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Abstract

During development, biological neural networks produce more synapses and neurons
than needed. Many of these synapses and neurons are later removed in a process known
as neural pruning. Why networks should initially be over-populated, and processes that
determine which synapses and neurons are ultimately pruned, remains unclear. We study
the mechanisms and signi�cance of neural pruning in model neural network. In a deep
Boltzmann machine model of sensory encoding, we �nd that (1) synaptic pruning is nec-
essary to learn e�cient network architectures that retain computationally-relevant con-
nections, (2) pruning by synaptic weight alone does not optimize network size and (3)
pruning based on a locally-available proxy for "sloppiness" based on Fisher Information
allows the network to identify structurally important vs. unimportant connections and
neurons. This locally-available measure of importance has a biological interpretation
in terms of the correlations between presynaptic and postsynaptic neurons, and implies
an e�cient activity-driven pruning rule. Overall, we show how local activity-dependent
synaptic pruning can solve the global problem of optimizing a network architecture. We
relate these �ndings to biology as follows: (I) Synaptic over-production is necessary for
activity-dependent connectivity optimization. (II) In networks that have more neurons
than needed, cells compete for activity, and only the most important and selective neu-
rons are retained. (III) Cells may also be pruned due to a loss of synapses on their axons.
This occurs when the information they convey is not relevant to the target population.

1 Introduction

The number of neurons and synapses initially formed during brain development far exceeds
those in the mature brain (Innocenti and Price, 2005). Up to half of the cells and connections are
lost due to pruning (Huttenlocher et al., 1979; Huttenlocher and Dabholkar, 1997; Oppenheim,
1991; Stiles and Jernigan, 2010; Petanjek et al., 2011; Yuan and Yankner, 2000). This maturation
process through initial over-growth and subsequent reduction suggests that the optimal wiring
of the brain cannot be entirely predetermined. Instead, experience-dependent plasticity allows
for a topological re�nement of neural circuits, thereby adapting to the animal’s environment
(Johnston, 2004). The removal of unneeded neurons and synapses reduces the high costs of
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the brain in terms of material and metabolism (Bullmore and Sporns, 2012). Pruning may
also help to amplify neuronal signals against synaptic noise and support competition among
synapses, thereby improving input selectivity (Neniskyte and Gross, 2017). Pathological over-
pruning, however, may result in neuronal dysfunction, manifesting as cognitive impairments
and clinical disorders such as schizophrenia (Feinberg, 1982; Johnston, 2004; Sekar et al., 2016;
Sellgren et al., 2019). There seems to be a sweet spot between pruning and over-pruning for
the brain to remain adaptive and resilient against damage.

What characterizes the cells and synapses that survive as opposed to the ones that die? A
key factor for survival is neuronal activity. Initially, spontaneous activity is thought to drive
survival. The re�nement of cortical circuits then relies increasingly on sensory-driven and
thus experience-dependent neuronal activity (Katz and Shatz, 1996). Neurons are thought to
compete to activate target neurons in order to receive trophic supply (Oppenheim, 1989; Bon-
hoe�er, 1996; Lo, 1995). Although highly active presynaptic neurons are favored in this compe-
tition, the strengthening of connections also depends on coincident activity of the postsynaptic
neuron. For instance, when postsynaptic cells in the primary visual cortex were pharmaco-
logically inhibited, their more active a�erents were weakened (Hata et al., 1999). Activity-
dependent plasticity is thus based on bidirectional signaling between the presynaptic neuron
and the postsynaptic neuron.

In this work, we employ Restricted Boltzmann Machines (RBMs) (Smolensky, 1986) as an
arti�cial neural network model to study activity-dependent pruning. Similar to neuronal sen-
sory systems, RBMs extract and encode the latent statistical causes of their inputs. Bernoulli
RBMs consist of two layers of stochastic binary units, resembling the spiking of neurons. The
visible units correspond to sensory input, while the hidden units encode a latent representa-
tion of this data. By adjusting their hidden representations as to maximize the likelihood of
the data (Hinton, 2002), RBMs learn in an unsupervised fashion that resembles the Hebbian
learning seen in neural networks (Whittington and Bogacz, 2017; Kermiche, 2019). RBMs have
been used as statistical models of sensory coding (Zanotto et al., 2017; Gardella et al., 2018; Rule
et al., 2020). Furthermore, multiple RBMs can be stacked to build a Deep Boltzmann Machine
(DBM) (Hinton and Salakhutdinov, 2006) to model the hierarchical, bidirectional computation
of the visual system (Hochstein and Ahissar, 2002; Turcsany et al., 2014). Such DBM models
have been used, e.g., to explore how loss of input could lead to visual hallucinations in Charles
Bonnet Syndrome (Reichert et al., 2013).

Here, we explore several local and biologically plausible rules for iteratively pruning unim-
portant synapses and units from DBM networks. Many models of neural pruning simply re-
move small synaptic weights (Chechik et al., 1998; Han et al., 2015; Mimura et al., 2003). How-
ever, magnitude need not equal importance, and small weights can be necessary to maintain
a small error (Hassibi et al., 1993). A more theoretically grounded measure of synapse impor-
tance may lie in the activity of individual neurons and their correlations (Iglesias and Villa,
2007).

Information-theoretic approaches to network reduction provide a principled starting point.
For example, the Optimal Brain Surgeon algorithm (LeCun et al., 1990) estimates each param-
eter’s importance by perturbing its value and re-evaluating an error function: low changes
in error indicate redundant, uninformative parameters. This curvature with respect to small
parameter changes is given by the Hessian of the error function, and is locally approximated
by its negative, the Fisher Information Matrix (FIM). To reduce computational complexity, Op-
timal Brain Damage (as opposed to Optimal Brain Surgeon (Hassibi et al., 1993; Hassibi and
Stork, 1993; Dong et al., 2017)) makes the simplifying assumption of a diagonal Hessian matrix.

Fisher Information (FI) based estimates of parameter importance have recently been used
to overcome catastrophic forgetting in arti�cial neural networks (Kirkpatrick et al., 2017). In
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contrast to identifying parameters worth keeping, we aim to identify parameters worth re-
moving. For RBMs, the diagonal of the FIM can be estimated locally based on the �ring rates
of units and their coincidence (Rule et al., 2020; Deistler et al., 2018). In principle, this estimate
of parameter importance is available to individual synapses and neurons, and could thus guide
the search for e�cient representations during neurodevelopmental pruning.

We organize the results as follows: �rst, we introduce our estimates of synaptic importance
based on locally-available activity statistics. Next, we discuss the overall network curvature
and demonstrate that important synapses centre on overall highly informative neurons. Based
on these observations, we introduce local pruning rules to iteratively remove synapses and
neurons from RBMs and DBMs that were trained on image patches from two di�erent data
sets. We evaluate the �t of the pruned models across di�erent pruning criteria by assessing
their generative and encoding performance. Finally, we discuss the biological plausibility of
our activity-dependent pruning rules by comparing them to alternative rules used in our own
and related work and provide implications of our �ndings.

