGID task. (A) Trial and channel averaged spectrograms show sustained beta power during the �rst

second of the task, as well as the one second leading up to the ‘Go’ cue. Although on average beta power

is enhanced during steady-state periods, LFP activity on individual trials is more variable. Additionally,

monkey R showed more variability in beta power overall than monkey S. (B) Multitaper power spectral

densities, averaged over channels and trials, show clear peaks in the beta band for both epochs. The beta

oscillations in monkey R area PMd presented a complex spectrum with multiple peaks. We focused the

analyses on the low beta peak at ∼19 Hz. Monkey S displays both alpha (∼10 Hz) and beta oscillations. For

both subjects, we de�ned the beta band as a 5 Hz window around the peak beta frequency during the one

second before the ‘Go’ cue. -
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Figure 3.8: Single units exhibit β-rhythmicity that appears dissociated from the phase of the β-LFP oscilla-
tions. (A) Shown here is an example well-isolated unit recorded from primary motor cortex that displayed

rhythmic �ring at beta frequency (∼20 Hz) during the steady-state movement preparation periods of the

CGID task. (B) The spike raster plot shows reliable and steady single unit �ring during the steady-state

movement preparation periods. In contrast, the example single trial β-LFP spectrogram plot shows tran-

sient β-LFP events. (C) An inspection of neuronal spiking and β-LFP oscillations during the �rst second of

this trial reveals that the phase at which single units �red relative to the β-LFP oscillations drifted, and that

β-rhythmic spiking remained steady while β-LFP power �uctuated. (D) Spike-triggered LFP averages show

primarily an artifact from spike contamination (Methods), and reveal no beta phase coupling either during

the �rst second of the task or the one second before ‘Go’ cue. Pairwise phase consistency plots corrobo-

rated this �nding, showing only a broad-band increase in high frequency phase coupling associated with

contamination of the LFPs by extracellular action potentials (Methods).
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Figure 3.9: Single units exhibit β-rhythmicity that is dissociated from the phase of the β-LFP oscillations:
Additional examples.. Shown here are three additional examples (A, B, C) of well isolated single units in

motor cortex. Inspection of neuronal spikes and β-LFP oscillations during the �rst second of the task reveals

that the phase at which single units �re relative to ongoing β-LFP drifts. Spike-triggered LFP averages

during steady-state periods show only artifacts from spike contamination (Methods), not phase coupling to

ongoing beta. Pairwise phase consistency plots con�rm this �nding, and show no spike-LFP phase coupling

at beta frequencies. All units’ spikes consisted of well isolated extracellular potentials with high signal to

noise ratio and no contamination from other units. Inter-spike interval histograms, both during the �rst

second of the task and during the one second before the ‘Go’ cue, showed that units �red with a preferred

(mode) frequency at ∼20 Hz.
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frequency, we next assessed the extent to which single-units phase locked to the ongo-

ing β-LFP oscillations. Inspection of example single-units showed that the β-LFP phase

at which single units spiked appeared to drift randomly (Figures 3.8, 3.9). Under visual

inspection it appeared that single units phase locked to the β-LFP oscillations during

short transients, and that the phase precessed during these transient events. However,

this could simply re�ect chance events resulting from the fact that both signals exhibited

strong autocorrelations at similar frequencies. Indeed, inspection of spike-triggered av-

erages revealed little reliable phase relationship, and examples, shown in Figures 3.8 and

3.9, instead showed only a spiking artifact.

To comprehensively quantify the relationship between single-unit �ring and the phase

of ongoing β-LFP oscillations, we used two measures of spike-�eld coupling that are de-

signed to avoid the biases inherit in STA and spike-�eld coherence approaches: the pair-

wise phase consistency (Vinck et al., 2010) (Methods: Pairwise phase consistency), and

generalized linear (GLM) point-process models that expressed the conditional intensity

(instantaneous spiking rate) as a function of the phase of the ongoing β-LFP oscillations

(Methods: Point-process GLMs for assessing phase coupling between single neuron spik-

ing and ongoing β-LFP oscillations). Pairwise phase consistency assesses the tendency of

a neuron to �re at the same phase of the ongoing β-LFP oscillation. It ranges from 0 for

no phase coupling to 1 for perfect phase coupling.

For assessing spike-LFP phase coupling, we focused on single units that showed uni-

modal or bimodal ISI distributions, and exhibited a preferred �ring frequency (ISI mode

frequency) between 10 and 45 Hz. We observed that mean �ring rates were typically

lower than 10 Hz, and on inspection found that rhythmic single units could skip some

beta cycles (e.g. Fig. 3.9a,c). For this reason, we also required that units exhibit mean

rates of at least 20% their mode frequency. Overall, 47% (125/264) of units were selected

as exhibiting beta rhythmicity under these criteria. Of the selected, 23% (29/125) exhib-

ited bimodal (bursting/rhythmic) ISIs and 77% (96/125) had unimodal ISIs. Of the units
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with unimodal ISIs, 40% (38/96) exhibited oscillations in their autocorrelation functions,

40% (38/96) exhibited a non-oscillatory post-recovery rebound, and 21% (20/96) exhibited

irregular Poisson-spiking with a long recovery period that placed their mode frequency

in the beta range.

We found that PPC values were typically marginal (Figure 3.10a), with the median

PPC for each session, area, and task epoch ranging from 0 to 0.12. Overall, 95% (118/125)

of units had a PPC value smaller than 0.03 during the pre-object period and less than 0.01

during the pre-go period. No unit had a PPC value that exceeded the 95% con�dence inter-

val for the null-hypothesis PPC distribution, assessed by computing PPC between spikes

and trial-shu�ed LFPs. PPC values were surprisingly weak, given that one might expect

the β-LFP and the β-rhythmic spiking to relate to the same ongoing network phenomenon.

As a complementary approach, we summarized phase coupling between single neuron

spiking and β-LFP oscillations by assessing the conditional intensity function (CIF) phase

models’ ability to predict the timing of spikes (Methods). We report a measure of model

performance ‘predictive power’ (PP), which ranges from 0 for no prediction and 1 for

perfect prediction (Methods ‘Point-process GLMs for assessing phase coupling between

single neuron spiking and ongoing β-LFP oscillations’). In terms of phase coupling, a

predictive power of zero implies no coupling, and a predictive power of 1 implies perfect

phase coupling. We observed predictive power values (PP = 2×AUC-1) as high as 0.24.

During the steady state epoch preceding object presentation, 39% (49/125) units exceeded

the 95% con�dence interval for the null PP distribution, and during the steady state epoch

preceding the ‘Go’ cue 19% (24/125) of units exceeded their 95% chance level. This suggests

that at least some true phase coupling is present, and that the point process GLM approach

exhibited greater statistical power than the PPC analysis. Although the predictive power

was sometimes statistically signi�cant, it remained extremely low for the vast majority

of units, with 95% (118/128) of units exhibiting a GLM phase model predictive power less

than 0.01. Thus, consistent with the PPC results, the CIF phase model found relatively
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Figure 3.10: Spike-LFP phase coupling at the peak beta frequency is typically small during the steady-state
movement preparation periods. (A) Left: box plots summarizing the magnitude of the pairwise phase

consistency (PPC) value at the beta peak (Methods: ‘Pairwise phase consistency’). Each area is summarized

separately for each monkey, and for two steady-state periods: the �rst second of the task, and the one

second before ‘Go’ cue. Right: histograms representing the distribution of PPC values for each monkey in

the two task epochs. All sessions and areas are combined here. Despite the spiking rhythmicity at beta

and elevated β-LFP power, PPC values between spikes and LFP were typically negligible, with 95% of units

showing PPC values below 0.04 for any given session or area. No units showed PPC above the 95% chance

level as assessed by phase randomizing the LFP signals. (B) Spike-LFP phase coupling assessed by the

predictive power of point process GLM phase models (see Methods: ‘Point-process GLMs for assessing phase

coupling between single neuron spiking and ongoing β-LFP oscillations’) was also marginal. Although

select units displayed predictive power as high as 0.24, predictive power was less than 0.1 for 95% (118/125)

of units during both epochs. During the �rst steady-state period (one second before object presentation),

the predictive power exceeded the 95% chance level con�dence interval for 39% (49/125) of the units. During

the second steady-state period (one second before go cue), the predictive power exceeded the 95% chance

level con�dence interval for 19% (24/total) of the units. We report these numbers without correcting for

multiple comparisons, so 5% of units are expected to be above the 95% chance level. Point process GLM

phase models were able to detect weak phase coupling that the PPC did not.
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little stable phase coupling of spikes to β-LFP oscillations (Figure 3.10).

3.3.3 β-LFP appears as transient bursts

Inspection of single-trial LFP traces revealed that the dynamics of the β-LFP oscillations

di�ered from that of the β-rhythmic spiking observed in many single units. Notably, β-

LFP oscillations were not sustained across the steady state movement preparation periods

of the CGID task. Instead, β-LFP oscillations occurred in transient bursts, which exhibited

considerable trial-to-trial variability (Figure 3.11). We identi�ed periods of elevated power

(beta transients) as periods when the amplitude envelop of the band-pass �ltered β-LFP

exceeded 1.5 standard deviations of the �ltered signal amplitude for at least 40 ms, i.e.

approximately more than one beta cycle (Methods: Beta phase extraction and transient

identi�cation). The mean threshold for distinguishing high versus low beta power was 39

µV with a standard deviation of 7.5 µV. We found that there was considerable variability

in the durations of these beta transients, with a mean duration of approximately 80 ms

in monkey R and 90 ms in monkey S. Nonetheless, not all beta events were short, and

several trials showed elevated beta power lasting for several hundred milliseconds. Given

the transient nature of the β-LFP oscillations, we investigated the possibility that spike-

LFP phase coupling was con�ned to these beta transient events.

We were unable to detect statistically signi�cant di�erences between PPC values re-

stricted to periods of high versus low beta power during the two movement preparation

epochs (Figure 3.12a). Two sessions appeared to show increase signi�cant at the p<0.05

level (Wilcoxon signed-rank test). However, after correcting for multiple comparisons

(Benjamini-Hochberg procedure for 6 comparisons and a false discovery rate of α=0.05,

Benjamini and Hochberg (1995)), these increases were signi�cant only in monkey S, ses-

sion 3, for the pre-object period. Although some individual units did show larger PPC

values (Figure 3.12b), only 4 out of the 125 units showed PPC increases larger than 0.1.

Additionally, we found that there was relatively little di�erence in �ring rate statis-
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Figure 3.11: β-LFP oscillations typically occur in transients and exhibit high trial-to-trial variability. (A)
Shown here are three representative example trials from a single session, monkey S, areas M1, session 1. In

each example, the top plot shows the ‘raw’ LFP, the middle plot the bandpass �ltered β -LFP, and the bottom

plot shows the spectrogram. Transient beta events were de�ned as periods for which β-LFP amplitude was

elevated (>1.5σ , shaded in gray). Inspection of β-LFP activity in single trials revealed that beta oscillations

were rarely sustained, occurring as transients lasting commonly a few oscillation cycles. (B) However, as

evidenced in histograms of the durations of high (≥ 1.5 standard deviations) beta transients, there was no

characteristic duration for these transients, and periods of sustained beta oscillations lasting up to 8 or more

beta cycles (e.g. > 200 milliseconds) were also observed in many trials.
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154



0

100
M

o
n
ke

y
 R

Fi
ri

n
g
 r

a
te

 H
z 4e-2

3e-2

3e-2

Steady-state firing rates during  events

1 2 3
0

100

M
o
n
ke

y
 S

Fi
ri

n
g
 r

a
te

 H
z

Session

1e-2

1e-2

7e-3 5e-3

5e-6

1s pre-object low-
1s pre-go low-
Movement-related low-

1s pre-object high-
1s pre-go high-
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transients. During the steady state movement preparation periods of the CGID task, β-LFP oscillations

occurred as transient events, with the beta power exhibiting transient bursts. In contrast, rhythmic single-

unit spiking at beta frequencies was sustained. Single-unit �ring rates did not change between high-beta

(Hilbert amplitude > 1.5σ ) and low-beta time periods (colored bars) during these steady-state periods. On

the other hand, beta suppression associated with movement execution (low beta periods in the 1 s post ‘Go’

cue, black bars) was typically associated with increased �ring. P-values were computed using the Wilcoxon

signed-rank test for di�erence in medians, and corrected for 24 multiple comparisons (4 comparisons per

session: high-low beta within each steady state epoch, and high beta in each epoch to movement-related

low-beta) using the Benjamini-Hochberg procedure for a false discovery rate of α=0.05. This result sug-

gests that the transient beta power �uctuations during steady-state movement preparation periods may

arise from a di�erent mechanism than the power �uctuations (beta suppression) associated with visual cue

presentation and movement execution.
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tics during beta transients compared to periods outside beta transients (Figure 3.13). In

contrast, �ring rates were signi�cantly higher during movement-related beta suppression

(low-beta periods in the 1 s post ‘Go’ cue), showing statistically signi�cant increases be-

tween the pre-object and movement period in 5 out of 6 sessions, and between the pre-go

period and movement in 3 out of 6 sessions. (Wilcoxon signed-rank tests for di�erence

in the median, corrected for 24 multiple comparisons using the Benjamini-Hochberg pro-

cedure for a false discovery rate of α=0.05.) This �nding indicates that the modulations

in β-LFP power during steady-state movement preparation periods were not coupled to

changes in the �ring rates of the underlying neuronal population, as was the case during

the movement execution and visual cue related beta suppression.

3.3.4 Population spiking activity also shows only weak coupling

to ongoing β-LFP oscillations

We examined the possibility that the phase coupling between spiking and the ongoing

β-LFP oscillations could be too weak to be detected, but much stronger if assessed at the

level of the population spiking activity. Population spiking activity was de�ned here as

the total number of spikes (1 ms time bins) summed across the well-isolated single units

within a given motor area, smoothed by a 25 ms boxcar �lter (Methods). For each motor

area we computed the cross-correlation function between the population spiking activity

and the β-LFP averaged across the channels in the area. Cross-correlation functions were

computed for time lags ranging over one beta cycle (±25 ms). A cross-correlation function

was computed for each motor area, epoch, session and subject.

The extrema of the cross-correlation functions between population spiking activity

and the mean β-LFP were small, ranging from 0.0039 to 0.042. After correcting for 36

(monkey, session, area, epoch) comparisons using the Benjamini-Hochberg procedure

with a false discovery rate of α=0.05 (Benjamini and Hochberg, 1995), three correlations

were statistically signi�cant, all in monkey S. Monkey S area PMv showed signi�cant
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correlations of 0.036 and 0.033 for sessions 1 and 3, and monkey S area M1 showed a sig-

ni�cant correlation of 0.042 for session 3. P-values were obtained from a chance level

distribution: crosscorrelation function peaks were computed from resampled data gener-

ated by shu�ing the LFP trials (2000 resamples).

