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Abstract

Hebbian synaptic plasticity inevitably leads to interference and forge�ing when di�erent, over-
lapping memory pa�erns are sequentially stored in the same network. Recent work on arti�cial
neural networks shows that an information-geometric approach can be used to protect important
weights to slow down forge�ing. �is strategy however is biologically implausible as it requires
knowledge of the history of previously learned pa�erns. In this work, we show that a purely local
weight consolidation mechanism, based on estimating energy landscape curvatures from locally
available statistics, prevents pa�ern interference. Exploring a local calculation of energy curva-
ture in the sparse-coding limit, we demonstrate that curvature-aware learning rules reduce forget-
ting in the Hop�eld network. We further show that this method connects information-geometric
global learning rules based on the Fisher information to local spike-dependent rules accessible to
biological neural networks. We conjecture that, if combined with other learning procedures, it
could provide a building-block for content-aware learning strategies that use only quantities com-
putable in biological neural networks to a�enuate pa�ern interference and catastrophic forge�ing.
Additionally, this work clari�es how global information-geometric structure in a learning prob-
lem can be exposed in local model statistics, building a deeper theoretical connection between the
statistics of single units in a network, and the global structure of the collective learning space.

Signi�cance

How can neural networks avoid interference and forge�ing when sequentially learning di�erent
yet overlapping memory pa�erns? In arti�cial neural networks, this problem has been solved us-
ing the geometric structure of parameter space conveyed by the Fisher information matrix (FIM),
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which reveals weights in the network that are important for encoding previously learned pa�erns.
However, these weight consolidation rules are biologically implausible as they require global infor-
mation about the parameter space and the history of learned pa�erns. Here we show mathemati-
cally and in simulations that an a�ractor network can approximate such learning rules with locally
available information. �is work suggests a novel interpretation of weight-dependent synaptic
modi�cations observed experimentally, and purely local learning rules that mitigate against catas-
trophic forge�ing in arti�cial neural networks.

Introduction

Arti�cial Neural Networks (ANNs) have become adept at solving both supervised and unsuper-
vised machine-learning tasks. Unlike biological neural networks however, ANNs are vulnerable
to catastrophic forge�ing [19]: ANNs forget their original trained structure if re-trained on new
inputs. Recent studies have addressed catastrophic forge�ing by constraining learning through
globally-computed information about the importance of network parameters [22, 17, 27, 26, 1, 23,
16, 15]. However, biological neural networks must achieve the same through locally available
information: neither the backpropagation algorithm [5], nor the creation of new units [28], nor
non-local calculations of weight importance, can be implemented in biological networks as we
currently understand them.

Here we introduce an approach that requires no information about previously stored memories
and uses the measure of importance not as part of a loss function, but as a scaling factor for the
learning rate. Addressing catastrophic forge�ing in sequential learning in a Hop�eld network,
we derive a local Hebbian learning rule that calculates weight importance via a simple weight
transformation. We show that this transformation is equivalent to computing Fisher Information
Matrix (FIM) entries in a statistical model and that it provides a biologically plausible means to
implement FIM-based solutions to catastrophic forge�ing [15, 22, 17].

Results

Hop�eld Networks

A Hop�eld network is a network consisting of M binary nodes xi , which are fully connected
through symmetric weights wi j . We use this network to store and retrieve a set of pa�erns
p1 . . . pN , with pni ∈ {0, 1}. �e sparsity of these pa�erns s is de�ned as the ratio of bits being
1: s = 〈p〉. Classically [13, 30], Hop�eld networks are trained using a local Hebbian learning rule,
in which the weights are set to

wi j =
1
N

N∑
n=1
(pni − s)(pnj − s) =

1
N

N∑
n=1

ξni ξ
n
j , (1)

with N the number of stored pa�erns, and where we de�ned ξni =p
n
i −s . Encoding pa�erns in terms

of ξ instead of p guarantees the mean of all encoded pa�erns is 0, as required for optimal pa�ern
separation [30]. �e capacity of a Hop�eld Network with a sparsity of s=0.5 is about 0.138×M [2],
while sparser pa�erns lead to a higher capacity of the network, proportional to (s | ln(s)|)−1 [30].

2



Using the learning rule given above, we initialize the network by inducing local minima into the
energy surface corresponding to our stored pa�erns. �e energy of a given pa�ern x is de�ned as

E(x) = −
M∑

i, j=1
xix jwi j .

Given a weight matrix, if x t is the network state at time t , the network dynamics is de�ned as

x t+1
i = Θ

(
M∑
j=1

wi jx
t
j − θ

)
, (2)

where Θ is the Heaviside step function and θ is a bias accounting for the sparsity, known as the
neural threshold [30]. Repeating this several times, either synchronously for all neurons or asyn-
chronously for a randomly chosen neuron, leads the network to converge into the energy mini-
mum closest to its initial con�guration.