2 Results

2.1 An activity-dependent estimate of Fisher Information

The goal of this work is to derive and use a local pruning rule to reduce network size and
identify a relevant network topology in RBMs and DBMs. By relevant network topology we
mean a topology that closely matches computation, in the sense that it only includes neurons
and synapses that are relevant for the task at hand. In our experiments this task is the encoding
of visual stimuli in hidden representations of RBMs and DBMs. RBMs are energy-based models
whose energy function is given by:

�
q

v,h = −
=E∑
8=1

1E8 E8 −
=ℎ∑
9=1

1ℎ9ℎ 9 −
=E∑
8=1

=ℎ∑
9=1

F8 9E8ℎ 9 , (1)

where E8 stands for visible unit 8 , ℎ 9 stands for hidden unit 9 and F8 9 for the bidirectional
weight connecting them. The biases 1E8 and 1ℎ9 correspond to the excitability of a neuron. All
weights and biases make up the parameter set q = {W, bv, hh}. As we work with Bernoulli
RBMs, all neurons are binary: they are either �ring (1) or silent (0).

The Hessian of the objective function of a model gives information about the importance
of parameters and can be used for pruning (LeCun et al., 1990; Hassibi et al., 1993). It can
be locally approximated by its negative, the FIM. However, for FI to be a suitable indicator
for self-relevance to biological neurons, it must also be available locally at each synapse. This
rules out using the full FIM, since this requires information about the connectivity of the whole
network. Presumably, neurons in the brain use a local heuristic that can be computed based
on information available to single synapses. It was recently shown that local activity statistics
indeed correlate with importance as assessed by FI (Rule et al., 2020). In the case of the RBM
this correspondence is exact; an entry of the FIM for an RBM has the form (Rule et al., 2020):

�8 9 (q) =
∑
v,h

%v,h
m2�v,h

mq8 mq 9
(2)

The FIM locally approximates the Kullback–Leibler divergence between the model distri-
bution under the current parameter set q and the model distribution when a pair of parameters
q8 and q 9 is slightly perturbed. When �8 9 tends towards zero, the two parameters q8 and q 9 are
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redundant. Through sampling we can average over %E,ℎ . For instance, for two weightsF8 9 and
F: 9 connecting a presynaptic to a postsynaptic neuron, respectively, we get (Rule et al., 2020):

�F8 9 ,F:; = 〈E8ℎ 9E:ℎ; 〉 − 〈E8ℎ 9 〉〈E:ℎ; 〉 (3)

The resulting entries of the FIM depend on coincident �ring of pre- and postsynaptic neurons
and are arguably locally available.

2.2 Large encoding models have many poorly speci�ed parameters

In a �rst line of experiments, we inspected the curvature of the energy landscape of overcom-
plete models that had more latent units than needed to encode the visible stimuli. We started
by �tting overcomplete RBMs to circular, binarized patches sliced out of images of natural
scenes (see Figure 1 A). Parameter-wise FI was computed by our activity-dependent estimate
of FI from Equation 2 (see Appendix A.1 and (Rule et al., 2020)). For these relatively small mod-
els, we computed the full FIM, which typically turned out to be sparse (see Figure 1 B). This
indicates that large encoding models indeed have many poorly speci�ed parameters, which
can be safely removed from the model.
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Figure 1: (A): Preparation of dataset and general model architecture: circles of di�erent radii were sliced out of
CIFAR-10 images and binarized. The pixels corresponded to the visible units of a standard RBM with one hidden
layer. (B): FI for an exemplary over-parameterized RBM initialized with =E = 13 visible units and =ℎ = 70 hidden
units. The FIM is sparse, indicating many irrelevant parameters. (C): Normalized parameter importance estimated
from the �rst eigenvector of the FIM, separately for the weights (matrix), the hidden biases (horizontal), and visible
biases (vertical) (D): Normalized parameter importance directly estimated from the diagonal entries of the FIM.

The sparseness of parameter-wise FI is also evident from a visualization of the �rst eigen-
vector and the diagonal of the FIM, separately for the weights, hidden biases and visible biases
(see Figure 1 C and D). Furthermore, the eigendecomposition of the FIM revealed that the
largest eigenvalue is larger than the second largest eigenvalue by an order of magnitude (�rst
eigenvalue 23.97, second eigenvalue 1.60).

The correspondence between parameter importance estimated from the �rst eigenvector
and from the diagonal supports our use of Optimal Brain Damage for larger models, when
computing the full FIM was no longer feasible. Strikingly, the important weights typically
aligned with few hidden units and their biases. This structure of the FIM suggests a separa-
tion into important hidden units and unimportant ones. It follows that FI motivated pruning
likely leads to entire units becoming disconnected, which would allow their removal from the
network. This would correspond to neuron apoptosis after excessive synaptic pruning.

Overall, these empirical investigations reveal that there are only few overall important
units, and that important weights align with them. This con�rms that parameter importance
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as revealed by the FIM contains meaningful information for pruning, and that synapse pruning
can eventually lead to the pruning of whole neurons that lack relevant a�erent or e�erent
connections.

2.3 Local pruning rules based on parameter-wise Fisher Information

We now present our results of applying the local estimate of FI we introduced above as a crite-
rion to prune RBMs. We started by removing poorly speci�ed, unimportant weights according
to di�erent pruning criteria. For a pruning criterion based on the full FIM, we used the weight-
speci�c entries of its �rst eigenvector as a direct indicator of weight importance. Next, we used
our local estimate, where we considered the FIM diagonal only, as suggested by Optimal Brain
Damage.

Computing the diagonal entries of the FIM corresponds to Equation 3, when the two mod-
i�ed parameter values are the same (F8 9 = F:; ). It captures the e�ect on the error when we
modify a single parameter instead of a parameter pair at a time. For the FI of the weights, the
equation thus simpli�es to (Rule et al., 2020):

�F8 9 ,F8 9 = 〈E28 ℎ29 〉 − 〈E8ℎ 9 〉2

= 〈E8ℎ 9 〉(1 − 〈E8ℎ 9 〉),
(4)

where E28 and ℎ29 simplify to E8 and ℎ 9 , respectively, because neural activation is binary.
In this scheme, weight importance is estimated from the covariance of a pre- and post-

synaptic neuronal �ring. This variance estimate of FI is both activity-dependent and locally
available, and is therefore a biologically plausible indicator of synapse importance. However,
neurons need not track this covariance explicitly. Activity-driven pre-post correlations in�u-
ence synaptic weights and vice versa. As a result, statistical quantities relevant to pruning
can be encoded in the synaptic weights themselves. In Appendix A.2 we derive a mean-�eld
approximation of the pre-post correlations that depends only on the synaptic weight and the
mean �ring rates of the presynaptic and postsynaptic neuron. This o�ers a proof of principle
that locally-available quantities can provide the signals needed for a synapse (and by extension
a neuron) to assess its own importance in the network. We refer to this alternative FI-based
pruning rule as the heuristic FI estimate (as opposed to the variance FI estimate).