3.3.5 Single units show weak coupling to measures of population

activity

Previous studies in sensorimotor cortex have demonstrated strong coupling of single neu-

ron spiking to both the population spiking activity (Aghagolzadeh and Truccolo, 2014,

2015; Okun et al., 2015) and ensemble spiking histories (Truccolo et al., 2010) during sen-

sory stimulation and execution of motor actions. In particular, Aghagolzadeh and Truc-

colo 2015 showed that, in the same datasets examined here, single neuron spiking was

strongly coupled to low-dimensional representations of the neuronal ensemble activity

during movement execution of the CGID task. For completeness, we thus also considered

the possibility that spiking could be only weakly coupled to the ongoing β-LFP, but at the

same time show strong coupling to other measures of the population activity during the

movement preparation epochs.

Using point process GLM analysis (Methods ‘Point-process GLMs for relating single

neuron spiking to population spiking activity’), we found that single neuron spiking was

only weakly related to the population spiking activity during the steady state movement

preparation periods (Figure 3.14A). In contrast, and consistent with our previous work

((Rule et al., 2015); Chapter 2), predictive power was higher during the one second move-

ment phase following the ‘Go’ cue.

Qualitatively similar results were obtained when using a di�erent measure of pop-

ulation activity consisting of multi-unit activity (MUA), de�ned as >250 Hz LFP ampli-

tude �uctuations, bandpass �ltered in the 5 Hz band surrounding the peak beta frequency

(Methods). Speci�cally, median predictive power (PP) values during the two movement
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Figure 3.14: Contrasting collective neural dynamics between steady-state movement preparation and move-
ment execution periods. (A,B) Predictive power of point process GLM-CIF models for β-rhythmic single

neuron spiking based on the population spiking activity (Methods; under cross-validation). (A) Spiking

prediction based on the population spiking activity measured on the same MEA (excluding the unit being

predicted). Each box plot summarizes the distribution of predictive power values for one session and epoch.

(Values have been pooled across motor areas.) Predictive power during steady-state movement preparation

periods (colored bars) was typically distributed around chance. In contrast, population spiking activity pre-

dicted single unit spiking above chance levels during the 1 s movement execution period following the ‘Go’

cue. (black bars). (B) Single neuron spiking prediction based on MUA using the same point process GLM

approach as above. MUA was de�ned as the > 250 Hz LFP amplitude envelope, further bandpass �ltered in

the 5 Hz band surrounding the peak beta frequency. Predictive power trends are similar to those obtained

in (A) for the population spiking activity. (C) Box-plots summarizing the distribution of pairwise (Pearson)

correlation coe�cients. Spiking activity for each single unit was represented in 25 ms binned spike counts.

Pairwise cross-correlation functions were then computed and the extremum of each function was chosen

as the pairwise correlation coe�cient. (Outliers are not shown). Pairwise correlations were weaker during

steady-state movement preparation periods compared to the movement execution period.
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preparation epochs (pooled across motor areas) ranged from 0 to 0.05 (pre-object period)

and pre-go period median PP ranged and from -0.02 to 0.03 (pre go cure period). During

the movement period, median predictive power values ranged from 0.06 to 0.11. Predictive

power values during movement were statistically signi�cantly higher than those in the

pre-object period in two sessions for monkey S; and higher than those in the pre-go pe-

riod in one session in monkey R and all sessions in monkey S. (Wilcoxon signed-rank test

with Benjamini-Hochberg correction for a FDR of 0.05 for 12 comparisons.) This analysis

con�rms that single-unit spiking can be predicted from measures of population activity

in the CGID task, but that this predictive information was relatively weaker during the

steady-state movement preparation periods.

Finally, we investigated whether multi-unit activity might show more substantial phase

coupling to β-LFP. We examined two measures of multi-unit activity: (1) all threshold

crossings (unsorted spikes) occurring on the same channel and the four nearest neighbor

channels (spiking-MUA), summed in 1ms bins and (2) The amplitude envelope in >250

Hz �ltered LFP as described previously (LFP-MUA). Beta coherence between these mea-

sures of multi-unit activity and the β-LFP on the same channel were weak: We found a

statistically signi�cant coherence peak between β-LFP and LFP-MUA in 4

Overall, the above results show a stark contrast between collective dynamics during

steady-state movement preparation periods, where spiking activity appears to be much

more asynchronous, and collective dynamics during movement execution, where both the

ability of population activity to predict single neuron spiking and pairwise correlations

are much higher.

3.3.6 Thin- and thick-spike cells show similarweakphase-coupling

to β-LFP oscillations during preparatory steady-states

We found that isolated single units in our recordings could be clearly separated (as as-

sessed by visual inspection) into a population of thin- and thick-spike cells (Figure 3.15a,b;
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cluster into two main groups. (A) Histograms show the clustering of well isolated units according to spike

widths, including all sessions, areas, and monkeys. Clustering based on the amplitude of the waveform

300 µs after the spike peak provided better separation than the traditional approach of estimating the spike

width at half maximum. Thin-spike units are denoted in blue, thick-spike in red. (B) Traces of the mean

waveform for thin-spike and thick spike units illustrate the di�erences between the unit classes. (C) Thin-

and thick-spike units appeared to show consistent di�erences in �ring statistics. On average, thin-spike

units �red more bursts (top), �red at a higher mean rates (middle), and exhibited higher coe�cients of vari-

ation (bottom). However, none of the apparent di�erences were statistically signi�cant. (Mann-Whitney U

test with Benjamini-Hochberg correction for a FDR of 0.05, for dependent samples and 18 comparisons.) (D)
Preferred spiking frequency (ISI mode) of thin-spike and thick-spike units changed with di�erent CGID task

stages. Units for all sessions, monkeys, and areas were combined in these summary histograms. During the

�rst second of the task, both thin- and thick-spike units �red rhythmically around beta frequency. During

movement execution, �ring rates increased on average, but the increase was most notable for thin-spike

units. (E) Beta-peak PPC values did not show any consistent trend in the di�erences for thin versus thick

spike units. Furthermore, none of the di�erences were statistically signi�cant. (Mann-Whitney U test with

Benjamini-Hochberg correction for a FDR of 0.05, for dependent samples and 18 comparisons.)
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Methods: Unit categorization). These two classes appeared to exhibit di�erences in �ring

statistics. Overall, thin spike neurons exhibited more short-ISI events (<10 ms) indicative

of bursting, �red at higher rates, and greater coe�cients of variation (Figure 3.15c). The ISI

mode frequency of thin-spike units appeared typically slightly higher during the steady-

state movement preparation periods. In addition, thin-spike units appeared to show a

higher increase in their mode �ring frequency during movement as compared to thick-

spike neurons (Figure 3.15d). While these apparent di�erences between the two classes,

even though consistent across monkeys and sessions, were not found to be statistically

signi�cant. (Mann-Whitney U test with Benjamini-Hochberg correction for multiple com-

parisons for positively dependent samples and a FDR of 0.05). Additionally, no consistent

di�erences were found between thin and thick spike units with respect to spike and β-

LFP phase coupling. Trends were broadly stable across sessions for a given area in a given

monkey, but were not consistent between monkeys and areas: for example, some areas

(e.g. monkey R area PMv) showed greater spike-LFP phase coupling for thick spike neu-

rons, while other areas (e.g. monkey S area PMv) showed the opposite (Figure 3.15e).

3.4 Discussion

In this study, we found a remarkable dissociation between steady-state β-rhythmic spik-

ing and transient β-LFP oscillations in motor cortex of rhesus macaques during the move-

ment preparation periods of a visually cued reaching and grasping task. We observed that

single-unit �ring during steady states was rhythmic and sustained. In contrast, β-LFP

oscillations appeared as transients that exhibited high trial-to-trial variability. The fact

that single neuron �ring rates were not a�ected by, or correlated with, the occurrence of

transient β-LFP events or β-LFP amplitude suggests that the modulations in β-LFP power

during these steady-states did not result from changes in the level of beta rhythmicity in

the underlying neuronal population, as is the case for movement and visual cue related

beta suppression. Furthermore, two complementary measures of spike-LFP phase cou-
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pling (pairwise phase consistency and predictive power of point process GLMs) showed

that the coupling was at chance level for the majority of the neurons. This dissociation

between steady rhythmic spiking and β-LFP oscillations has implications for understand-

ing the multi-scale (single neuron and ensembles) dynamics underlying the generation of

β-LFP activity, and for understanding the functional role of beta oscillations in motor cor-

tex, including putative roles for beta in modulating communication among cortical areas

and phase coding. Our �ndings also contribute to the characterization of the statistical

properties of neocortical electrical signals recorded via microelectrode arrays.

Precedence for dissociation between single neuron spiking activity

and narrowband LFP oscillations Previous experimental and theoretical work

(Ardid et al., 2010; Brunel and Wang, 2003; Geisler et al., 2005; Hoseini and Wessel, 2015;

Truccolo et al., 2014, 2011) has found that sustained gamma LFP oscillations can coexist

with irregular and asynchronous spiking activity, in which the oscillation emerges as a

collective mean �eld. We emphasize that the phenomenon reported here di�ers, in that

both spiking and LFP exhibit strong rhythmicity in a narrow band, and yet show relatively

weak phase-coupling. We also emphasize that the phase coupling measures adopted here

would detect strong phase coupling even if single neuron spiking was strongly phase

locked to a LFP oscillation, but skipped most cycles of the oscillation.

A precedent for the dissociation between single-unit rhythmicity and ongoing LFP os-

cillations in primate motor cortex reported here has been found before in the hippocam-

pus and has since puzzled the �eld. During spatial navigation, the place cells of the rat

hippocampus spiking drifts with respect to the phase of the ongoing theta LFP oscilla-

tions. This phenomenon has been studied as the “theta phase precession” (e.g. Harvey

et al. (2009)). The spiking phase relative to theta LFP depends on animals past, present,

and planned location. Averaged over time in this case, units show relatively weak phase

coupling. In particular, Harvey et al. (2009) has found that, despite the spiking phase drift

with respect to the ongoing narrow-band theta LFP oscillations, a place cell’s spiking is
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strongly phase coupled to the theta oscillations of its intracellular membrane potential.

Their �nding indicates that the “local” oscillation that impinges upon single unit spiking

can be dissociated from the population oscillatory signal re�ected in the LFP.

In addition, Witham and Baker (2007) found that the level of β-LFP power in a given

area need not correlate with the corresponding single unit rhythmicity in the same area,

and Baker et al. (2003) observed relatively weak spike-�eld coherence in beta during a

precision grip task. We emphasize that our work goes beyond these studies in examining

the movement preparation and instructed delay periods preceding naturalistic reaching

and grasping actions, as opposed to an isometric precision grip task. We also focused our

analysis on units that exhibited sustained spiking rhythmicity, and �nd that phase cou-

pling remains weak even when the analysis is restricted to transient periods of elevated

beta activity. The coexistence of sustained β-rhythmic spiking with β-LFP transients, as

well as the relatively weak phase coupling of single units to the β-LFP, and to the mean

population activity, are important features that should be recapitulated in computational

models of motor cortex.

Statistical caveats When both LFP and spikes exhibit strong autocorrelations in

the form of narrow-band oscillations, there is risk of detecting apparent phase coupling

by chance. This is true even for estimators such as the pairwise phase consistency, which

correct for spike-rate biases. We addressed this problem by obtaining empirical chance

level distributions through phase-randomization and shu�ing of trials. Nevertheless, spu-

rious contributions of these temporal correlations to in�ated phase coupling assessments

would only reinforce the points made here. As stated above, both the PPC and point pro-

cess GLM phase coupling assessments are capable of detecting a preferred phase of �ring

relative to the β-LFP even when cells do not spike on every cycle. This is because the PPC

relies primarily on the distribution of spike-triggered LFP phases (this also true for point

process GLMs, but for slightly di�erent reasons), and a phase locked unit that �res only

occasionally will still exhibit a concentrated spike-triggered distribution of LFP phase.

163



Localization of β-LFP A natural question is whether the apparent dissociation

between spiking and β-LFP oscillations could result from LFPs being nonlocal (Kajikawa

and Schroeder, 2011). "However, we observe large phase di�erences between adjacent

electrodes during complex beta wave events, as it will be demonstrated in Chapter 4.

The lateral localization of the β-LFP in our MEA recordings is likely quite good during

such events, on the order of the resolution of the MEA (400 um or smaller). As a caution-

ary note, however, this does not exclude the possibility that local beta oscillations mix

with remote sources during more globally synchronous states. Another potential issue is

that the single units and the sources of the LFP signal were localized in di�erent cortical

layers. Identi�cation of the laminar origin of β-LFP is not possible with the MEA record-

ing setup employed here due to the possibility of LFP conducting between layers. Laminar

probe recordings and modeling work may be necessary to precisely localize the origins of

β-LFP, although previous studies have suggested that current sinks and sources in layer V

pyramidal neurons are the origin of motor cortex beta (Murthy and Fetz 1996a; Witham

and Baker 2007). Given the uncertainty about the depth of the MEA implant, it is possible

that the single units we recorded were from layer II-III, and that single-unit spiking ac-

tivity could then be dissociated from β-LFP arising in layer V. This alternative scenario of

dissociation between beta rhythmic spiking in motor cortex super�cial layers and β-LFP

in deep layers would nevertheless remain an important �nding. Despite these caveats,

our �ndings raise important questions about the interpretation of single neuron spiking

activity and LFPs recorded from MEAs, with relevant implications for understanding the

origin of β-LFP oscillations.

Origins of β-LFP transients Our data point to an important feature of motor cor-

tex beta oscillations: β-LFP power �uctuates during steady-state movement preparation

periods in our task, even while the �ring rates of beta-rhythmic single neurons remains

constant. We conjecture that the observed �uctuations in β-LFP power during movement

preparation could arise from changes in the synchronization among more local sources
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of β-rhythmic network activity. It is possible that β-LFP power �uctuations represent

transient synchronization of a large population of weakly coupled single units, such that,

although the macroscopic LFP power exhibits a transient amplitude increase, individual

spike-LFP phase coupling remains weak. Alternatively, beta transients may re�ect addi-

tional synaptic input from other areas that weakly entrain ongoing beta rhythmic spik-

ing. These scenarios are to be contrasted with the attenuation of β-LFP power observed

when neuronal activity undergoes substantial changes in �ring rates during movement

execution. During movement execution, the majority of units exhibit large excursions

in �ring rate and many rhythmic single units shift their �ring frequencies up and out of

the beta frequency band, and other units may switch from rhythmic to Poisson �ring.

Therefore, it is likely that movement-related beta suppression relates to a reduction of

total β-rhythmic network activity. This points to the possibility that there are two pro-

cesses governing variability of β-LFP power in motor cortex: an overall modulation of the

level of β-rhythmicity that is evidenced by changes in single-unit �ring properties during

movement execution, and an additional source of variability that gives rise to the tran-

sient �uctuations in β-LFP power despite sustained β-rhythmicity at the level of single

neuron spiking during movement preparation steady-states.

Neuronal types and the origins of the SUA β-rhythmicity The ori-

gin and function of sustained β-rhythmic spiking across movement preparation remains

puzzling. The microelectrode arrays used in this study record preferentially, but not ex-

clusively, from pyramidal neurons. One possibility is that inhibitory interneurons might

show a stronger coupling with the ongoing β-LFP oscillations. The clustering of single

units into the two classes of thin- and thick-spikes shown here is commonly associated

with the classi�cation into putative inhibitory interneurons and principal cells, respec-

tively (Barthó et al., 2004; McCormick et al., 1985). However, the unique features of pyra-

midal tract neurons (PTNs) makes identifying putative inhibitory interneurons vs. exci-

tatory pyramidal cells from extracellular spike width and �ring properties challenging.
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Some PTNs can show higher �ring rates and thin spikes and can be mistaken for fast

spiking interneurons (Vigneswaran et al., 2011). More advanced approaches that identify

or manipulate speci�c neuronal subtypes will be needed to clarify the relation between

single-unit beta rhythmic spiking and β-LFP.

Previous computational and experimental studies on the origin of beta oscillations

have emphasized a variety of mechanisms ranging from the role of thalamic inputs (e.g.

Jones et al. (2009) in somatosensory cortex) to more local or intrinsic features of corti-

cal dynamics (e.g. Kopell et al. (2011), Roopun et al. (2006)). Regarding the latter, Kopell

et al. (2011) proposes that the beta1 rhythm (∼15 Hz) in rat association cortex arises as a

consequence of rebound from inhibition, and can therefore be maintained without strong

collective activity, in contrast to the pyramidal-interneuron gamma (PING) mechanism of

gamma oscillations which requires feedback from inhibitory interneurons. Roopun et al.

(2006) (in vitro neocortical slices from rats) also �nd a 20-30 Hz rhythm in layer V pyrami-

dal tract neurons that depends on intrinsic currents, and is synchronized by gap junctions.

Thus, it is plausible that β-rhythmicity may be supported by the subthreshold dynamics

of single-units, potentially related to the slow afterhyperpolarizations identi�ed by Chen

and Fetz (2005) in type III rhythmic neurons. Additionally, it is possible that beta oscil-

lations are mediated by collective network dynamics and reverberative E-I feedback, but

that these dynamics are highly local and only weakly coupled to the population activity

observed in the LFP. The possibility that β-rhythmic spiking arises from very local or even

intrinsic unit properties opens another potential explanation of the transient nature of β-

LFP oscillations. In the more general scenario of weakly coupled oscillators, Popovych

and Tass (2011) found that, when oscillators with heterogeneous frequencies are driven

by a common oscillatory input, transient power �uctuations are expected to result from

momentary synchronization between oscillators, in a mechanism akin to the beats heard

from two slightly out of tune notes.
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Future work

Identifying functional or computational roles of β-rhythmicity in motor cortex remains

a major open problem. Vargas-Irwin et al. (2015) examined the same datasets consid-

ered here from the perspective of neural decoding, and demonstrated that information

in neural �ring rates about planned upcoming movements emerges following visual cue

presentation, and is sustained across the steady-state epochs. We have seen here that

steady-state movement preparation epochs are associated with transient β-LFP oscilla-

tions, which are apparently dissociated from single-unit spiking β-rhythmicity. The de-

coding results demonstrate that di�erential �ring rates encode task-relevant information

during steady-state periods where we also see widespread β-rhythmicity and β-LFP tran-

sients. If information is encoded in the distribution of rates across a population of neurons,

those neurons must necessarily exhibit diverse �ring rates. If neural �ring is rhythmic, as

we observed here, then the relative phases of neurons at di�erent rates with necessarily

drift continuously in an out of phase. It is an intriguing problem whether the widespread

β-rhythmic �ring somehow has a facilitatory role in maintaining the preparatory distri-

bution of �ring rates while preventing the transition into dynamical trajectories of move-

ment execution. Future studies should examine the relationship between transient β-

LFP events and the temporal evolution of the encoding of motor plans during movement

preparation.

Further, it will be important to examine the coupling between single neuron activity

and β-LFP oscillations in instructed delay tasks that enforce the need for working memory,

something not required in the task examined here, since the visual cues remained available

until the go cue. This additional instructed delay condition might elucidate which features

of beta activity relate to the active maintenance of the preparatory state verses simply the

hold condition prior to movement execution.

The extent to which motor cortex beta rhythmic spiking arises from nonlocal oscil-
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latory network inputs, local recurrent dynamics, or the intrinsic electrical properties of

single neurons, remains unclear. Combined extracellular and intracellular in-vivo record-

ings akin to those performed by Harvey et al. (2009) may be illuminating.

In summary, the dissociation of single-unit β-rhythmicity and β-LFP reported here,

both in terms of power modulation and phase coupling, is a surprising �nding which has

not been thoroughly investigated. It is possible that the nature of the beta states revealed

here allows multiple cell assemblies, each resonant at slightly di�erent frequencies, to

coexist with relatively little interference or competition. Future work is needed to evalu-

ate the functional importance of beta phase and frequency diversity during preparatory

steady-states in motor cortex, especially with respect to evaluating potential roles for this

diversity in encoding, and in gating or binding together functional assemblies of neurons

(e.g. Maris et al. 2016).
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Chapter 4

Phase diversity and spatiotemporalwave
dynamics in primate motor cortex lo-
cal �eld potentials
Michael Rule

The experimental data examined here were collected in the Donoghue Lab. We thank

Carlos Vargas-Irwin, Lachlan Franquemont, Jonas Zimmermann, and John Donoghue for

sharing the data.
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Abstract

Transient spatiotemporal patterns in beta (∼20 Hz) local �eld potential (LFP) os-

cillations are a prominent feature of primate motor cortex. β-LFP power is typically

elevated during movement preparation, suppressed around movement onset, and en-

hanced during isometric force tasks. Characterizing the spatiotemporal dynamics of

these beta oscillations may shed light on their role on both normal and pathological

brain activity. Previous studies have focused on traveling beta plane waves. How-

ever, little is known about the diversity in phase relations and variety of beta wave

spatiotemporal patterns. Here, we systematically characterized motor cortex β-LFP

spatiotemporal activity using microeelectrode arrays (MEAs) in m. mulatta during

a cued reaching and grasping task with instructed delays. Data from two monkeys

were analyzed, each with a 96-MEA in ventral premotor cortex (PMv), and two 48-

MEAs in the primary motor cortex (M1) and dorsal premotor cortex (PMd), respec-

tively. Our main �ndings are fourfold: (1) In contrast to previous studies, we �nd

in M1, PMv and PMd a variety of transient beta spatiotemporal patterns ranging

from states with no clear wave dynamics, to states with complex wave dynamics, to

globally organized states consisting of traveling waves or homogeneous synchrony.

(2) Wave patterns appeared to transition continuously from desynchronized states,

to more complex wave activity, to globally synchronized states. (3) Beta waves ap-

peared to lack a characteristic wavelength. Instead, the spatial scale of beta waves

depended on the beta state. There was a continuum between desynchronized activity

at low amplitudes and spatially synchronous states at higher beta amplitudes. (4) We

compared the above spontaneous beta wave dynamics to activity induced by opto-

genetic 1-second constant stimulation pulses in a third subject. Induced spatiotem-

poral patterns were globally organized, consisting of simultaneous radiating waves

and localized plane waves at ∼50 Hz and ∼100 Hz, respectively. In contrast to beta

waves, induced waves exhibited a characteristic wavelength of 2-4 mm. This �nding

is consistent with the hypothesis that spatiotemporal beta oscillations result from

the synchronization dynamics of ongoing, local beta oscillations, while the gamma
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waves are true traveling waves induced by a local optogenetic perturbation. Over-

all, our �ndings demonstrate that beta spatial dynamics are much more diverse than

previously characterized. Spontaneous transitions among patterns of beta activity

may result from (a) fast modulation of lateral connectivity in a system of coupled

oscillators, (b) changes in spatiotemporal inputs to motor cortex, and (c) stochastic

transitions between spatiotemporal attractors in a multi-stable system. The diversity

in beta spatiotemporal dynamics may have implications for theories of spiking infor-

mation transfer during beta wave, and for constraining spatially extended models of

motor cortex dynamics.
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4.1 Introduction

Beta-frequency oscillations at ∼20 Hz are a prominent feature of the motor cortex local

�eld potential, appearing during postural maintenance, isometric force, motor readiness,

and during instructed delays. Rubino et al. (2006) found that beta oscillations organize as

traveling plane waves, and hypothesize that such waves correlate with directed commu-

nication between motor areas. Subsequently, Takahashi et al. (2015) demonstrated that

traveling waves correlate with directed functional connectivity, supporting the hypothe-

sis that spatiotemporal organization of beta waves may play a role in communication in

motor cortex. Although previous studies of motor cortex beta oscillations have focused on

traveling plane waves, spatially organized oscillatory activity in cortex can take on many

forms, including zero-lag spatial phase synchrony, standing waves, traveling waves, ro-

tating spiral waves, radiating waves, and complex patterns comprised of mixtures of the

above. For example, Prechtl et al. (1997) describe stimulus evoked waves at 10-20 Hz in

turtle visual cortex, and found plane waves, spiral waves, and complex waves. Huang

et al. (2004) observe a similar phenomenon in tangential slides of rat visual cortex span-

ning layers III-V, and report plane, radiating, and complex waves. Benucci et al. (2007)

observe a wave response with aspects of both a standing and traveling wave. In visual

cortex, ongoing inputs may trigger directed spiking information transfer correlated with a

phase shift in gamma oscillations consistent with a traveling wave phenomenon (Besserve

et al., 2015). (See Chapter 1 for an in depth introduction to spatiotemporal wave patterns

in cortex, their statistical analysis and modeling.)

Furthermore, some studies have observed that spatiotemporal dynamics change rapidly

over time. Schi� et al. (2007) report a characteristic sequence of wave patterns in slice that

begin as chaotic, irregular, and complex waves, and then transition into transient plane or

rotating waves, before returning to complex activity. They note that these changes might

re�ect an underlying biological order parameter. Similarly, Townsend et al. (2015) charac-

terize delta waves in marmoset during anesthesia, and �nd that complex waves are associ-
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ated with higher single-unit �ring rates, and that spatially synchronized states transition

into complex waves by passing through intermediate wave patterns like plane, rotating,

or radiating waves. Ermentrout and Kleinfeld (2001) explore wave dynamics in sensory

cortices from the perspective of coupled oscillators, and note that traveling waves, spiral

waves, and spatially synchronized solutions are all possible. They note that spatiotempo-

ral dynamics correlate with the system state, with synchronized activity being correlated

with the presentation of a strong stimulus. The interest in the variety of transient spa-

tiotemporal beta wave patterns is also motivated by recent work hypothesizing the role

of phase relation diversity in spatiotemporal neural dynamics on cortico-cortical commu-

nication. This phase diversity would enhance selectivity and support the segregation of

parallel information streams in the cortex (e.g. Maris et al. (2016), "Diverse phase relations

among neuronal rhythms and their potential function", Trends in neuroscience, in press.)

A diverse number of processes may yield super�cially similar LFP spatiotemporal dy-

namics. For example, traveling waves may arise from a gradient of conduction delays from

a common input, from propagating waves in an excitable system, or from phase gradients

in a population of coupled oscillators (Ermentrout and Kleinfeld, 2001). Traveling plane

waves in beta may be a correlate of local information transfer, of coordination of relative

phases between cortical and subcortical motor areas for communication or encoding, or of

external inputs arriving at cortex with varying latency. In addition, specially constructed

stimuli can lead to spontaneous emergence of wave patterns (Rule et al., 2011). The waves

could be an epiphenomenal correlate of underlying neural order parameters that depend

on the dynamic lateral interactions between local circuits.

The diversity of beta wave spatial patterns in primate motor cortex has not been sys-

tematically characterized. This characterization may provide important constraints for

information �ow in motor cortex and the development of spatially extended biophysi-

cal models (e.g. Heitmann and Ermentrout 2015; Heitmann et al. 2012) of its dynamics.

Here, we examined in detail the spatiotemporal structure of beta oscillations in three mo-
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tor cortex areas (M1, PMv and PMd) of m. mulatta during movement preparation before

and after visual cues in a cued reaching and grasping task. We extended the approach of

classifying critical points in the phase gradient �eld to categorize wave states. Beta spa-

tiotemporal patterns were diverse, and exhibited di�erences both among motor areas, and

between di�erent phases of the motor task. In contrast to M1 and PMd (the focus of previ-

ous studies), plane waves were relatively rare in PMv, even though beta transient events

were frequent in this area. Furthermore, motor cortex neural dynamics spontaneously

transitioned among di�erent transient spatiotemporal beta wave patterns. We provide

statistical summaries of the spatiotemporal wave dynamics, and reveal correlations that

are important for constraining future models of motor cortex wave activity. Finally, we

compare the statistics of spontaneous beta (β-) LFP waves to the statistics of optogenet-

ically induced traveling waves reported in Lu et al. (2015), and reveal several di�erences

between these phenomena that point to important di�erences in the underlying neural

dynamics.

4.2 Methods

4.2.1 The CGID task

The Cued Grasp with Instructed Delay (CGID) task investigates neural activity in motor

cortex associated with sequential visual cues, instructed delays, and the planning of up-

coming reaching and grasping movements. The CGID task has been described in detail in

Vargas-Irwin et al. (2015). Brie�y, it requires a monkey to reach out and grasp one of two

objects, using one of two possible grips. A sequence of visual cues instruct the monkey in

which object to grasp and which grip to use. When a trial begins, the lights in the room

are turned o�, and the subject is at rest with hands resting on capacitative touch sensors.