For our synaptic pruning experiments, we ranked weights according to their importance
assessed by one of the aforementioned local estimates, or by the �rst eigenvector of the FIM.
We then iteratively deleted half of the weights with lowest estimated importance, while mon-
itoring model �t. Unconnected hidden units were removed from the model. Absolute weight
magnitude, random pruning and removal of the most important weights ("Anti-FI" pruning)
served as reference criteria for pruning. Figure 2 shows the model’s generative performance
over the course of three pruning iterations, evaluated immediately after pruning and after
allowing for retraining.

Generally, excessive pruning was detrimental to generative performance, yet retraining
repeatedly rescued the pruned model: with moderate amounts of pruning, training restored
network performance irrespective of the pruning criterion. In biological neural networks, on-
going training occurs continuously alongside activity-driven pruning, so a period of retraining
following pruning is plausible. The network performance immediately following pruning dif-
fered depending on the pruning criterion and the number of remaining weights. Performance
remained relatively stable in the �rst iteration of pruning, but was adversely a�ected later: the
smaller the model, the more it su�ered from pruning. With decreasing model size the e�ect of
di�erent pruning criteria became more pronounced, as we shall show next. Anti-FI pruning
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Figure 2: Rank-frequency plots for generated patterns by a pruned RBM which initially had =E = 13, =ℎ = 70,
and =F = =E × =ℎ = 910 weights. Half of the weights were removed in each of three pruning iterations. For all
pruning strategies except Anti-FI pruning the model retains the ability to match the distribution of the training
data (dashed lines) after retraining, indicating good generative performance.

clearly damaged the network’s generative performance even in the �rst iteration of pruning,
especially for rare patterns. Interestingly, random pruning barely a�ected the generative per-
formance.

Pruning criterion =F = 910 (full model) =F = 455 =F = 227 =F = 113

Variance FI 70 69 50 9
Heuristic FI 70 61 50 10

First eigenvector 70 65 48 9
|w| 70 70 62 35

Random 70 70 68 60
Anti-FI 70 57 49 35

Table 1: Di�erences in numbers of remaining hidden units =ℎ in the RBM. During each of the three pruning
iterations half of the weights were removed according to di�erent criteria. =F describes the remaining weights at
a time. The cells contain the number of neurons after each pruning iteration.

A reason for this may lie in the number of hidden units that became disconnected through
pruning. Table 1 compares the number of remaining hidden units =ℎ against the number of
remaining weights =F , separately for each pruning criterion. While the number of remaining
weights =F after each pruning event was kept equal across pruning criteria, there was a great
di�erence in the number of units that became disconnected from repeated weight pruning. FI
typically concentrated on few hidden units (see Figure 1), contrasting them with units of low
overall importance. Such uninformative units were left disconnected after repeated pruning
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iterations. The sudden loss of many units damaged the model’s generative performance imme-
diately after pruning, but performance recovered with retraining. In contrast, random pruning
uniformly deleted weights from all units such that only few became disconnected. Pruning the
largest weights (weight magnitude) and most important weights (Anti-FI) also kept more hid-
den units in the model, making the �nal encoding less e�cient than the one achieved through
FI-motivated pruning.

In sum, for all pruning strategies (except Anti-FI pruning, which removed a large fraction
of important weights), the network could recover from the loss of weights and units through
retraining (Liu et al., 2018; Crowley et al., 2018). However, the resulting latent representations
di�ered: the number of disconnected neurons varies strongly between the pruning methods.
This in turn may a�ect subsequent read-out from these representations, an e�ect we will in-
vestigate next using deep networks.

2.4 FI-guided pruning retains useful deep encoding

Above, we demonstrated an iterative approach of pruning weights from RBMs while moni-
toring their �t from the frequency of its generated patterns. In line with results by (Liu et al.,
2018; Crowley et al., 2018), pruned networks generally required retraining. In small RBMs that
encoded simple visual patterns, retraining could always compensate for the loss of synapses,
regardless of the pruning criterion. However, we found that FI pruning, as opposed to pruning
small weights, can reduce the cost of the network in terms of the number of remaining neu-
rons. This supports the view that the function of pruning is to �nd an appropriate architecture,
rather than speci�c parameter con�gurations.

To investigate the e�ect of the pruning method on the latent representation, we increased
the complexity of the model architecture by adding another hidden layer, resulting in a DBM.
We trained this multi-layer model on a labeled dataset to better quantify the �t of the model
and quality of the latent representation during iterative pruning.

Speci�cally, we used the MNIST handwritten digits dataset (LeCun et al., 2010), and tested
both the generative and classi�cation performance using the latent activations. To measure
encoding quality, we compared the accuracy of a logistic classi�er trained on the stimulus-
evoked activity in the latent units ("encodings") to one trained on the raw digits. To evaluate the
generative performance, we asked a classi�er trained on the raw digits to categorize samples
and predict probabilities of them belonging to each digit class. These were summarised as
digit-wise quality scores and diversity scores for the generated patterns (see Methods).

Each image of the dataset was binarized and scaled to 20×20 pixels. To simplify computa-
tion and add biological realism, we restricted the receptive �elds of each unit in �rst hidden
layer h1 to a small region of the visible inputs. To encode digits, the network was therefore
forced to combine these lower-level features in the second hidden layer h2 (see Figure 3 A). We
then assessed encoding quality based on the accuracy of a classi�er applied to the stimulus-
driven activity in the deepest hidden network layer. Figure 3 B shows the classi�cation errors
over the course of 10 pruning iterations according to di�erent criteria. Before pruning, the
classi�er performed better using the latent states of the trained network compared to the raw
digits.

On each iteration, the 10th percentile of weight-speci�c FI or absolute weight magnitude
was computed. In practice, more than 10% of FI estimates were often zero. In this scenario,
we instead pruned all synapses with zero importance. Units of the intermediate layer h1 that
became disconnected from either side (v or h2), were completely removed. Thus, the total num-
ber of deleted weights may be larger than speci�ed by the importance measure as a secondary
e�ect.
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Figure 3: (A): Data representation and DBM architecture. MNIST digits were cropped and binarized. Each unit
from hidden layer h1 had an individual receptive �eld covering neighboring input pixels; h2 was fully connected.
Only few connections are shown due to clarity. The classi�er was trained on latent encodings from h2. (B):
Classi�cation error of a logistic regression classi�er trained on h2 samples as a function of remaining weights =F .
The dotted line stands for the baseline error of a classi�er trained on the raw digits. (C): Number of latent units in
h1 and h2 as a function of remaining weights over the course of ten iterations of pruning. (D): Final visible layers
after pruning according to di�erent criteria. Black pixels denote disconnected units.