One of the two objects is rotated into the reach target position. One second later, that

object is illuminated. The monkey now knows which object to grasp, but not which grasp
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to perform. One second after that, a cue light (red or yellow) is illuminated, specifying the

grip. If the light is red, the monkey is to perform a power grip. If the light is yellow, the

monkey is to perform a precision grip or a key grip, depending on the object. Two seconds

after the ‘Grip’ cue, a ‘Go’ cue (green light) is given. The monkey is now allowed to reach

out and grasp the object. If the monkey moves before the ‘Go’ cue or uses the incorrect

grip on the object, the trial is voided. If the monkey executes the reach and grasp action

after the ‘Go’ cue using the correct grip, he receives a juice reward. Movement periods

were identi�ed as the times between when the monkey lifts his paw from the holding po-

sition to the time when the monkey contacts the object, as detected by capacitative touch

sensors. In this study, we examine beta oscillations during the 1-second preceding object

presentation and during the 1-second preceding the grip cue.

4.2.2 Neural recordings

Data were recorded from triple microelectrode arrays (MEAs) (Blackrock Microsystems,

Utah), with an electrode depth of 1.5 mm targeting layers 3-5 of motor cortex. For the

CGID datasets (Figure 3.1), LFP data were recorded on 10×10 (ventral premotor cortex

PMv) and 6×8 Blackrock (dorsal premotor cortex PMd and primary motor cortex M1) ar-

rays with 0.4 mm electrode spacing. Data from two monkeys (R and S) were analyzed. See

Vargas-Irwin et al. (2015) for additional details. For all datasets, broadband LFPs recorded

at 30 kilosamples/s (0.3 Hz - 7.5 kHz) were down-sampled (zero-phase 4
th

order Butter-

worth, ≤ 250 Hz MATLAB filtfilt) to 1 kilosample/s for analysis.

4.2.3 Optogenetically induced spatiotemporal waves inmotor cor-

tex

We compared spontaneous beta spatiotemporal wave patterns to waves induced by opto-

genetic stimulation performed in a third monkey (subject T in Lu et al. (2015)) during a rest

state (Figure 4.10). Data were recorded from a single 10×10 array implanted in primary
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motor cortex, modi�ed to contain an optical �ber at the center for delivery of laser light.

Neurons were transfected with the chimeric opsin C1V2T/T under the CaMKIIα promoter,

preferentially expressing in excitatory cells with some expression likely also in inhibitory

cells (Lu et al., 2015). In the data presented here, constant pulse optical stimulation at 561

nm and 6 mW was provided for one second during rest. See Lu et al. (2015) for details of

the optogenetic recordings.

4.2.4 Signal processing and LFP phase extraction

The beta band was identi�ed separately for each monkey and area. Multitaper spectra

(5 tapers) were computed from the �rst second of the CGID task for all channels and

trials, and the beta band was de�ned as a 5 Hz band centered at the largest spectral peak

between 15 and 30 Hz during the one second preceding the ‘Go’ cue. Monkey R area PMd

exhibited two prominent beta peaks. We restricted analysis to the lower band, which

was closest in frequency to the beta oscillations in other areas. Narrow-band gamma

oscillation peaks were identi�ed from wavelet spectrograms averaged over all stimulation

trials. Instantaneous phase and amplitude envelope for narrow-band LFP oscillations were

extracted similarly for both the beta and the induced gamma analysis. Raw LFP data at 1

kilosample/s were band-pass �ltered using a 4
th

order Butterworth �lter, applied forwards

and backwards (filtfilt() in Matlab). The resultant narrow-band signal a(t ) was

passed through the Hilbert transform to generate an analytic signal

z (t ) = a(t ) + ib (t ) = |z (t ) | exp(i · φ (t )), (4.1)

which has both an instantaneous magnitude |z (t ) | and phase

φ (t ) = Arg(z (t )). (4.2)
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4.2.5 Assessing spatial synchrony and coherence

Spatial coherence (Figure 4.13) was computed for each time-frequency bin as the largest

eigenvalue of the matrix of pairwise coherences between channels on the array (Mitra and

Bokil, 2007). Pairwise coherence was calculated using scipy.signal.coherence,

with a sliding window 512 ms long with 256 ms segments. To assess spatial synchrony

over the recorded neocortical patch, we used two related statistics: Kuramoto’s order

parameter and the circular standard deviation. Kuramoto’s order parameter

Kuramoto’s order parameter =
1

N

N∑
i=1

eiφ (t ) (4.3)

re�ects the degree of phase synchrony in a population of oscillators, ranging from 0 for

a completely asynchronous population to 1 for perfectly phase synchronized populations

(Kuramoto, 1984). We found that Kuramoto’s order parameter was unsuitable for visualiz-

ing the relationship between phase synchrony and other wave statistics (Figures 4.6, 4.16,

4.17), as it displayed highly nonlinear relationships and saturated close to 1, concealing

much of the variability. For these comparisons we use the circular standard deviation of

the instantaneous LFP Hilbert phases

Standard deviation of Hilbert phase = Sφ (t ) =
√
−2 ln(R (t )). (4.4)

The above corresponds to the standard deviation of a circularly wrapped normal distribu-

tion, and can be obtained by a transformation of the �rst moment for circularly distributed

data. Due to noise, samples with smaller LFP amplitude yield less reliable phase estimates,

so we weight each vector’s contribution to this statistic by its magnitude

R (t ) =
|
∑

k zi (t ) |∑
k |zk (t ) |

, where k indexes channels. (4.5)
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We de�ne spatially synchronized states as those times for which Sφ (t ) < π/4, such that

approximately 95% of phase vectors are concentrated within one-quarter cycle.

4.2.6 Spatial gradient of the Hilbert phase

The local phase gradient provides an estimate of the wave propagation velocity. To esti-

mate this, we compute the gradient of the phase∇φ (t ) as the (circularly-wrapped) discrete

di�erence of the Hilbert phase between adjacent electrode sites. The propagation velocity

v and wavelength λ can also be extracted from the phase gradient using the relationship

in Equation ?? (see Rubino et al. (2006) for details)

∂φ

∂t
= −∇φ · v. (4.6)

Propagation speed was estimated as the average magnitude of the local phase gradient

(in radians/mm) divided by the median angular frequency (in radians/second) to yield an

instantaneous estimate of the local propagation speed in mm/second.

Plane waves were detected as moments when the distribution of phase gradient vector

directions was concentrated. Rubino et al. (2006) de�ned a phase gradient directionality

(PGD) measure

PGD (t ) =

���
∑N

i=1
∇φi (t )

���∑N
i=1
|∇φi (t ) |

, (4.7)

which is similar to Kuramoto’s order parameter and measures the concentration of di-

rection of the phase gradient (Equation 4.7). We report a related measure, the circular

standard deviation of the Hilbert phase gradient. A version of this that is weighted by the

amplitudes of the phase gradient vectors can be computed as the following transformation

of the PGD

S
∇φ
(t ) =

√
−2 ln(PGD (t )). (4.8)

Plane waves were classi�ed as those times for which S
∇φ
(t ) < π/4, i.e. 95% of phase gradi-
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ent vectors point within π/2 radians of each-other. This corresponds to a PGD threshold

of approximately 0.73. This cuto� is more stringent than that used in Rubino et al. (2006)

and was necessary to address biases in estimating wavelength arising from noise and

non-planar wave activity.

For the analysis of plane waves in β-LFP, the wavelength was estimated from the mag-

nitude of the average phase gradient. Taking the magnitude after averaging the phase

gradient vectors reduces the in�uence of noise on the estimation of plane-wave wave-

length, as opposed to averaging the local phase gradient magnitudes. Asymmetric radiat-

ing waves with a high signal-to-noise ratio that could not be described as a simple planar

or radiating wave were common in the optogenetically induced activity, and in this case

wavelength was estimated from the local gradient of the Hilbert phase and then averaged

over the array.

4.2.7 Critical point analysis

We classi�ed complex waves structures based on critical points in a smoothed estimate

of the phase gradient �eld. Data were denoised and smoothed by convolving the analytic

signals in each frame with a sinc function to attenuate structure �ner than 2 mm. Signals

were interpolated via sinc upsampling on the analytic signal. Convolution and upsam-

pling are performed in the frequency domain using re�ected boundary conditions via a

discrete cosine transform type I. The sinc kernels are constructed in the frequency domain

with anti-aliasing to reduce numerical artifacts related to the small spatial domain. The

phase gradient is extracted by convolving the Hilbert phase with 2×2 discrete di�erence

kernels in the x and y directions.

Minima, maxima, and saddle points, were identi�ed by locating zeros in the phase

gradient. These points can be distinguished by the direction of sign change in the gradient.

Equivalently, one may examine the determinant and trace of the Jacobian at each critical

point (Townsend et al., 2015). The centers of rotating waves are identi�ed by taking a line
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integral of the Hilbert phase gradient surrounding each point. Points around which this

line integral equals nonzero multiples of 2π are singularities in the Hilbert phase gradient

and are the centers of rotating waves. Numerically, this integral is computed for every

point by representing the Hilbert phase gradient as a complex number, and representing

the line integral around each point as a convolution. We carefully addressed some caveats

to this analysis. When beta oscillations are asynchronous, the spatial structure of waves

may be �ner than the electrode spacing, and interpolation may create spurious critical

points. Conversely, smoothing may eliminate some structure. Critical point analysis is

most accurate when signal-to-noise ratio is high and high spatial frequency structure is

attenuated.

4.2.8 Averaged phasemaps for optogenetically induced spatiotem-

poral waves

The wave response to optogenetic stimulation was reliable across trials, which allowed us

to compute summaries of wave activity averaged over trials and time. For computing the

average phase gradient, local phase gradient �elds were smoothed by convolution with a

sinc kernel to remove structure �ner than 1.8 mm. These phase gradients were averaged

over time (Figures 4.14a,b rightmost panels). To compute averaged phase delay maps,

phases were unwrapped relative to a reference electrode (channel 25, Figure 4.12) near

the center of the radiating wave. Average phase delay was then computed as the average

over time of the phase delay relative to this channel.

4.3 Results

We aim to characterize the spatiotemporal dynamics of waves in motor cortex beta (∼20

Hz) LFP oscillations in order to better understand the collective neural dynamics underly-

ing these oscillations. We �rst demonstrate that movement preparation stages in the CGID
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task reliably evoke beta oscillations, which occur as transients during steady-state periods

with considerable trial-to-trial variability in terms of transient onset times and durations.

We show that these beta oscillations correspond to diverse types of wave dynamics, and

summarize the prevalence of various wave patterns. Next, we examine summary statistics

of beta spatiotemporal oscillations and relationships among these statistics. Finally, we

conclude by contrasting these statistics to those of traveling waves induced by 1-second

constant pulse optogenetic stimulation in motor cortex.

We analyzed three CGID datasets each from areas M1, PMv, and PMd in monkeys

R and S. For both monkeys, all examined datasets were recorded within eight days of

each-other. Each session yielded between 46 and 114 successful seven-second CGID trial

repetitions, collected over twenty minutes to one hour. For the comparison to optogenet-

ically induced traveling waves, we analyze the spatiotemporal waves in primary motor

cortex observed in monkey T, previously reported in Lu et al. (2015).

4.3.1 Motor evoked potentials and beta oscillations in the CGID

task

The CGID task reliably elicited task-related activity in all three motor areas (M1, PMd,

PMv) from both monkeys studied. The movement period of the CGID task was marked by

slow motor evoked potentials (Figure 4.1a), increased single-unit �ring rates (Figure 4.1b),

and beta suppression (Figures 3.7, 4.1c). Motor evoked potentials did not consist entirely

of a slow <2 Hz component, but also contained peaks in the theta (2-7 Hz) band, in all areas

except monkey S area PMv (Figure 3.7). The CGID task reliably elicited beta oscillations

during the planning and preparatory phases. In monkey S, the beta band peaked at 21 Hz.

In Monkey R, the beta band peaked at 17 Hz (Figure 3.7). Beta oscillations were especially

stable during the �rst second of the task, and during the one second before ‘Go’ cue. In

monkey S, beta oscillations were strongest before object presentation. In monkey R, beta

oscillations showed greater power during the delay between the grip cue and the ‘Go’ cue
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Figure 4.1: Evoked potentials and modulations in multi-unit spiking activity and β-LFP in the CGID task.

Statistics are summarized over all sessions and trials for each monkey. Colored regions represent the in-

terquartile range, black lines the median. Time periods displaying evoked potentials are shaded in gray. (A)
Sensory and motor evoked potentials in the CGID task. Both monkeys showed task-related evoked potentials

in the LFP (shown here averaged over good channels within a single area). In addition to motor evoked

potentials in all areas, we also see visual-cue evoked potentials. (B) Task-related modulations in multi-unit
spiking activity varied between motor areas. In both monkeys R and S and in all motor areas, multi-unit spik-

ing activity modulates with di�erent stages of the CGID task. Area PMv displayed multi-unit modulation

after object presentation. All motor areas displayed movement-evoked increases in �ring rates, with area

PMv showing elevated spiking extending for up to two seconds after ‘Go’ cue (arrows). (C) Task-related
modulations in β-LFP magnitude. Periods of beta suppression occur during evoked potentials and increases

in multi-unit �ring rates. Beta oscillations were strongest during the �rst second of the task for monkey

S, and strongest during the one second before the ‘Go’ clue for monkey R. Beta amplitude was also more

variable in monkey R. For all plots, data shown are from the �rst CGID dataset for each monkey, averaged

over all good electrodes within a MEA.
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(Figure 3.7).

There were several interesting features of the task-related LFP activity. Visual cues

evoked beta suppression and low frequency evoked potentials, much like movement exe-

cution. There was also a short spike in alpha (7-15 Hz) LFP activity immediately following

object presentation in all monkeys and areas with exception of monkey R area PMd (Fig-

ure 3.7). Beta was transiently suppressed in all areas between approximately 250 and 750

ms following the object presentation, and 400 and 900 ms following the ‘Grip’ cue. For

monkey S only, the beta suppression evoked by object presentation was stronger in area

PMv than in the other motor areas. The duration of movement-related beta suppression

was longer in areas M1 and PMv than in area PMd, consistent with the conjecture that

PMd is concerned with the visually guided reaching, which is completed earlier than the

grip and object manipulation movements.

Although beta power was enhanced during the steady-state periods of the CGID task,

we found that it occurred in transient events with variable duration and exhibited con-

siderable trial-to-trial variability (Figure 3.11; see also Chapter 3). The duration of beta

transients was broadly distributed (Figure 3.11), with some trials showing sustained ele-

vation of β-LFP for as long as one second.

During visual inspection of the data, we observed diverse wave patterns. For illus-

tration, we have collected examples of wave activity in Figure 4.2. We observed states

ranging from spatially synchronous states, to plane waves, to more complex activity like

radiating or rotating waves, to complex states that cannot be easily categorized, showing

that beta events can be associated with a diversity of wave patterns. Importantly, wave

patterns appeared to transition continuously from desynchronized states, to more locally

sunchronized wave activity, to globally synchronized states. In the following sections, we

quantify and elaborate upon these observations.
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Figure 4.2: Transient beta spatiotemporal wave patterns are diverse. In addition to traveling plane waves,

we observe synchronous states, radiating and rotating waves, and other more complex wave patterns. Each

of these examples was taken from the 4×4 mm area sampled by the 10×10 multielectrode array in area

PMv of monkey S. Missing electrodes were interpolated from nearest neighbors. Average phase delay maps

were computed by unwrapping Hilbert phases at the median frequency of the wave event before computing

the average analytic signal. The mean analytic signal was smoothed at a scale of 2 mm and upsampled to

generate the phase delay maps pictured here. The smoothed and upsampled Hilbert phase was di�erentiated

to extract critical points from the wave dynamics (Methods:‘Critical point analysis’) Spatially synchronized

states were detected as spatial patterns where the angular distribution of analytic signals was especially

concentrated (�rst example, Methods:‘Assessing spatial synchrony and coherence’). Plane wave states were

detected as spatial patterns where the angular distribution of the phase gradient direction was especially

concentrated (second example, Methods:‘Spatial gradient of the Hilbert phase’).
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Figure 4.3: Summary of the prevalence of di�erent beta wave patterns the steady movement preparation
period. Categorization of spatiotemporal beta waves during the 1 second before the ‘Go’ cue shows a variety

of patterns. Time-points are separated into high and low beta power by thresholding the instantaneous

amplitude, with amplitudes larger than 1.5× the standard deviation of the beta signal being classi�ed as

high beta. High beta power tends to be associated with spatial synchrony or plane waves. More complex

wave activity tends to occur at lower power. Some motor areas showed little traveling plane wave activity,

even at high beta power (Monkey S area PMd, Money R and S area PMv).

4.3.1.1 Beta wave categorization

Figure 4.3 shows a breakdown of the prevalence of di�erent classes of wave patterns for all

areas in both monkeys R and S. We identi�ed synchronous states as spatial patterns where

the circular standard deviation of β-LFP phase was less than π/4, such that approximately

95% of electrodes on the array fell within the same quarter-cycle (π/2 radians) of the os-

cillation (Methods:‘Assessing spatial synchrony and coherence’). Similarly, we classi�ed

plane waves as those spatial patterns where the circular standard deviation of the phase

gradient direction was less than π/4 (Methods ‘Spatial gradient of the Hilbert phase’). For

the purpose of assigning each beta cycle a unique classi�cation, waves were classi�ed as

synchronous only if they were not also classi�ed as plane waves. More complex wave

patterns like rotating and radiating waves were classi�ed by identifying critical points in

the spatially smoothed phase gradient (Methods:‘Critical point analysis’).

The spatiotemporal structure varied considerably across motor areas. Area PMd in
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both monkeys was typically highly synchronous, displaying few traveling waves. Area

PMv in monkey S showed more complex wave activity, even during periods of high beta

power. In both monkeys, organized plane wave activity was apparently rarer in area PMv,

an area that had not been examined in previous studies. However, area PMv in monkey

S displayed other organized traveling wave states such as radiating and rotating waves

(Figure 4.3). These di�erences between areas were not due simply to the di�erent sizes of

the arrays, as the classi�cation trends did not change when the 10×10 PMv arrays were

cropped to match the 6×8 size of the M1 and PMd arrays. High beta power was strongly

correlated with spatially synchronized states, while more complex activity were seen at

lower beta power. Because the signal-to-noise ratio is lower when beta power is low,

there is a possibility that some of the wave activity was classi�ed as complex due to noise

(Methods: ‘Critical point analysis’). However, complex wave patterns were still identi�ed

in some areas even when the signal-to-noise ratio was high, indicating that these patterns

are a true mode of the spatiotemporal activity in motor cortex.

While we adopted a classi�cation of beta wave activity into the above discrete types,

we also emphasize an important aspect of the spatiotemporal dynamics that should not

be overlooked: beta spatiotemporal patterns varied continuously, and there were no clear

boundaries or abrupt transitions between di�erent patterns. Furthermore, although the

thresholds for classi�cation of synchrony and plane waves re�ect intuition about synchro-

nized and plane-wave activity, the data are not clustered into "synchronous" and "asyn-

chronous" or "planar" and "nonplanar" groups. For example, long wavelength plane waves

were also spatially synchronous (over the limited aperture of the MEA).

4.3.1.2 Task-related modulations in beta spatiotemporal activity

To more accurately quantify wave activity, we analyzed summary statistics of the wave

dynamics. The spatiotemporal properties of beta oscillations varied throughout the stages

of the CGID task. Beta synchrony was elevated during the planning periods, but was espe-
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Figure 4.4: Changes in beta spatial synchrony correlate with the CGID task stages. (A) In the CGID task,
LFP spatial synchrony occurs in the alpha, beta, and low-frequency bands. Beta oscillations are typically more

synchronous over each area when beta power is high. Periods of beta suppression correlate with reduced

spatial synchrony. In both monkeys a brief period of alpha (5-10 Hz) synchrony appears at the start of beta

suppression, most prominently in area PMv after object presentation. Spatial synchrony in low-frequency

(<7 Hz) LFP is present throughout the entire task, during both the planning and movement periods. Spatial

synchrony has been z-scored to visualize the variations in synchrony over time, frequency, and area. (B)
Beta spatial phase synchrony is not locked to the CGID task. Shown here are phase locking values (0 = no phase

locking, 1 = complete phase locking) over all sessions and channels. We see phase-locking of synchronous

alpha oscillations following object presentation and ‘Go’ cue, as well as reproducible phase in motor evoked

potentials, but no phase locking in beta. For all plots, data shown are from the �rst CGID dataset for each

monkey, averaged over all good electrodes within a MEA.
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Figure 4.5: Modulations in beta spatiotemporal activity are task-related. Shown here are four statistics

re�ecting spatiotemporal dynamics in beta oscillations for both monkeys and all three motor areas. Data

from all trials in three sessions are combined in these summary plots. Statistics are computed from the

instantaneous phase of the beta analytic signal, and smoothed with a 50 ms boxcar �lter. Colored regions

represent the inter-quartile range, and black lines the median, over all trials and sessions. The timing of

visual cues (object presentation, grip cue, go cue) are marked with vertical black lines. Times displaying pu-

tative cue-evoked changes in beta spatiotemporal properties are highlighted in grey. (A) Spatial synchrony,

as assessed by Kuramoto’s order parameter, ranges from 0 for asynchronous to 1 for perfectly synchronized

activity. Reductions in spatial synchrony can be observed in all areas following visual cues in monkey S,

and during the movement period in both monkeys. (B) Phase gradient directionality assesses the extent to

which beta activity resembles a traveling plane wave. Both monkeys show a reduction in phase gradient

directionality over the course of the CGID task, and in monkey S the shifts appear to relate to visual cues.

(C) The average phase gradient magnitude is a proxy for spatial wavelength. Higher phase gradients corre-

spond to higher spatial frequency waves. The task-related modulations in beta phase gradient magnitude

di�er between the monkeys, but both exhibit an increase in average gradient magnitude shortly after the go

cue, indicating a reduction in large spatial scale phase organization. (D) The complexity of spatiotemporal

wave activity can be assessed by the number of critical points (rotating, radiating centers) in the (smoothed)

phase gradient map. The complexity of wave activity in area PMv di�ered between the monkeys, with mon-

key R exhibiting highly synchronous activity during the preparatory phases, and sustained complex wave

activity during the movement period that continues longer than the desynchronization seen in areas M1 or

PMd (arrow). In contrast, monkey S exhibited complex wave activity in area PMv throughout the task.
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cially strong surrounding the visual cues, and absent during periods of beta suppression

(Figure 4.4a, 4.5a). Although beta oscillations in monkey R were composed of two fre-

quency bands, it was the lower 15-25 Hz band frequency that displayed the greater spatial

synchrony.

Figure 4.5 details the task-related changes in the spatiotemporal structure of beta os-

cillations in two example areas. Statistics of beta spatiotemporal activity exhibited trial-

to-trial variability, but tended to track task-related changes in the magnitude of beta os-

cillations. During task phases in which beta power was elevated, spatial synchrony was

also higher (Figure 4.5a), and beta phase gradient magnitude, which is inversely related

to wavelength, was lower (Figure 4.5c). Phase gradient directionality, a measure of how

planar wave activity is, (Methods ‘Spatial gradient of the Hilbert phase’) was also higher

during times when beta power was high (Figure 4.5b). The number of critical points in

the phase gradient map, a measure of wave complexity, increases during task phases with

weaker beta power (Figure 4.5d). The above results show that the task-related changes

in the properties of beta spatiotemporal waves correlate with variations in beta ampli-

tude, indicating that changes in beta spatiotemporal organization may be closely related

to modulations in beta power. However, β-LFP activity was highly variable. In our in-

spection of the data, the precise nature and timing of beta spatiotemporal patterns was

seldom identical across trials. To better understand the spatiotemporal structure of β-

LFP oscillations, we assessed the instantaneous relationship between various statistics of

spatiotemporal activity on a trial-by-trial basis.

4.3.1.3 Beta wave statistics correlate with amplitude

Having surveyed the spatiotemporal structure of beta oscillations, we next asked how

these spatiotemporal statistics correlate with each-other and with β-LFP amplitude. We

compared the average instantaneous Hilbert amplitude of beta across the array to the cir-

cular standard deviations of both the Hilbert phase, and the Hilbert phase gradient. Figure
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4.6 explores the correlated variation in wave statistics and reveals how the spatiotemporal

dynamics in beta vary with beta amplitude. We found that beta amplitude and beta syn-

chrony were positively correlated for all areas in both monkeys. The correlation between

beta amplitude, and the standard deviation of the phase gradient direction, varied across

areas. Overall, traveling wave states existed on a continuum between asynchronous and

spatially synchronized states. We note that, because of the inherent challenges in di�er-

entiating signal and noise in these LFP recordings, there is the possibility for changes in

signal-to-noise ratio to create artifactual correlations between apparent spatial synchrony

or phase gradient and amplitude. To address this confound, we further analyzed wave-

length from planar wave events that showed an extremely high degree of phase gradient

order unlikely to occur by chance.

4.3.1.4 Beta wavelength correlates with amplitude

We analyze the correlation between planar traveling wavelength and beta amplitude in

the M1 arrays of both monkeys, which displayed the largest number of planar traveling

waves. For both monkeys, organized plane wave activity was rare in area PMd, which

tended to be highly synchronous, and area PMv, which tended to show more complex

wave activity in monkey S and synchrony in monkey R (see Figure 4.3). We note that our

results are not inconsistent with Rubino et al. (2006), which reported traveling waves in

area PMd, because we are using a more stringent inclusion criterion to avoid bias in our

estimation of the correlation of amplitude and wavelength (Methods:‘Spatial gradient of

the Hilbert phase’).

With this approach (Figure 4.7) we found that beta wavelength and beta amplitude

were interrelated: larger amplitudes corresponded to longer wavelengths (Pearson ρ =0.64

for monkey R, ρ =0.53 for monkey S). In monkey R, wavelengths ranged from 3.2 mm to

28 mm, with a median of 7.2 mm. In monkey S, wavelengths ranged from 3.5 mm to 31

mm, with a median of 10 mm. High beta power (amplitude envelope >1.5 standard de-
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Figure 4.6: Amplitude, phase gradient alignment, and spatial synchrony of spontaneous β-LFP oscillations are
related. Wave statistics were taken every 50 ms from the �rst second (movement preparation) of the CGID

task. Higher beta power was associated with increased synchrony and also increased tendency toward

plane waves. Beta spatiotemporal statistics varied continuously and no clear boundaries separating plane

wave states and synchronized states from more complex wave activity were observed. This emphasizes that

spatiotemporal activity in motor cortex is a heterogeneous phenomenon, and raises the question of whether

variations in beta spatiotemporal state correlate with changes in the functional organization of motor cortex

neural ensembles. Amplitude was taken as the average Hilbert amplitude over the array. Phase gradient

alignment was assessed by the circular standard deviation of the gradient of the Hilbert phase. Spatial

synchrony was assessed by the circular standard deviation of zero-lag oscillation phase, for which smaller

values correspond to more synchronous states.
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Figure 4.7: The amplitude and wavelength of traveling β-LFP plane waves are correlated. Neocortical patches

showing planar traveling waves exhibited a correlation between beta amplitude and wavelength. Scatter

plots comparing the wavelength of plane-wave beta events with the average beta amplitude over the array

reveal a strong correlation (Pearson ρ =0.64 for monkey R, ρ =0.53 for monkey S) between beta amplitude

and wavelength. Samples of the array statistics were taken every beta cycle (50 ms), and only those time-

points displaying a high degree of alignment in the phase gradient were consider for the analysis (see

Methods:‘Spatial gradient of the Hilbert phase’). Three sessions for each money were combined in the

scatter plots. Speci�c examples are also shown, illustrating the progression, left to right, from shorter

wavelengths at lower amplitudes, to longer wavelengths at higher amplitudes. The hue scale is doubled to

resolve the longer-wavelength patterns more clearly. Very long wavelengths cannot be distinguished from

spatial synchrony due to the size of the microelectrode array. These plots indicate that traveling waves

tended to transition smoothly into synchronized states, with the LFP phase tending toward greater spatial

homogeneity at higher amplitudes.
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viations (σ ) of the beta-band signal) was associated with a median wavelength of 11 mm

in monkey R and 13 mm in monkey S, and low beta power (<1.5σ ) was associated with

a median wavelength of 6.8 in monkey R and 8.8 in monkey S. In summary, the spatial

scale of beta waves is not �xed but depends on the beta state. There was a continuum

between desynchronized activity at low amplitudes and spatially synchronous states at

higher amplitudes. We were only able to analyze planar traveling waves with this ap-

proach, as correlations between amplitude and the spatial scale of complex patterns could

be confounded with variations in signal-to-noise ratio (see Discussion).

4.3.1.5 Spatial variations in both the phase and amplitude of β-LFP

may be important for understanding beta wave events

So far, studies of spatiotemporal LFP phenomena have focused on relationships between

LFP phase or amplitude separately. However, the �ltered analytic LFP signal exhibits vari-

ations in both phase and amplitude, and understanding how these are related is important

for understanding the origin of spatiotemporally organized LFP signals. All of the statis-

tics focused on here so far discard the amplitude except as a weighting factor to re�ect

that low-amplitude signals have a less certain phase estimate.