Similarly to the results for the single-layer RBM, pruning a modest number of DBM pa-
rameters and retraining did not have a dramatic e�ect on the latent encoding, as measured by
the classi�cation error (Figure 3 B). Performance usually decreased immediately after pruning
(not shown), but could be compensated for through short retraining. With successive pruning
iterations, performance decreased steadily. Interestingly, pruning according to absolute weight
magnitude retained a useful encoding for the classi�er; its error even decreased in the course
of ten pruning iterations. Yet the e�ective number of weights removed in this case was small,
and very few units were disconnected.

In contrast, removing randomly selected weights led to rapid degradation, and removing
important weights (Anti-FI pruning) was particularly harmful: classi�cation performance de-
teriorated after the �rst pruning event, and remained below chance even with retraining. This
suggests that Anti-FI pruning causes a loss topologically relevant neurons. Visualizing the
pixels corresponding to the remaining units in the visible layer v after 10 pruning iterations
in Figure 3 D shows this clearly: While FI-based pruning correctly disconnects pixels at the
boundaries where images contain no information, Anti-FI pruning removes links to the central
pixels most useful for digit classi�cation.

Figure 3 C shows the number of remaining units as a function of remaining weights in the
two latent layers of the DBMs. The di�erence in the number of lost units agrees with with what
we observed for RBMs (see Table 1). FI-guided pruning allowed for the removal of units in all
layers of the model, thereby making the encoding more e�cient. The encoding also remained
useful for classi�cation. When weights were pruned according to both our estimates of FI, the
performance of the classi�er only fell below baseline after the number of weights was reduced
by more than one order of magnitude. Yet neither random pruning nor pruning by absolute
weight magnitude led to any of the hidden units becoming disconnected. In the visible layer,
only one pixel became disconnected in each case (see Figure 3 D). Pruning according to our
estimates of parameter-wise FI on the other hand left a number of hidden units as well as
uninformative visible units at the borders of the images unconnected.
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Taken together, these results show that the pruning criterion matters in deeper networks.
The network performance can either recover through retraining if activity-dependent pruning
is used (FI pruning and pruning by weight magnitude) or it is permanently damaged in case
of random pruning and Anti-FI pruning. Furthermore, FI-pruning produces the most e�cient
network topology as this allows selectively the retention of the most important neurons, unlike
simpler strategies such as pruning by weight magnitude.

2.5 Models that lost informative synapses and neurons can no longer gener-
ate meaningful patterns

In addition to classi�cation accuracy, it is relevant to assess how pruning a�ects the generative
performance of the networks, since this measures how well they capture the features of the
input data. Previous studies have explored DBMs as a generative model for some types of
hallucinations, for example those seen in Charles Bonnet Syndrome (Reichert et al., 2013). In
this disease, patients experience vivid hallucinations after going blind. DBMs may be a suitable
model for this because they are probabilistic generative models: without supervision, they
learn a statistical representation in the hidden layers that can be used to generate the visible
samples. To simulate the loss of vision, Reichert et al. (2013) completely removed the visible
layer of a DBM. Due to homeostatic compensation, spontaneous activity in the hidden units
continued to re�ect plausible visual inputs, which might be interpreted as hallucinations by
downstream readouts. Inspired by these results, we investigated the generative performance
of partly lesioned DBMs over the course of pruning.

To quantify generative performance, we provided samples of visible patterns from the
pruned models to a classi�er trained on the raw images of the digits. We used the classi�-
cation con�dence to measure digit quality (Figure 4 A). When the model was deprived of its
most informative weights (Anti-FI pruning), retraining could not compensate for the loss of
relevant weights. A much weaker, but signi�cant degradation was also observed for random
pruning. In contrast, the quality of generated digits by DBMs pruned by weight magnitude,
or using the FI-based rules, su�ered less after allowing for retraining. Even though far more
weights were removed, the models still produced recognizable digits (Figure 4B).

Finally, we compared the diversity of the generated digits (Figure 4 C). We used a classi�er
to categorize each sample into one of the ten digits. In the un-pruned model, the fraction of
samples categorized as one of each of the ten digits ranged from from 6% to 17%, indicating
good generative performance (if the samples were completely balanced, each digit would ap-
pear with a probability of 10%). Pruning with limited retraining increased class imbalance, e.g.
the digit six was over-represented in all cases. Note, however, that this assessment of gener-
ative performance is not meaningful when the network generated degraded digits that were
hard to classify, as was the case for Anti-FI pruning (compare examples in Figure 4 B).

These results suggest that pruning impairs the generative capabilities of the networks,
either degrading the generated representations or causing a bias towards certain patterns. To
test if this was a consequence of the pruned weight values verses network architecture, we fully
retrained the pruned networks with random parameter initialization (Crowley et al., 2018). The
evaluation of patterns generated by these networks shows that class balance can be largely
restored, in particular in the FI pruned networks (Figure 4 D), indicating that the loss of digit
diversity was not an architectural de�cit.

To summarize these results, we computed the entropy of the generated digits distributions
for di�erent sample sizes, and linearly extrapolated the true entropy (Figure 4 D). The entropy
of the FI-pruned models is close to the maximum value of 2.30 nats for fully balanced classes
(variance FI: 2.287 nats, heuristic FI: 2.289 nats). Interestingly, while random pruning yields
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show the con�dence of the classi�er for the MNIST test digits and randomly generated patterns, respectively. (B):
Examples of generated patterns after ten iterations of pruning. (C): Percentage of samples that were assigned to
one of 10 color-coded digit classes as a function of remaining weights. X-axis limits represent initial and �nal
numbers of weights. Dotted line indicates completely balanced samples at 10%. Pruning altered the distribution of
generated patterns, perhaps because some number shapes were more central than others in the classi�er’s model
of digit shapes. (D): Entropy over the distribution of generated digits, computed from the generated samples after
retraining the fully pruned networks from scratch, with random weight initialization. The small variations of
the entropies for larger sample sizes indicate unbiased estimates for the largest sample used here. An entropy
value of ≈ 2.30 nats corresponds to even coverage of all digits. The plot shows the mean entropy computed by
bootstrapping: 10,000 samples of size k were were drawn (with replacement) from the generated digits. Error bars
indicate one standard deviation.

a lower entropy and thus higher class imbalance (2.267 nats), pruning by weight magnitude
produces the most imbalanced network (2.22 nats). We excluded Anti-Fi pruning from this
analysis, since the classi�er con�dence was too low for the class assignment to be meaningful.