Figure 4.8 illustrates the evolution of analytic signals across all three MEAs during a

plane wave event. It is evident that beta amplitude varies across electrodes, and evolves

in time jointly with the distribution of beta phases. The wave event begins with an in-

crease in dispersion of the amplitude, with this dispersion in amplitude transforming into

a phase gradient as the wave event initiates. It is not the case that plane wave events

emerge as a result of increased phase dispersion at a �xed amplitude, as would be pre-

dicted in models based on Kuramoto oscillators (Breakspear et al. 2010; Heitmann and

Ermentrout 2015; Heitmann et al. 2012). We emphasize, however, that the analytic LFP

signal re�ects a summed contribution of a larger population of neural oscillators, and

amplitude �uctuations can re�ect both modulations in the amplitude of local oscillations
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120 μV

Figure 4.8: Evolution of a wave event in the analytic signal phase space. Beta wave events tended to begin

by excitation of oscillations in each channel. This excitation of amplitudes shifted, creating a plane wave

where, in this case, the phase of area PMv lags behind that in areas PMd and M1. This event lasted only

for a few cycles of the beta oscillation, before collapsing back to an asynchronous state. Note that although

this is a traveling wave event, it is not a plane wave event. In this instance, the PMv activity was classi�ed

as a radiating wave, and the M1 and PMd activities were classi�ed as synchronous. It is possible that we

are observing in each cortical patch part of a larger wave phenomenon. This particular wave example

was taken from trial 2 of monkey S, session 1. <(z) and =(z) denote the real and imaginary parts of the

complex-valued analytic LFP signal, respectively.

(e.g. dendritic or subthreshold currents), or changes in synchronization between local os-

cillators. Furthermore, modulations in amplitude and phase are a�ected by �ltering and

the Hilbert transform procedure. It is important to emphasize that even the early pre-

processing steps of generating the beta analytic signal are subject to ambiguity, a fact

which should be more clearly addressed with further methodological research.

Figure 4.9 compares two attempts to jointly summarize changes in amplitude and

phase. A model that treats phase and amplitude separately fails to describe the distri-

bution of beta analytic signals in a number of cases. In particular, spatial patterns that

exhibit a correlation between amplitude and phase occur near the initiation or termina-
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100 μV 100 μV70 μV

(A) Concentrated phase (B) Correlated amplitude and phase (C) Disperse phase, high amplitude

(D) Bimodal phase distribution (E) Distributed about zero (F) Uniform phase, high amplitude

Complex Gaussian

Phase, amplitude model

Figure 4.9: Limitations of phase statistics in summarizing LFP population dynamics. In these plots, the

black ellipse represents a complex Gaussian model of the population of complex-valued β-LFP analytic sig-

nals, with the ellipse boundary at one standard deviation and ellipse axes representing the eigenvectors

of the covariance matrix. The cyan contours represent a log-polar description of the data, which uses a

circular Gaussian model for the phase and a log-normal distribution for the amplitude, with the ellipse

boundary representing one standard deviation, transformed from log-polar coordinates using conformal

mapping. <(z) and =(z) denote the real and imaginary parts of the complex-valued analytic LFP signal,

respectively. (A) During zero-lag spatially synchronous wave events, in which phase is concentrated and

not correlated with amplitude, both the log-polar statistics and the complex Gaussian distribution describe

the distribution of analytic signals well. (B) When phase and amplitude are correlated, as we observe occurs

at the initiation and termination of traveling wave events, the log-polar model cannot capture the phase-

amplitude interactions. (C) During traveling wave events, signal amplitude is high, and there is dispersion

in phase. In practice we do not observe highly disperse phase distributions at high amplitudes, and both the

log-polar and complex Gaussian distributions describe the analytic signal distribution well. (D) Traveling

wave events often evolve from states that show a mixture of synchrony and standing wave dynamics. The

log-polar statistics break down when the phase distribution is bimodal, but the complex Gaussian can de-

scribe these states gracefully. (E) At low signal amplitudes, the system is often asynchronous, and the mean

phase in the log-polar model is di�cult to interpret. The complex Gaussian model gracefully describes the

asynchronous state. (F) Although absent in our data, a hypothetical distribution with uniform phase and

concentrated amplitude could occur, say, during traveling wave events with short wavelength. In this case,

the complex Gaussian model is unsuitable, highlighting that while the complex Gaussian appears most suit-

able to describing our data in practice, neither model is capable of gracefully describing all states that might

occur in spatiotemporal wave dynamics.
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tion of plane wave events, and are poorly captured by a model in which phase and am-

plitude are treated separately. Additionally, asynchronous states in which the amplitude

is distributed around zero and the phase is uniformly distributed, are poorly captured. In

contrast, modeling the distribution of analytic signals as a bivariate Gaussian distribution

appears promising. It can handle cases in which modulations of phase and amplitude are

correlated, and gracefully describes the asynchronous case as a symmetric Gaussian with

zero mean. However, the complex Gaussian description fails to capture the distribution

of signals when amplitude is elevated and phases are dispersed, as can be the case for a

high amplitude short wavelength traveling wave. Nevertheless, this particular case did

not occur in our data and we had to illustrate it using simulated data.

4.3.2 Optogenetically evoked traveling waves

To contrast the statistics of spontaneous beta spatiotemporal oscillations with those of a

clear example of traveling waves, we examined propagating waves at gamma frequency

induced by optogenetic stimulation as �rst reported in primate motor cortex by Lu et al.

(2015). Lu et al. (2015) showed that 1-second constant pulse of optogenetic stimulation

elicits ∼50 Hz gamma oscillations throughout the cortical patch recorded by the MEA.

These gamma oscillations organized primarily as traveling radial waves.

Here, we analyzed the same data further and report that the spatial and frequency

structure of the LFP response to optogenetic stimulation is in fact signi�cantly more com-

plex (Figure 4.11). In addition to the induced ∼50 Hz oscillation, there is a distinct ∼100

Hz high-gamma oscillation local to the ∼1 mm of tissue receiving direct optical stimula-

tion. We emphasize that the power around the higher 100 Hz frequency is not a Fourier

harmonic. Instead, ∼100 Hz oscillations can be easily detected via visual inspection in the

time domain. Additionally, there was a broad ∼70 Hz band evident on several channels

(e.g. channel 88), as well as a low-amplitude band between 140 and 150 Hz. These in-

duced oscillations appear to coexist with ongoing background β-LFP oscillations at ∼20
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Hz, which was addressed in Lu et al. (2015) and is also evident as a ∼20 Hz beta peak that

does not modulate with stimulation in Figure 4.11.

To further resolve the spatial distribution of the LFP response, we plot a time-frequency

spectrogram for each channel in (Figure 4.12). Each of these plots show the frequency

response over the 1-second optogenetic stimulation pulse. Unlike the 70 Hz and 100 Hz

oscillations, the 50 Hz activity extends away from the site of optical stimulation and there-

fore are is mediated by network interactions. We found that the induced LFP response was

highly reproducible. Figure 4.14 explores two statistics of the average wave activity: the

average phase delay, and the average zero-lag spatial phase gradient (Methods:‘Averaged

phase maps for optogenetically induced spatiotemporal waves’) . The ∼50 Hz and ∼100

Hz bands showed reproducible spatial structure (Figure 4.14), (∼70 Hz and ∼140 Hz os-

cillations did not). To visualize the time-domain evolution of the 50 and 100 Hz wave

components, we computed averages of LFP activity triggered on the phase of ongoing

narrow band oscillations. Figure 4.15 displays phase triggered averages for both the ∼50

and ∼100 Hz gamma bands, as well as a single average of broad-band gamma activity trig-

gered on the phase of the ∼50 Hz oscillations, which combines the structure of the high

and low gamma waves. Although the lower ∼50 Hz oscillation appears to dominate the

broad-band activity, the ∼100 Hz alters the overall spatiotemporal structure during some

phases of the oscillation

4.3.2.1 Correlations in the summary statistics of optogenetically

induce 50 Hz gamma waves

Similarly to the beta analysis, we examined the correlations between the amplitude of

the induced gamma oscillations and the degree of spatial synchrony, as assessed by the

standard deviation of the Hilbert phase angles across the array (Figure 4.16, top left).

Because this is not a plane-wave phenomenon, we did not examine correlations between

the amplitude and the degree of alignment of phase gradient vectors. However, there
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A

B

Light Stim.

6 mW

Figure 4.10: Optogenetically induced spatiotemporal gamma waves in motor cortex. (A) For optogenetic

stimulation, a 10×10 Blackrock multielectrode array was modi�ed to contain a tapered optical �ber. The

multielectrode array output and �ber optic cable were routed through two separate pedestals. The region of

direct optical stimulation was approximately 1 mm across. (B) 50 Hz gamma LFP oscillations are a prominent
feature of the response to constant 1-second pulse optogenetic stimulation. When a constant pulse of 6 mW

light stimulation was delivered, ∼50 Hz oscillations emerge abruptly, as visible in both the example LFP

trace (left), and the LFP spectrogram (right). Reproduced from Lu et al. (2015) with permission.

198



0 20 40 60 80 100 120 140
102

103

104

105

106

Pre-stimulus
Optogenetic stimulation, array average
Optogenetic stimulation, channel 88

μ
V

²/
H

z

Hz

Figure 4.11: Constant 1-second optogenetic stimulation of motor cortex induces complex oscillatory states.
Compared to background activity, power in ∼50 Hz and ∼100 Hz oscillations were elevated. Lu et al. (2015)

examined only the ∼50 Hz band. On electrodes close to the light stimulation (e.g. channel 88), an additional

∼70 Hz band was also induced. Induced gamma (∼50, ∼70, ∼100 Hz) oscillations coexisted with spontaneous

beta (∼20 Hz) oscillations. The ∼50 Hz and ∼100 Hz bands showed reproducible spatial structure (Figure

4.14), while the ∼70 Hz oscillations showed no consistent phase delays relative to the stimulation site.

Lu et al. (2015) conjectured that transition into spatiotemporal gamma oscillations occurred via a Hopf

bifurcation. (Dataset from subject T in Lu et al. (2015).)

was very good signal-to-noise ratio during the induced gamma oscillations, such that we

were able to estimate the local phase gradient accurately. This allowed us to extract a local

estimate of wavelength (Methods:‘Spatial gradient of the Hilbert phase’), and the spatial

scale of the induced wave could be estimated by averaging this wavelength over the array.

Figure 4.16 summarizes the relationship between the amplitude, wavelength, and the

standard deviation of phase for the optogenetically induced ∼50 Hz gamma waves. No-

tably, there is clear clustering distinguishing the spatiotemporal statistics in the stimulated

and the non-stimulated conditions. The induced gamma waves show a characteristic 2-4

mm wavelength, elevated amplitude, and reduced spatial synchrony. Compared to the

background gamma activity, the induced waves show reduced variability in the estimated

wavelength. Additionally, the optogenetic stimulation disrupted zero lag spatial phase

synchrony over the cortical patch, which need not have been the case. These statistics

were consistent with abrupt appearance of a true traveling wave with a characteristic

wavelength, and are to be contrasted with the spatiotemporal statistics of the sponta-

neous ongoing beta oscillations detected during the movement preparation stages of the
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Figure 4.12: Spatial distribution of LFP spectral response to optogenetic stimulation. Each subplot is a trial-

averaged wavelet spectrogram (time vs frequency) of the recorded LFP for a single electrode. Time ranges

from -0.5 seconds to 1.5 seconds. Optogenetic stimulation at 6 mW lasted from time 0 to 1 s. Disconnected

electrodes are not plotted. The location of the optical �ber and one channel with excessive noise are marked.

For electrodes close to the light stimulation, primarily ∼50 Hz and ∼100 Hz LFP oscillations were induced.

We emphasize that the ∼100 Hz is not simply a Fourier harmonic, but it is in fact true oscillatory activity.

For electrodes further from the light stimulation, especially on the upper left (e.g. channel 34), stimulation

induced narrow band oscillations at ∼50 Hz, and higher frequency oscillations were absent.
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Figure 4.13: Spatial synchrony decreases and coherence increases during optogenetic stimulation. (A) Shown

here is a plot of Kuramoto’s order parameter over the array channels, as it varies across frequencies dur-

ing stimulation. Optogenetic stimulation occurred between 2 and 3 seconds. Frequency is on the y-axis.

The Kuramoto order parameter was computed as k (ω,t ) = |Echannels [exp (i · ϕ (ω,t ))]|. It consists of the

magnitude of an average over channels of unit-length phase vectors representing the instantaneous phase

for a given frequency ω, time t , and channel. Instantaneous phase for all times and frequencies was ex-

tracted using a Morlet wavelet transform. (B) Coherence, calculated using Welch’s method over a sliding

512 ms window. Pairwise coherence values are averaged over trials, and the largest eigenvalues of this

trial-averaged pairwise coherence matrix are taken as a summary of the spatial coherence across the array.

The spatial coherence increases during optogenetic stimulation, indicating collective participation in the

induced ∼50 Hz and ∼100 Hz oscillations.
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Figure 4.14: Induced gamma oscillations exhibit spatiotemporal wave structure. (A) ∼50 Hz LFP amplitude

is increased across the multielectrode array (left panel). The optical stimulation area was on the order of

1 mm across Lu et al. (2015), implying that these spatially extended ∼50 Hz oscillations involved network

interactions. Unwrapping phases relative to a reference electrode (channel 25) near the center of optical

stimulation permits creating an average phase delay map (center panel). The induced ∼50 Hz gamma os-

cillations organized as radiating waves, with an origin that was o�-center from the source of the optical

stimulation. The average phase gradient direction (right panel) was consistent with the average phase de-

lay map, and con�rms that the primary structure in these ∼50 Hz oscillations was a radiating wave. (B)
Induced ∼100 Hz oscillations also showed spatiotemporal structure. ∼100 Hz oscillations were localized to

the stimulation area (left panel). Measuring the average phase delay relative to an electrode near the optical

�ber reveals that these ∼100 Hz oscillations exhibited spatiotemporal structure. Within the region where

∼100 Hz oscillations have the highest amplitude, traveling plane waves propagated across the stimulated

region (white box), starting at a point on the boundary of the stimulated region (black ‘+’, panels 2 and

3). There was an associated spiral wave center (white dot). The average phase gradient map (right panel)

con�rms that there was a traveling wave structure in the 100 Hz band.
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Figure 4.15: Phase-triggered averages of multi-band γ-LFP waves. Averages over all optical stimulation tri-

als, triggered on the LFP phase (φ) at channel 25 (see Figure 4.12). (A) The average ∼50 Hz wave component

radiates from a point near the lower boundary of the optically stimulated region of cortex. (B) The average

∼100 Hz oscillation (one-half oscillation cycle shown) displays traveling waves locally, seemingly emerging

from a pair of counterclockwise and clockwise rotating centers close to the origin of the ∼50 Hz radiating

wave. (C) The sum of the ∼50 and ∼100 Hz waves, triggered on the phase of the ∼50 Hz wave, displays

a complex structure, super�cially most similar to the ∼50 Hz wave, but showing a rebound in LFP voltage

in the center of the stimulated region midway through the cycle, related to the ∼100 Hz component. Both

the lower ∼50 Hz and upper ∼100 Hz γ-LFP contribute to the overall spatiotemporal response, highlighting

that analysis of isolated LFP bands may overlook aspects of spatiotemporal dynamics.
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CGID task.

4.3.2.2 Comparison of spontaneous beta waves with optogeneti-

cally induced gamma

We highlight the di�erences between the statistics of the spontaneous beta and the in-

duced gamma oscillations in Figure 4.17, which shows that the induced gamma oscillations

were associated with an abrupt increase in amplitude and decrease in spatial synchrony,

compared to the background activity. In contrast, the spontaneous beta showed a con-

tinuous variation in amplitude and a tendency for increased spatial synchrony at higher

amplitudes.

Figure 4.17 demonstrates that the induced traveling gamma waves have a characteris-

tic �xed wavelength that varies little with amplitude relative to the background activity. In

contrast, the wavelength of beta oscillations increased linearly with amplitude, such that

the largest amplitude beta events were e�ectively highly synchronous over the recorded

area of cortex. This highlights that simple summary statistics like amplitude and spatial

synchrony can distinguish di�erent types of traveling wave phenomena, and re�ect dif-

ferences in their underlying dynamics. Our �ndings are consistent with the hypothesis

that spatiotemporal beta oscillations during movement preparation result from the syn-

chronization dynamics of ongoing, local beta oscillations, while the gamma waves are

true traveling waves induced by a local optogenetic perturbation.
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Figure 4.16: Amplitude, wavelength, and synchrony of optogenetically induced γ-LFP spatiotemporal oscilla-
tions. Scatter plots compare three summary statistics of optogenetically induced spatiotemporal gamma

oscillations: amplitude, wavelength, and spatial synchrony. Amplitude was taken as the average Hilbert

amplitude over the array. Wavelength was computed from the average local phase gradient magnitude.

Spatial synchrony was assessed by the circular standard deviation of zero-lag oscillation phase, for which

smaller values correspond to more synchronous states. Each dot in the scatter plot represents a snapshot

of the spatiotemporal dynamics during one gamma cycle (20 ms). All stimulation trials during the session

are combined. The statistics of optogenetically induced gamma waves (orange) were distinctly di�erent

from the background ∼50 Hz activity (black). Note that the wavelength statistic does not have a physical

interpretation outside of the stimulation window, since organized wave activity was absent. Instead, this

can be interpreted as a statistic proportional to the inverse of the average local phase gradient magnitude

– a statistic that exhibits broad variation and linear dependence on amplitude outside of the stimulation

epoch. During optogenetic stimulation, ∼50 Hz gamma activity exhibited a 2-4 mm wavelength and in-

creased in amplitude as compared to the background activity. Importantly, the induced oscillations lacked

spatial synchrony.
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Figure 4.17: Comparison of statistics between spontaneous β-LFP and induced γ-LFP spatiotemporal waves.
(A) Synchrony was assessed by the circular standard deviation of zero-lag oscillation phase, for which

smaller values correspond to more synchronous states. Optogenetically induced ∼50 Hz gamma oscillations

in subject T (left panel) Lu et al. (2015) were associated with abrupt emergence of spatial structure in the

form of radiating waves, creating a state that was less spatially synchronized than the background activity.

In contrast, spontaneous beta ∼20 Hz oscillations in M1 of subject S (right panel) showed a tendency toward

increased spatial phase synchrony at higher amplitudes. This contrast suggests that the statistics of beta

oscillations di�er from those of an induced traveling wave in an excitable medium, indicating that beta

traveling waves are only one of many possible collective modes of beta oscillations in motor cortex. (B) A

comparison of the estimated wavelength of traveling waves between induced gamma in subject T (left) and

spontaneous beta in subject S area M1 (right): The analysis of traveling plane waves at beta frequency was

restricted to unambiguous plane wave events (circular standard deviation of the phase gradient direction

less than π/4, see Methods:‘Spatial gradient of the Hilbert phase’). Induced gamma oscillations emerged

abruptly with a characteristic wavelength of 2-4 mm. In contrast, spontaneous beta plane waves showed

varied wavelengths that correlate strongly with amplitude. Importantly, longer wavelength plane waves

displayed a high degree of spatial phase synchrony, suggesting that beta plane waves transitioned smoothly

from more complex wave patterns into globally synchronized activity.
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4.4 Discussion

In this Chapter , we characterized two spatiotemporal phenomena in motor cortex LFP:

spontaneous beta waves appearing during the steady-state periods of an instructed delay

task, and traveling gamma waves induced by optogenetic stimulation. To our knowledge,

our study is the �rst to report such systematic analysis of the range of spatiotemporal

waves in motor cortex. We found that beta wave activity in motor cortex was signi�-

cantly more diverse than previously reported. In particular, we observed that global syn-

chronization of beta phase occurred more frequently than traveling plane waves, and that

complex wave states like radiating and rotating waves were also present. Spatiotemporal

beta waves appeared as transient events with varied durations (sometimes up to several

hundred milliseconds). During a single transient, beta oscillations could transition sponta-

neously among di�erent spatial wave patterns, suggesting stochastic transitions between

spatiotemporal attractors in a multi-stable system. The analysis of datasets from optoge-

netically induced spatiotemporal gamma waves in primate motor cortex, �rst reported in

Lu et al. (2015), provided a clear reference for truly traveling waves in excitable media to

which to compare the spontaneous beta waves. These induced spatiotemporal patterns

were globally organized, consisting of radial waves or synchronous gamma oscillation

patterns. While spatiotemporal beta waves showed no characteristic spatial wavelength,

induced traveling waves exhibited a characteristic wavelength of 2-4 mm. This �nding

is consistent with the hypothesis that spatiotemporal beta oscillations during movement

preparation result from the synchronization dynamics of ongoing, local beta oscillations,

while the gamma waves are true traveling waves induced by a local optogenetic pertur-

bation.

We examined beta spatiotemporal dynamics in area PMv, a premotor area thought

to be involved in grasping but not previously studied in terms of beta spatiotemporal

waves, and found that it di�ered from that of areas M1 and PMd. In monkey S area PMv

exhibited complex wave activity, even during transient events in which beta power was
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elevated. In contrast, monkey R exhibited synchronous beta oscillations in PMv, showing

few plane waves. These results are intriguing as previous research has suggested that beta

phase relationships between motor cortical areas may relate to neural communication, but

the potential role of beta oscillations in mediating intra- and inter-areal communication

between PMv and M1 during grasping has not been studied. Area PMv does not appear

to exhibit the plane wave phenomena previously reported in M1 and PMd (Rubino et al.,

2006), but does exhibit organized radiating and rotating waves.

Variations in the statistics of spatiotemporal beta oscillations appeared to be closely

related to variation in beta amplitude. High beta states showed a tendency to be more syn-

chronous and exhibit more traveling wave states, while radiating, rotating, and complex

wave states occurred more frequently at lower beta power. Combined with the observa-

tion that the wavelength of plane waves correlates with beta amplitude in area M1, this

suggests that modulations in beta power are closely related to changes in lateral synchro-

nization, with higher beta power associated with more synchronous states. As the origins

of β-LFP in motor cortex remain unclear, we speculate that these observations may be

consistent with a number of scenarios which should be disambiguated in further studies.

It is possible that the recorded neocortical β-LFP oscillations have multiple origins,

re�ecting both local sources of beta rhythmicity (e.g. Kopell et al. (2011), Roopun et al.

(2006)), as well as cortico-thalamic interactions and beta rhythmic inputs from other brain

areas (e.g. Jones et al. (2009) for the case of beta in somatosensory areas). Changes in the

apparent spatial organization of motor cortex β-LFP may re�ect changes in the relative

contributions of these sources to the β-LFP signal. For example, a remote synchronous

source may mix with local, asynchronous beta oscillations. If �uctuations in beta power

re�ect mainly �uctuations in this synchronous source, it could explain the correlation

between beta synchrony and amplitude. However, the fact that we also observe that the

wavelength of plane waves in M1 correlates with beta amplitude would seem at odds

with this. These globally organized states cannot be explained as chance occurrences in

208



an otherwise asynchronous population, and it is therefore likely that changes in beta spa-

tiotemporal patterns re�ect changes in local network properties that in�uence the degree

of synchrony and the wavelength of traveling waves. It may be that beta-rhythmic ex-

ternal inputs, perhaps from thalamus or sensory cortex, act to synchronize ongoing beta

activity in motor cortex. These inputs would appear as transient increases in β-LFP power,

re�ecting currents associated with synaptic input, which may explain the correlation be-

tween the level of β-LFP power and the degree of spatial synchronization.

Alternatively, the variations in β-LFP power and beta spatiotemporal patterns may

arise intrinsically in motor cortex. For example, coupling between local ongoing sources

of beta may be higher when beta power is increased, leading to greater overall synchro-

nization. Conversely, when local beta oscillations become more synchronous, they would

be expected to interfere constructively and give rise to a larger LFP signal. Understanding

the mechanisms that give rise to variability in beta power and in beta spatiotemporal pat-

tern is important for understanding the role of beta oscillations in motor control, and for

better understanding how beta oscillations are induced or suppressed within the motor

system. If changes in motor cortex beta spatiotemporal LFP re�ect inputs from other brain

areas, they could be an important signature of coordinated activity of the motor system.

If these changes arise from local population dynamics, it is an interesting challenge to

understand how local dynamics could shift between di�erent beta states, and how these

local dynamics are modi�ed by inputs to motor cortex.

We examined optogenetically induced gamma waves in greater detail, and found sev-

eral phenomena not previously reported. We emphasize that these spatiotemporal gamma

patterns were not induced by periodic optogenetic drive of neuronal populations, but by

1-second constant light stimulation pulses. This fact suggest that gamma oscillations are

also a “natural mode” of the dynamics in motor cortex and that sustained gamma ac-

tivity may arise via a Hopf bifurcation (Lu et al., 2015). Furthermore, the optogenetic

response was extremely complex, consisting of up to four frequency bands at approx-
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imately 50, 70, 100, and 140 Hz. The frequency multiples 50 and 100 were not simply

Fourier harmonics, but consisted of the actual narrow band oscillations obvious to visual

inspection. Only the ∼50 Hz oscillation propagated away from the stimulation site as a

traveling wave, although spatial structure local to the stimulation site also existed in the

∼100 Hz band. These induced oscillations do not appear to interfere with ongoing beta

oscillations. Previous studies have suggested that beta oscillations arise from layer V and

gamma oscillations form layer II/III (Chen and Fetz, 2005; Murthy and Fetz, 1996a; Roopun

et al., 2006; Wetmore and Baker, 2004; Witham and Baker, 2007). One possibility is that

the optogenetic response involved mainly super�cial layers and did not interfere strongly

with ongoing beta activity in layer V. It is an open question whether existing models of

gamma oscillations can capture these spatial and temporal properties of such complex

multi-band optogenetic response. In addition, modeling the impact of optogenetic stimu-

lation on motor cortex populations will be an important next step in understanding and

controlling stimulation e�ects in motor cortex.

The contrast between the statistics of spontaneous beta and induced gamma waves

highlights di�erences in the neural mechanisms underlying these phenomena and may

provide constraints for spatially extended models of neural dynamics in motor cortex. As

mentioned above, ∼50 Hz gamma waves emerged with a 2-4 mm wavelength that varied

little with amplitude, and the emergence of gamma waves disrupted gamma-frequency

phase synchrony across the MEA. Spontaneous beta waves showed the opposite trend

of increased synchrony at higher amplitudes, and lacked a characteristic wavelength, in-

stead showing a gradual lengthening of plane waves at progressively larger amplitudes.

This observation is important because it is seemingly inconsistent with neural �eld mod-

els of waves that rely on Mexican-hat style lateral interactions and predict wave activity

emerging at a �xed spatial frequency (e.g. Ermentrout and Cowan 1979; Heitmann and

Ermentrout 2015; Rule et al. 2011). The wide variability in the spatial scale of beta spa-

tiotemporal activity is, however, consistent with a model in which beta waves arise from
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transient organization of the relative phases of local, ongoing beta oscillations. In con-

trast, the traveling gamma waves are consistent with a model of wave propagation in an

excitable medium, one where the wavelength is set by the properties of lateral interac-

tions.

The di�erence between spontaneous beta and induced gamma experiments should,

nevertheless, be interpreted cautiously. Some of the di�erences in the statistics of these

phenomena arise from the discrete and localized nature of optogenetic stimulation. The

optical stimulation abruptly creates a distinct network state, while neural activity during

spontaneous beta oscillations varies continuously. The optogenetic stimulation is local-

ized, while changes in network state giving rise to changes in beta dynamics may be

global. The reduced synchrony during optogenetic stimulation may be due to the fact

that the inputs to the system are spatially inhomogeneous. The lack of variability in the

scale of gamma waves may be particular to the �xed amplitude of stimulation, and further

studies should be conducted to thoroughly explore the relationship between stimulation

amplitude and the spatiotemporal structure of the optogenetic response.

Multielectrode array recording approaches have limitations that should be consid-

ered when interpreting analyses of spatiotemporal wave dynamics. Because neocortex is

curved, the depth of the electrodes could change signi�cantly across the array. The phase

of motor cortex beta varies across layers (Murthy and Fetz, 1996a), and so changes in the

depth of the electrodes could translate to a phase gradient in the MEA recordings that

mimics a traveling wave. This scenario cannot yield rotating or complex waves, and so

cannot explain away several of the important beta and gamma wave patterns we reported

here. It may, however, bias estimates of spatial structure in LFP oscillations. Additionally,

there remains some ambiguity as to the thickness of m. mulatta motor cortex, as well

as the extent to which these MEA implants may compress or cause thinning of cortex.

Future histology of the implanted neocortical patches may resolve this issue.

β-LFP oscillations exhibited considerable variability in amplitude, and LFP phase is
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di�cult to interpret at lower amplitudes, both due to reduced signal-to-noise and because

changes in amplitude and phase of the analytic signal are ambiguous when the ampli-

tude is changing rapidly. Neural signals from MEAs are complex, and exhibit structure in

time, frequency, space, and spatial frequency, which are interrelated. Further work is nec-

essary to clarify the methods surrounding LFP phase extraction, and it remains unclear

whether descriptions of spatiotemporal dynamics based on phase alone are su�cient. In

light of the complex multi-band spatiotemporal dynamics observed in optogenetically in-

duced gamma waves, the phase of a single narrow-band oscillation may not always be

su�cient to capture spatiotemporal wave dynamics. In contrast to previous studies, here

we have explicitly, if brie�y, taken into account potential relationships between ampli-

tude and phase in spatiotemporal beta waves. Further research addressing this issue, and

improvements in the joint analysis of spatiotemporal changes in phase and amplitude,

would be bene�cial. Our preliminary analysis suggests that the complex Gaussian distri-

bution over channels may be a promising alternative to analyzing population activity in

neural oscillations with �uctuating amplitudes and phase organizations. Another possi-

bility would be to incorporate a phase-amplitude coupling term. The approach used in

Kempter et al. (2012) to describe joint relationships between linear position and the phase

of hippocampal theta oscillations may be useful in jointly describing amplitude and phase.