Taken together, all FI pruning approaches preserved the generative quality to a similar
degree. In contrast, the Anti-FI pruning algorithm disconnected relevant visible and hidden
units, leading both sensory "blindness" and an inability of the model to meaningfully report
the visual correlates of latent activity. Weight magnitude alone is an insu�cient indication of
parameter importance, and while networks pruned in this way still can be used to classify the
digits well, they do no longer fully capture the statistics of the input images, and their "halluci-
nations" are less diverse than those of models pruned according to FI estimates. This suggests
that to preserve the activity statistics in networks, pruning requires an activity-dependent
mechanism.
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3 Discussion

In this work, we used stochastic latent-variable models of sensory encoding to derive new the-
oretical results on neural pruning, and explored these results through numerical simulations.
By examining the energy-based interpretation of such models, we showed that the impor-
tance of synapses and neurons can be computed from the statistics of local activity. To our
knowledge, our work is the �rst empirical study of network reduction guided by an activity-
dependent estimate of parameter-wise Fisher information in this context. Our pruning rule
operates at single synapses, and provides a principled route to eliminating redundant units.
Searching for biological analogues of these quantities and processes may provide insight into
naturally occurring pruning in the developing brain.

3.1 FI-guided pruning identi�es e�cient network architectures

In biology, over-production of neurons and synapses likely confers advantages. These extra
neurons could accelerate initial learning (Raman et al., 2019), or allow the network to identify
better architectures than it would otherwise (Steinberg et al., 2020). After this initial learning,
neurons and synapses not involved in covariant experience-dependent activity are lost (Katz
and Shatz, 1996; Hata et al., 1999). Our theoretical derivations make this precise, deriving local
pruning rules that estimate the importance of a connection from the covariant activity of a pre-
and postsynaptic neuron. This captures a central intuition about importance: neurons that
vary little are less relevant, and synapses with weak pre-post correlations are less important.

Pruning’s role in identifying e�cient topologies is highlighted by the e�ect of our Anti-
FI pruning rule, which removes the most important synapses �rst. On a network encoding
MNIST handwritten digits, Anti-FI pruning removes units that are vital for performing the
computation. In contrast, FI-based learning rules retain these important components. In this
case, it is unsurprising that pruning removes irrelevant units in the visual periphery. However,
parameter importance is less obvious in deeper layers of the network, and more generally for
other stimuli and tasks.

It would also be worth studying the time-course of pruning and retraining, to see if arti�cial
neural networks can reproduce the critical periods observed in biology. A recent study of
the e�ects of perturbing the input during di�erent time points of training in neural networks
suggests that a critical learning period may be visible in a plateau of the FIM trace (Achille et al.,
2018). It would be interesting to examine if such critical periods exist not just for changes in
the "software” (inputs and weights) of a network, but also for its “hardware” (its topology and
number of parameters).

3.2 Relationship to pruning in arti�cial neural networks

State-of-the-art models in machine learning are often over-parameterized, and optimizing such
models via pruning is a subject of active research. The vast reduction of the number of neurons
in the hidden layers in our FI-pruned models show how pruning could play a similar role in
architecture optimization in the brain.

Yet some studies call into question the usefulness of pruning. It can be di�cult to continue
training networks with pruned weights without incurring performance losses (Crowley et al.,
2018; Frankle and Carbin, 2018; Liu et al., 2018), as networks become trapped in local minima.
It has thus been argued that the value of pruning is rather to �nd a suitable architecture for
random re-initialization (Crowley et al., 2018; Liu et al., 2018) or well-initialized weights of
sub-networks within larger networks (Frankle and Carbin, 2018). Both of these algorithms,
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however, cannot by implemented by biological neural networks because they include a re-
set of synaptic weights to previous values. In our work, incremental retraining of trained
parameter values was su�cient to preserve performance. This is consistent with the strategy
that must be employed in the brain, in which learning and pruning occur concurrently. It
remains to be seen whether the brain is also subject to the trap of local minima, or whether
additional mechanisms make the issue irrelevant in biological networks.

In addition to removing parameters, some machine learning algorithms also add units,
to allow the network to adapt its size to the problem domain. Berglund et al. (2015) used a
mutual-information based measure to both remove and add neurons in Boltzmann machines.
It would be interesting to explore whether local information-theoretic rules could be extended
to include activity-driven synaptogenesis and neurogenesis, as is observed in brain areas such
as the the hippocampus (Kempermann, 2002). Potentially, our local estimate of FI could not
only guide network reduction but also network growth, resulting in an integrative model of
neuronal plasticity.

3.3 The role of ongoing learning and homeostasis

In biology, pruning and learning occur simultaneously. To emulate this, we retrained networks
for ten epochs after each batch of pruning. This batched form of sensory-driven plasticity al-
lowed the networks to recover from a performance drop observed immediately after pruning.
Yet in biology, there are numerous types of homeostatic plasticity that could compensate for
loss of cells and synapses without error-driven retraining (Wu et al., 2020). Synaptic depression
and spike-frequency adaptation are examples for such pre- and postsynaptic adaptation mech-
anisms, respectively (Benda and Herz, 2003; Jones and Westbrook, 1996). Weight re-scaling
resembling such adaptation mechanisms could potentially help make pruning less disruptive.
Such homeostatic rules may accelerate learning by reducing the amount of training needed to
compensate for the e�ects of pruning.

3.4 Pathological pruning, hallucinations, and neurological disorders

Model networks can provide insight into neurological disorders. For example, Reichert et al.
(2013) use DBMs to model Charles Bonnet syndrome. In their model, homeostasis re-activated
internal representations in "blinded" DBMs, creating hallucinations. Here, we explored how
networks degrade when pruning is inaccurate or excessive. Unlike in Reichert et al. (2013), our
networks continued to receive input. However, aberrant pruning led to partial blindness and
neuronal loss. On the MNIST dataset, all pruned models (except the Anti-FI network) could still
generate meaningful digit-like patterns, indicating that the basic circuits of perception were
intact. However, pruning degraded the quality and diversity of generated digits. In random
and weight-based pruning, digit generation was impaired even after complete retraining. FI
pruning, in contrast, retained generative performance in comparatively smaller networks.

Statistical theories view hallucinations as errors in internal predictive models (Adams et al.,
2016; Fletcher and Frith, 2009). Hallucinated stimuli in the absence of input is one form of this.
Over-con�dence in erroneous internal models, or incorrect predictions of which stimuli are
likely, can also lead to mistaken —or hallucinatory— perception. Loss of generative diversity in
our simulations indicates that the model’s internal priors no longer match the external world.
Interpreted in the context of predictive coding, this bias implies that some stimuli are poorly
predicted by internal states, and would therefore register as unexpected or surprising.

This suggests a tantalizing connection to schizophrenia, for which hallucinations and al-
tered cognition are core symptoms. Schizophrenia also involves pathological neural pruning
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(Feinberg, 1982; Johnston, 2004; Sekar et al., 2016; Sellgren et al., 2019). Could pruning-induced
degradation of internal predictive models explain some of the symptoms of this disease? The
close relation between perception and reconstruction in DBMs and their hierarchical organi-
zation make them an interesting model candidate to further investigate hallucinations. Such
modelling may provide theoretical insights into neurological disorders that involve aberrant
pruning.