A more thorough study of how such approach may complement phase gradient methods

would be welcome.

It has been suggested that spatiotemporal waves in cortex may mediate and coordinate

information �ow ( e.g. Lubenov and Siapas (2009); Rubino et al. (2006); Takahashi et al.

(2011); Wu et al. (2008a)), or at least be an epiphenomenal correlate of neural communi-

cation (e.g. Besserve et al. (2015)). Spatiotemporal waves occur in motor cortex in both

spontaneous beta oscillations and the induced gamma oscillations studied here. Previ-

ous studies have linked spontaneous beta waves to spiking communication (Rubino et al.,

2006; Takahashi et al., 2015, 2011). The diversity of beta spatiotemporal states observed
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here, as well as the paucity of traveling waves in area PMv in both subjects, calls into ques-

tion the simple explanation that planar beta traveling waves mediate inter-area commu-

nication during the preparation of reaching and grasping actions. Further work is needed

to investigate the implications of this diversity, especially understanding the functional

roles of traveling waves vs globally synchronized states, which both occur during high

beta power. Additionally, the relationship between spatiotemporal organization of beta

and modulation in beta amplitude may hold important clues as to how beta power is mod-

ulated in motor cortex, and how changes in beta power impact neural computation and

communication. The observation that motor cortex beta phase can exhibit complex spatial

dynamics has implications for our understanding of collective dynamics and single-unit

activity in motor cortex. In particular, the relationship between complex phase dynam-

ics and single-unit spiking still needs to be clari�ed (Okun et al., 2015). Additionally,

traveling waves may contribute to single-unit spiking variability. The �ndings reported

here are consistent with the hypothesis that beta traveling waves arise from phase gra-

dients between local oscillators. Further research should clarify the extent to which beta

spatiotemporal activity represents a coupled oscillator phenomenon as opposed to a prop-

agating wave phenomenon. In addition, understanding the neuronal network response to

optogenetic perturbations will be an important challenge for incorporating optogenetic

tools into primate motor cortex research.
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Chapter 5

Conclusion
Michael Rule

This thesis investigated collective neural dynamics in primate motor cortex during two

di�erent motor control states: movement execution and preparatory steady-states. Chap-

ters 2 and 3 addressed the relationship between single-unit activity and collective dy-

namics re�ected in local �eld potentials during movement and steady-states, respectively.

Chapters 3 and 4 explored collective dynamics related to beta oscillations in preparatory

steady-states, with Chapter 4 focusing on the organization of spatiotemporal wave pat-

terns in beta phase across motor cortex.

To review the main results, Chapter 2 found that, although information available in

multi-band LFPs can predict single neuron spiking with substantial accuracy during move-

ment, this information is largely redundant to the information available in the movement

kinematics. In particular, during movement, collective neural dynamics re�ected in lo-

cal �eld potentials predominantly relate to two components of neuronal variability: fast-

timescale spiking history e�ects, and slow dynamics related to movement generation.

Chapter 3 found that rhythmic spiking in individual neurons can be dissociated from

population beta oscillations, and raised several interesting questions about steady-state

neural dynamics. Chapter 4 found that spatiotemporal dynamics in motor cortex local
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�eld potentials are more complex than previously appreciated, and reports several obser-

vations that should be explored in future studies as well as additional methodological and

theoretical research.

To restate the context of this work, it is hypothesized that the motor system acts collec-

tively as a dynamical system to generate the slow, low-dimensional trajectories needed

for movement execution. During such kinetic states, narrow-band beta oscillations are

suppressed, and large deviations in multi-unit activity and local �eld potentials can be

observed. In contrast, steady-states in motor cortex re�ect attention, posture, stabilized

force, and instructed delays, and exhibit transient bursts of ∼20 Hz beta oscillations. Pre-

vious studies have found that the output neurons in motor cortex can support intrinsic

beta rhythmicity, but the signi�cance of this mechanism remains unresolved as several

other mechanisms may contribute to beta oscillations.

Both motor kinetic and steady-states are of general interest. The mechanisms by

which stochastic fast-timescale spiking acts collectively to generate robust slow-timescale

dynamics are a subject of ongoing research. Slow dynamics of movement execution may

be representative of spontaneous and stimulus-evoked processing in frontal cortex. Move-

ment preparation steady-states constitute stabilized neural activity over long timescales,

but whether such states are related to the beta oscillations that have been proposed to

support working memory is unknown. Although beta oscillations are a correlate of the

‘status quo’, how beta oscillations facilitate both stabilization of motor steady-states and

maintenance of rate-coded information about planned upcoming movements remains to

be clari�ed. Steady-states employ cortical “re�ex arcs” for stabilization and therefore must

be compatible both with active sensorimotor processing and the stabilization of local �r-

ing rate information.

Chapter 2 found that the predictive information about spiking variability contained in

motor cortex local �eld potentials was redundant to information available in kinematics

trajectories (‘pathlets’) and intrinsic spiking history. The existence of kinematics-related
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variability in both LFPs and single neuron spiking does not imply that kinematics is the

only source of shared variability between the two. Shared variability between LFP and

spiking may arise from intrinsic, and spontaneous neural dynamics. Understanding the

relationship between LFP and spiking is of particular interest as local �eld potentials are

thought to contain signatures of synaptic input averaged over a population. Because

motor cortex presumably performs nontrivial transformation on its inputs, it is surpris-

ing that LFPs did not contain complementary information explaining spiking variability.

Some have theorized that motor cortex forms a recurrent dynamical loop with deep brain

structures that operates collectively for pattern generation. If this is the case, then inputs

to motor cortex re�ected in LFP would relate to this dynamical state. The LFP could (at

least partially) re�ect cortical inputs, but if the sources of these inputs are part of a recur-

rent dynamical system for movement generation, such signals would relate to past and up-

coming kinematic output re�ected in ‘pathlets’, and therefore be redundant to kinematics

features for the purpose of explaining neural variability. Chapter 2’s result that stochas-

tic fast-timescale e�ects can be accounted for by both local �eld potentials and spiking

history is also relevant to brain machine interfaces, which at present typically smooth

spiking signals to extract the slow-timescale signals related to motor output. Lower la-

tency decoders may bene�t from actively modeling fast-timescale e�ects to dissociate

movement-related and stochastic-history related variability.

An open question raised in Chapters 2 and 3 is the signi�cance of neurons in motor

cortex that exhibit thin extracellular spikes. Narrow spikes are assumed to relate to fast

repolarizing currents that allow cells to sustain high �ring rates, a feature associated with

inhibitory interneurons. Future studies are needed to determine whether motor cortex

thin-spike cells are in fact PTNs related to driving fast-twitch muscle activity. Methods

for separating fast-spiking pyramidal tract neurons from putative inhibitory interneurons

are needed. While thin- and thick-spike cells showed little di�erence in their relationship

to collective dynamics investigated here, they may show very di�erent relationships to
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kinematic output, which may be important for decoding and brain-machine interfaces.

We �nd in Chapter 3 that preparatory steady states (1) exhibit transient periods of

beta-LFP power of variable duration, (2) are associated with sustained rhythmic spiking

distributed between 10 and 45 Hz, which (3) does not show a stable phase relationship to

the concurrent beta-LFP. We have also shown in Chapter 4 that movement preparation

steady-states (4) exhibit changes in beta spatiotemporal dynamics, including increased

spatial synchrony, smaller phase di�erences between adjacent electrodes, and less com-

plex wave activity, and (5) exhibit a correlation between beta amplitude and the spatial

scale of planar wave activity. All of these observations will need to be accounted for

in future work toward models of how the motor system solves a variety of motor con-

trol problems, including (1) goal-dependent slow �ring rate trajectories for movement

execution, (2) steady-state stabilization of information in local �ring during preparatory

steady-states, and (3) facilitation of re�exive, stabilizing sensorimotor computations for

motor steady-states. The mechanisms underlying the stabilization of �ring rates during

preparatory steady-states in particular remain elusive. It is unclear whether the observed

LFP dynamics emerge as spatial averages over the beta rhythmic single-neurons recorded

on the same electrode, and further experiments with laminar probes and current source

density analysis will be important for addressing this. An intriguing �nding in Chapter 3

was that transient �uctuations in beta-LFP oscillations do not appear to a�ect �ring rates

of single units exhibiting beta-rhythmic spiking, indicating that separate neural mecha-

nisms modulate the degree of beta oscillations at the level of single neurons verses the

local �eld potential.

The results in Chapters 3 and 4 lead to a number of conjectures about the nature of

collective dynamics at beta frequency during preparatory steady-states. It is possible that

beta-LFP oscillations arise as averages over the activity of weakly coupled beta-rhythmic

single neurons, each �ring at a slightly di�erent rate, and that the high amplitude beta

events arise when these phases transiently align. The primary reason that we see more
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synchrony at higher amplitudes is that synchronized local oscillations sum constructively

to yield a large amplitude signal. However, we did not �nd increases in single-unit phase

coupling during high-beta states, either pairwise between neurons or between neurons

and the LFP. It is possible that we did not have enough statistical power to detect weak

e�ects in single-neurons that create a large e�ect at the population level. Conversely,

beta amplitude �uctuations may have a causal role in modulating spatial phase diversity

in LFP across motor cortex. Changes in the magnitude of beta oscillatory activity may

alter the strength of lateral phase-resetting interactions, promoting or inhibiting spatially

synchronized states. This hypothesis is similar to the models proposed in Heitmann et

al., and the similarities and di�erences between the beta dynamics we observe, and the

phase model outlined in the Heitmann papers, warrant further discussion. There remains

the possibility that an extrinsic, synchronized source of beta oscillations mixes with local

asynchronous beta activity. This would be the case if beta transients re�ect shared sub-

cortical or cortico-cortical input. However, the beta wave activity in monkey S area PMv

displays a diversity of globally organized states, including complex states at high beta am-

plitudes. We would not expect such a diversity in beta spatiotemporal patterns at high am-

plitudes if the variation in beta amplitude were due entirely to changes in the magnitude

of a synchronized source. Additionally, plane waves involve a high degree of order, and

are incompatible with random asynchronous activity. These plane waves exhibit longer

wavelengths at higher amplitudes, indicating that the correlation between beta synchrony

and amplitude may in�uence the lateral interactions that give rise to plane waves. The

di�erent spatiotemporal states, (complex waves, plane waves, synchrony) may represent

various possible modes of the beta dynamics, and the synchronized states simply exhibit

higher amplitudes. This might be expected in the presence of self-excitatory connections,

where phase-locking of lateral excitation increases its e�cacy. Further experiments and

modeling are needed to evaluate these hypotheses. In particular, the relative contribution

of intrinsic spiking rhythmicity verses local and lateral network interactions in sustaining
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beta oscillations needs to be clari�ed.

The characterization of beta spatiotemporal wave activity in Chapter 4 also constrains

candidate mathematical and biophysical models of motor cortex, particularly the relation-

ships between various statistics of beta spatiotemporal wave structure. We observed vari-

ability in the spatial scale of beta spatiotemporal activity, seemingly inconsistent with any

models that require �xed center-surround inhibitory interactions for wave emergence. We

suggest that the diverse spatiotemporal patterns seen in beta waves represent transient

spatial organization of the relative phases of local ongoing beta oscillations, and hypothe-

size that the statistics of the observed beta traveling waves are inconsistent with true trav-

eling waves propagating through an excitable medium. Models for transitions between

wave states that involve not only phase but also shifts in the joint amplitude-phase dis-

tribution should be investigated. The characterization of optogenetically induced gamma

oscillations presented here is of interest both as an example of complex, multi-band spa-

tiotemporal neural activity, and as a contrasting example to suggest that various wave

mechanisms (traveling, oscillatory phase gradients, propagation delays) may be distin-

guished by observing their spatiotemporal statistics. Clarifying the extent to which the

statistics of spatiotemporal wave activity can constrain underlying network models is a

promising avenue of future theoretical research.

In summary, this thesis addressed questions related to collective neural activity in

primate motor cortex during movement execution and preparatory steady-states, exam-

ining the relationship between spiking and LFP, as well as spatiotemporal structure in LFP

across motor cortex. Open questions remain in understanding the relationship between

spiking and LFP, especially during preparatory steady-states. Of personal interest to me is

understanding how rhythmic neural spiking at heterogeneous �ring frequencies can give

rise to the collective beta oscillations in local �eld potentials, and whether the lack of sta-

ble phase relationships and diverse �ring frequencies has functional importance, perhaps

in phase coding or in binding together neural assemblies for maintenance of preparatory
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states. Additionally, I would like to understand whether the complex spatiotemporal wave

dynamics that we observe in beta LFP are functionally signi�cant. Neuroprosthetics based

on cortical stimulation would bene�t from understanding how to control the variations

in beta phase across motor cortex, especially if the spatial organization causally impacts

the neural dynamics. Likewise, I am excited by the possibilities of optogenetic stimula-

tion to investigate population responses in motor cortex. This thesis demonstrates that

the response to optogenetic stimulation in neocortical patches is nontrivial, and further

experiments and modeling work will be needed before we can begin to use closed-loop

optogenetic stimulation in a controlled way in motor cortex.

Overall, I view this thesis as work toward better treatments for movement disorders

that use closed-loop spatiotemporally patterned electromagnetic and optogenetic stimu-

lation. By understanding collective dynamics of the motor system, I hope that we can de-

velop interventions that restore normal motor function with fewer side-e�ects. Of course,

understanding the mechanisms of primate motor control also has broader philosophical

implications. Understanding the neural basis of spontaneous movement touches on the

nature of volition, and can inform our development of arti�cial intelligences that mimic

the complex behavior of animals. To me, personally, these broader impacts are secondary

to the potential for neuroscience research to improve the quality of life for patients with

neurological impairments that are too complex to treat with current methods. The re-

search presented here is several steps removed from translational applications, but I be-

lieve that we must invest in research at all levels of abstraction if we are to make progress.

The results presented in this thesis contribute to our basic understanding of the motor

system, and are a step forward toward future clinical investigations.
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