Apart from neurological disorders, understanding pruning is important for understanding
learning and cognitive �exibility. In all of our experiments, the sensory encoding task was
�xed. sentence broken: In reality, cognitive demands vary over the lifetime of an animal.
Overzealous optimization to a �xed distribution could impair �exibility, a phenomenon that
might relate to developmental critical periods and neurological disorders (Johnston, 2004). In
biology, the brain must balance optimality against the need to maintain cognitive reserves to
support ongoing learning and changing environments.

3.5 Biological plausibility of di�erent pruning criteria

Pruning studies in arti�cial neural networks often estimate parameter importance with re-
spect to the curvature of a cost function on network performance or discriminative power in
supervised learning problems (e.g. LeCun et al., 1990; Hassibi et al., 1993; Sánchez-Gutiérrez
et al., 2019). This requires access to global state, and is not applicable to biological neural net-
works. In contrast, our study examined unsupervised learning in sensory encoding models
that seek to model the latent causes of sensory input (Hinton et al., 1995; Hinton, 2002; Hinton
et al., 2006). We showed that an energy-based perspective on such encoders leads naturally
to an implicit measure of parameter importance, and that single synapses could compute this
measure.

We �nd that activity-driven pruning leads to better structural optimization than simply
removing small weights. It identi�es redundant units and protects computationally impor-
tant synapses. Although parameter sensitivity correlates with weight values (Deistler et al.,
2018), we show that activity-dependent pruning must consider more than the magnitude of a
weight. Sampling the correlations between presynaptic and postsynaptic activity is one way
to compute importance. We also show that importance can be estimated by combining weight
magnitude with the �ring rates of the presynaptic and postsynaptic neuron. This highlights
that deceptively simple biological quantities can encode information-theoretic measures of
synaptic importance.

Translated to biology, this implies that neurons and synapses are initially over-produced
to allow for structural re�nement of connectivity that depends on activity. In the encoding
models explored here, neurons compete to explain the latent causes underlying sensory input.
Pruning of overall unimportant neurons occurs if either set of incoming (dendritic) or outgoing
(axonal) synapses is eliminated. To survive, neurons must maintain co-varying activity with
both presynaptic inputs and post-axonal targets. Loss of either input drive, or output relevance,
will lead to pruning.

3.6 Summary and outlook

Overall, we have shown that local activity-dependent synaptic pruning can solve the global
problem of optimizing a network architecture. In contrast to pruning rules based on synap-
tic weights, our information-based procedure readily identi�ed redundant neurons and led to
more e�cient and compact networks. The pruning strategy we outline uses quantities lo-
cally available to each synapse, and is biologically plausible. The arti�cial neural networks
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explored here are abstract, and whether an analogous process exists in biological neural net-
works remains to be explored. If analogous processes operate in biology, then a similar pruning
procedure could optimize metabolic cost by eliminating redundant neurons.
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4 Materials and Methods

4.1 Datasets

Two di�erent datasets of visual image patches were used to train and evaluate our models.
First, 90, 000 circular patches of di�erent size were randomly selected from images of the
CIFAR-10 dataset (Krizhevsky et al., 2009) to mimic the encoding of visual scenes through
receptive �elds of retinal ganglion cells. Images were converted to gray scale and binarized
according to their median pixel intensity. The procedure is illustrated in Figure 1 A.

Second, the MNIST handwritten digits dataset (LeCun et al., 2010) was used. Each square
28×28 images was cropped to 20×20 pixels by removing two pixels on each side. This resulted
in a visible layer size of 400 units. The labeled images belonged to one of ten digit categories
(0 − 9) and were divided in a training set of 60, 000 and a held-out test set of 10, 000 images.
The gray scale images were binarized according to the mean pixel intensity in the training and
test set, respectively.

4.2 Model de�nition and training

RBMs are generative stochastic encoder models consisting of = binary units (neurons) that are
organized in two layers: a visible layer v that directly corresponds to a given input vector and
a hidden (or latent) layer h which contain an encoding of the input data. Each visible layer
neuron E8 has undirected weighted connections (synapses) to each hidden neuron ℎ 9 and vice
versa, but neurons within a layer are not connected to each other (see Figure 1 A).

The energy function given in Equation 1 assigns energy to each visible layer pattern. It
can be rewritten as a joint probability, which describes the system’s Boltzmann distribution at
temperature ) = 1:

? (v, h) = 1
/
4
−�qv,h, (5)

with / being the partition function that sums over all possible con�gurations of visible
and hidden neurons. By marginalizing and taking the logarithm, we get:

log? (v) = log(
∑
h

4
−�qv,h) − log/ (6)

The training objective is to adjust the parameters q such that the energy for a training
pattern is lowered compared to the energies of competing patterns (Hinton, 2012). Lowering
its energy translates to assigning a greater probability to that pattern. We maximize ? (v) by
maximizing the �rst term in Equation 6, i.e. the unnormalized log probability assigned to the
training pattern v, and minimizing the second term. From the restricted connectivity it follows
that the probability of a unit being in the on-state is conditionally independent from the states
of units of the same layer, given a con�guration of the other layer:

? (ℎ 9 |v) = f
(
1ℎ9 +

∑
8

E8F8 9

)
? (E8 |h) = f

(
1E8 +

∑
9

ℎ 9F8 9

)
(7)

The positive-negative or wake-sleep algorithm (Hinton et al., 1995) exploits this condi-
tional independence and is used to train RBMs. While the positive or wake phase corresponds
to a forward-pass through the network (? (ℎ 9 |v)), the model metaphorically dreams about
? (E8 |h) in the negative or sleep phase. Speci�cally, the visible layer is initialized to a random
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state and the layers are updated iteratively following alternating Gibbs sampling for : →∞
times. The goal is for the �nal sample to originate from the equilibrium distribution of the
model. :-step contrastive divergence (Hinton, 2002) accelerates the learning algorithm by ef-
fectively replacing the desired sample from the model distribution by a single reconstruction
after : Gibbs steps. The most extreme case is one-step contrastive divergence, where the Gibbs
chain is truncated after just one iteration of initializing the visible layer to a training example,
sampling the hidden layer, and re-sampling the visible layer.

A DBM consists of a visible layer and multiple hidden layers. Analogous to Equation 1, the
energy function of a two-layer Bernoulli-DBM is given by:

�
q

v,h = −
=E∑
8=1

1E8 E8 −
=
ℎ1∑
9=1

1ℎ
1

9 ℎ
1
9 −

=
ℎ2∑
:=1

1ℎ
2

:
ℎ2
:
−

=E∑
8=1

=
ℎ1∑
9=1

E8ℎ
1
9F8 9 −

=:∑
9=1

=
ℎ2∑
:=1

ℎ19ℎ
2
:
F 9: (8)

Our parameter set q is thus augmented by an additional weight matrix Wh2 and another
bias vector bh2 . Learning in DBMs also follows the positive-negative algorithm, yet layer-wise:
each layer of hidden units aims to �nd an appropriate representation of the distribution over
the variables in its preceding layer in order to generate it. However, since contrastive diver-
gence is too slow for training deeper networks (Hinton et al., 2006), a mean-�eld variational
inference approach is used to train DBMs (Salakhutdinov and Larochelle, 2010).

4.3 Model �tting and sampling

All models were implemented in TensorFlow (Abadi et al., 2015) making use of open-source
code for the implementation of RBMs and DBMs (https://github.com/yell/boltzmann-
machines). Our pruning functionality was added in the forked repository (https://github.
com/carolinscholl/PruningBMs). Gibbs sampling ran on NVIDIA GeForce GTX 980 or
1080 GPUs. For the layer states to be uncorrelated, a sample was stored after every 200th Gibbs
step. The number of samples per layer was the same as the number of training instances.

4.3.1 RBMs for CIFAR-10 patches

Single-layer RBMs were �t to CIFAR-10 patches using one-step contrastive divergence (Hinton,
2002). The radius of a circle determined the number of pixels and visible units (see Figure 1
A). Weights were initialized randomly from a Gaussian distribution withN(` = 0, f2 = 0.01).
The hidden units outnumbered the visible units because we aimed for a sparse representation
and uncorrelated hidden units. The initialization of hidden biases with −2 was another means
to encourage sparseness in the �ring rates of hidden neurons. Other than that, no sparsity
target was de�ned. As recommended by (Hinton, 2012), visible biases were initialized with
log[? (E8)/(1 − ? (E8))], where ? (E8) corresponds to the fraction of training instances where
pixel 8 was in the on-state. No mini-batches were used, updates were applied after each training
instance. RBMs were trained for 2 epochs, with a decaying learning rate from 0.1 to 0.01 and
momentum of 0.9. Weights were not regularized to encourage a sloppy pattern in parameter
sensitivities as is characteristic for biological networks (Daniels et al., 2008; Gutenkunst et al.,
2007).

4.3.2 DBMs for MNIST digits

The comparably large number of 400 pixels of each cropped MNIST image required their seg-
mentation in receptive �elds (see Figure 3 A). Hidden layer h1 had the same number of units as
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the visible layer v. Each unit from h1 was connected to a rectangle spanning a maximum num-
ber of 5× 5 neighboring units from v. A stride of (1, 1) without zero-padding was used, so the
receptive �elds overlapped and were smaller at the borders of the image. The use of receptive
�eld reduced the number of weights connecting v and h1 from originally 400 × 400 = 160, 000
to 8, 836. The fully connected hidden layer h2 then combined the receptive �eld encodings of
parts of the image into a latent representation of the full image.

The DBM was built from two individual RBMs that were pre-trained for 20 epochs with
one-step contrastive divergence. After �tting the �rst RBM with receptive �elds, its hidden
units were sampled with v clamped to an input vector at a time. The resulting binary hid-
den layer vectors served as training data for the second RBM with 676 fully connected hidden
units. Weights for both RBMs were initialized randomly from a Gaussian distribution with
N(` = 0, f2 = 0.01). Visible biases were initialized with −1, hidden biases with −2. Neither
sparsity targets nor costs were de�ned. Momentum was set to 0.5 for the �rst 5 epochs and
then increased to 0.9 as recommended by (Hinton, 2012). The learning rates decreased on a
logarithmic scale between epochs, starting from 0.01 for the �rst RBM, and from 0.1 for the sec-
ond RBM, to 0.0001 in their �nal epochs of training. No mini-batches or weight regularization
methods were used.

When stacking the two RBMs, the hidden layer of the �rst RBM and the visible layer of
the second RBM were merged by averaging their biases. The resulting DBM with two hidden
layers was trained jointly for 20 epochs following a mean-�eld variational inference approach
using persistent contrastive divergence with 100 persistent Markov chains (Salakhutdinov and
Larochelle, 2010). A maximum value of 6 was de�ned for the norm of the weight matrix to pre-
vent extreme values. The hidden unit �ring probabilities decayed at a rate of 0.8. Neither a
sparsity target nor weight regularization were applied and parameters were updated immedi-
ately after presenting a training image.

4.4 Pruning criteria

We compared six di�erent weight pruning criteria throughout our simulations, three of which
targeted the removal of weights that carried low FI. For small RBMs, computing the full FIM
and its eigenvectors was feasible, using code from github.com/martinosorb/rbm_
utils. The parameter-speci�c entries of the �rst eigenvector were then used as indicators of
parameter importance. For DBMs we only used two of the three FI pruning criteria: Variance
FI refers to estimating the weight-speci�c FIM diagonal entries by computing (4) based on
samples from all layers of the models. Heuristic FI does not directly track the �ring rates, but
uses the mean rates instead (see Appendix A.2). For the DBM, the FIM diagonal was computed
layer-wise assuming weakly correlated hidden units. To examine the relevance of high FI
parameters, we also deleted the most important weights according to the variance estimate
of FI, which we refer to as Anti-FI pruning. For heuristic FI, we replaced the second term in
Equation 4 with a mean-�eld estimate of the covariance of units �ring (Eq. A2). When we
used the weight magnitude as a proxy of importance, we deleted weights with lowest absolute
value. As a baseline, we also removed a randomly chosen sample of weights.

4.4.1 Pruning procedure

To simulate synaptic pruning, weight importance was estimated according to the selected
pruning criterion. According to this criterion, a threshold was set at a pre-speci�ed percentile.
All weights whose estimated importance did not meet this threshold were removed from the
network by �xing their values to zero. For RBMs trained on CIFAR-10 patches, the threshold
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corresponded to the 50th percentile of weight importance. For DBMs trained on MNIST, the
threshold corresponded to the 10th percentile of weight importance. If all incoming weights
to a hidden unit were pruned, the unit was removed from the network. In DBMs, a hidden
unit was also deleted if all its outgoing weights were pruned. After pruning, the model was
re-initialized with unaltered values of the remaining parameters for the next pruning iteration.
The RBMs �t to CIFAR-10 patches were retrained for 2 epochs. The retraining period for DBMs
was shortened from 20 to 10 epochs after pruning. This pruning procedure was repeated three
times for experiments with RBMs and ten times for experiments with DBMs.

For the experiments on MNIST, we also examined a full retraining phase after the �nal
iteration of pruning. This included a random re-initialization of parameters and individual
pre-training of the two RBMs before stacking and retraining the full DBM. All training hyper-
parameters were the same as for the original DBM (see Section 4.3.2).

4.5 Evaluation

Each experiment started by �tting a su�ciently large model to the data. While the visible layer
size was determined by the number of pixels in each training image, the (�nal) hidden layer
was set to be larger. The resulting over-parameterized model was iteratively pruned, while its
�t was monitored.

For small RBMs that were trained on CIFAR-10 patches, we evaluated a model’s generative
performance by comparing its generated visible layer samples to the frequencies of patterns
occurring in the training data. For DBMs that were trained on MNIST digits, we made use of
the labeled data to evaluate both the encoding and generative performance.

First, we considered the encodings of the data in the �nal hidden layer of the DBM. While
the visible layer was clamped to one training instance at a time, the hidden unit activations
were sampled. We expect these latent representations to comprise a more useful training set
for the classi�er than the raw images. The resulting set of 60,000 �nal hidden layer encodings
was used to train a multinomial logistic regression classi�er, which had to distinguish between
the 10 digit categories. We refer to the classi�cation accuracy of this classi�er built on top of
the �nal hidden layer as the encoding quality of the model.

Second, we evaluated the patterns generated by the DBM. Since Boltzmann machines try
to approximate the data distribution with their model distribution, these generated patterns
should ideally resemble digits. Thus, we trained a multinomial logistic regression classi�er on
the 60,000 raw MNIST images. After training, this classi�er received patterns generated by the
DBM in order to classify them. For each of the ten digit classes, it returned a probability of the
current sample belonging into it. The argmax over this probability distribution was used to
assign the class. The average of the winning class probabilities was used as a con�dence score.
It served as a measure of digit quality. Furthermore, the distribution of assigned classes served
as a measure of digit diversity. Speci�cally, we counted the samples that were assigned to
each of the 10 digit classes and computed their fraction of generated samples. If the generated
samples were completely balanced across classes, we would expect each digit to be generated
in 10% of cases.

Moreover, the encoding performance was compared to the accuracy of a classi�er trained
on the raw digits. The quality of generated digits was compared to the quality of the 10,000
held-out MNIST test digits and to the quality of random patterns, using the same classi�er.

For the DBMs we also evaluated the generative performance of a fully retrained pruned
model after the �nal pruning iteration. For this, we generated 60,000 visible samples from
these pruned retrained models as before. As explained above, we let the classi�er trained on
the original MNIST dataset classify these samples. The entropy over the resulting class counts
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served as another metric of digit diversity. To get a con�dence bound on the estimated entropy,
we performed bootstrapping. We took 10,000 samples of �xed size : , with : ranging from 100
to 80,000. We then computed the mean entropy and its standard deviation per sample size.
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A Local estimates of Fisher Information

A.1 Variance estimate of Fisher Information

Parameter importance is re�ected in the curvature of the energy landscape of an RBM when
slightly changing two parameters. Computing this for each parameter pair leads to the FIM
(see Equation 2), where �8 9 stands for the Fisher information of the considered couple (q8 , q 9 ).
The entries of the FIM thus have the form (Rule et al., 2020):

�F8 9 , F:; = 〈E8ℎ 9E:ℎ; 〉−〈E8ℎ 9 〉〈E:ℎ; 〉, �F8 9 , 1E:
= 〈E8ℎ 9E:〉−〈E8ℎ 9 〉〈E:〉, �F8 9 , 1ℎ:

= 〈E8ℎ 9ℎ:〉−〈E8ℎ 9 〉〈ℎ:〉,

�1E
8
, 1ℎ
9
= 〈E8ℎ:〉−〈E8〉〈ℎ:〉, �1E

8
, 1E
9
= 〈E8E:〉−〈E8〉〈E:〉, �1ℎ

8
, 1ℎ
9
= 〈ℎ8ℎ:〉−〈ℎ8〉〈ℎ:〉.

The diagonal of the FIM corresponds to evaluating changes in the energy landscape of the
model when perturbing just one parameter. The importance of a weight thus simpli�es to the
average coincident �ring of pre- and postsynaptic neurons. The importance of a bias value is
estimated by the variance of a neuron’s �ring.

�F8 9 ,F8 9 = 〈E28 ℎ29 〉 − 〈E8ℎ 9 〉2, �1E
8
,1E
8
= f2E8 , �1ℎ

9
,1ℎ
9
= f2

ℎ 9
. (9)

We consider both of these estimates to be locally available statistics to the individual neuron.

A.2 Heuristic estimate of Fisher Information

In this section, we derive a mean-�eld approximation estimate of
〈
E8ℎ 9

〉
in terms of a small

deviation from the case where presynpatic and postsynaptic activity are statistically indepen-
dent,

〈
E8ℎ 9

〉
≈ 〈E8〉

〈
ℎ 9

〉
that accounts for correlated activity introduced by the synapse between

neurons 8 and 9 . Starting from Equation 4, we get

�F8 9 ,F8 9 =
〈
E8ℎ 9

〉
(1 −

〈
E8ℎ 9

〉
)

This can be computed if there is a local mechanism for tracking and storing the correla-
tion of pre- and postsynaptic �ring rates

〈
E8ℎ 9

〉
. This expectation is closely related to more

readily available local statistics, like the mean rates and weight magnitude. Since E8 and ℎ 9
binary in {0, 1}, the expectation

〈
E8ℎ 9

〉
amounts to estimating the probability that E8 and ℎ 9

are simultaneously 1, i.e. ? (E8=1, ℎ 9=1). One can express this in terms of a mean rate and the
conditional activation of presynaptic neuron given a postsynaptic spike, using the chain rule
of conditional probability:

? (E8=1, ℎ 9=1) = ? (E8=1|ℎ 9=1) · ? (ℎ 9=1) =
〈
ℎ 9

〉
? (E8=1|ℎ 9=1)

If the hidden layer size is large and the hidden units are independent, we may approximate
the activity of all other hidden units apart from a particularℎ 9 using mean-�eld. The activation
of a visible unit is given by Equation 7. We replace the hidden units by their mean �ring rate:

? (E8=1|〈h〉) = f
(
1E8 +W8 〈h〉

)
To estimate the contribution of all units except ℎ 9 , one computes:

?
(
E8=1

��〈h \ ℎ 9 〉) = f (
1E8 +W8 〈h〉 −F8 9

〈
ℎ 9

〉)
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To get the mean-�eld activation assuming ℎ 9 = 1,

? (E8=1|ℎ 9=1) ≈ Pr
(
E=1

��〈h \ ℎ 9 〉 , ℎ 9 = 1
)

= f
(
1E8 +W8 〈h〉 −F8 9

〈
ℎ 9

〉
+F8 9 · 1

)
= f

(
1E8 +W8 〈h〉 +F8 9 (1 −

〈
ℎ 9

〉
)
)

We can obtain an alternative (and, empirically: more accurate) mean-�eld approximation using
the average �ring rate of the visible unit, 〈E8〉. Given this mean rate, we can estimate the
activation as f−1 (〈E8〉). This estimate can replace the 1E8 +W8 〈h〉 terms, leading to:

? (E8=1|ℎ 9=1) ≈ f
(
f−1 (〈E8〉) +F8 9 (1 −

〈
ℎ 9

〉
)
)〈

E8ℎ 9
〉
≈

〈
ℎ 9

〉
f

(
f−1 (〈E8〉) +F8 9 (1 −

〈
ℎ 9

〉
)
) (10)

This approximation is ad-hoc, but captures an important intuition: the magnitude of synap-
tic weights themselves provides a useful proxy for computing pre-post correlations, and there-
fore estimating a synapse’s importance in the network.
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