Parameter importance and sequential learning

In real-world learning, an agent is not presented all at once with all the information it needs to
remember, nor does it have the chance of interleaving training on one memory with training on
another and vice versa. Memories may have to be stored, and can be stored, one a�er the other, in
sequence. If we want to investigate sequential learning in a Hop�eld network, we can introduce
an incremental rule

∆wi j = η ·
(

1
N

N∑
n=1

ξni ξ
n
j −wi j

)
(3)

with learning rate η. It’s easy to see that following this rule, the weight matrix will converge to
the value given in Equation (1). �e problem of this approach is that, while the new pa�ern is
learned, the weight matrix is eventually entirely overwri�en, and the previously stored pa�erns
are forgo�en [20].

�e general idea we are aiming to implement to address this problem is that parameters that
are particularly “important” for retrieving stored memories should be changed at a lower rate, or
le� untouched, by learning additional pa�erns. �is will be successful if the energy landscape
is highly anisotropic with respect to parameter changes, which usually is the case in ANNs as
they are overdetermined. �en, some parameter changes (or combinations) cause a strong change,
while others have li�le or no e�ect and can be used for new pa�erns. �is de�nes sensitive and
insensitive directions in parameter space, which we expect to exist in a network not saturated
close to capacity, where energy minima would be quite close to each other.

Fisher Information in a Hop�eld network

In probabilistic models, the Fisher Information Matrix, which describes the geometry of the pa-
rameter space, can provide a measure of “sloppiness” for the model parameters, indicating the
level of plasticity a certain weight can have. �is allows learning to focus on relatively unimpor-
tant parameters, leaving important or “sti�” weights undisturbed. �ese terms, introduced in a
more general context by Gutenkunst et al. [11], de�ne the parameter space anisotropy we want
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to exploit here to prevent forge�ing. It is not immediately intuitive how to de�ne the concept of
Fisher Information, which applies to parameter-dependent probability distributions, in the case of
deterministic Hop�eld networks, where dynamics exist that drive activity into the a�ractor states
that correspond to stored memories. However, a consistent de�nition can be a�ained by realis-
ing that the Hop�eld system is equivalent to the fully visible Boltzmann Machine (FVBM) at the
zero-temperature limit.

Given a probability distribution Pw dependent on a matrix of parameters {wi j }, the Fisher
information matrix is de�ned as

Fwi j ,wkl =

〈
∂ log Pw (x)
∂wi j

∂ log Pw (x)
∂wkl

〉
, (4)

where the brackets 〈·〉 denote averaging over all pa�erns stored in the network. Since we are
interested in a measure of single-parameter importance, we consider only the diagonal of the FIM:
Fi j ≡ Fwi j ,wi j , which then expresses the sensitivity of the distribution to changes in the weight
wi j .

�e FVBM, a model identical to the fully connected Ising model, has the form

Pw (x) =
1

Z (T ) exp

(
1
T

∑
i,j

xix jwi j

)
. (5)

�e FIM can be computed from a sample extracted from Pw , rather than from its analytical
expression, exploiting the fact that (see Appendix A):

Fwi j ,wkl = Cov
[
xix j ,xkxl

]
, and therefore Fi j = Var

[
xix j ] (6)

In the case of a Hop�eld network, however, no probability distribution of states exists, since
the dynamics of the model is limited to convergence to a�ractors. Yet, the FVBM probability
distribution (5) converges, in theT → 0 limit, to null probability for all pa�erns except the ones of
lowest energy. �is coincides with the equilibrium distribution of a Hop�eld network, which has
�nite probability on a�ractors (learned or spurious) and zero probability elsewhere. Analogously,
it can be shown that the dynamics of the FVBM, for example the one de�ned by Monte Carlo
sampling, are equivalent to the Hop�eld time evolution de�ned in equation (2).

Assuming the network parameters are set such that no spurious a�ractors exist, the stable
pa�erns coincide with learned pa�erns in a trained network. �is allows computing the variance
in (6) over this distribution, and the FIM as

Fi j =
1
N

N∑
n=1
(ξni ξnj )2 −

1
N 2

(
N∑
n=1

ξni ξ
n
j

)2

. (7)

�e importance of each weight, computed in an appropriate way as Ωi j = f (Fi j ), with f being a
monotonically decreasing function, can then be used to scale the learning rate in order to protect
stored memories:

∆wi j = ηΩi j (ξiξ j −wi j ). (8)
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A biologically plausible learning rule

In order to evaluate the importance of a connection locally, the network has to constantly compute
the sum in equation (7), which requires constant sampling of previously memorized pa�erns. �is
process is not impossible: the recall and replay of memories, for example during sleep, has been
both experimentally observed and theoretically studied as a means of memory consolidation [31,
29]. However, we will here show that there is an even simpler local way of estimating importance
from the value of the weight, at least for a Hop�eld network.

We use (6) to write the diagonal entries of the Fisher Information Matrix as

Fwi j ,wi j = Fi j = Var
[
xix j

]
=

〈
x2
i x

2
j
〉
−

〈
xix j

〉2
.

We would like an expression for the diagonal of the FIM that depends only on locally-available
weight information. We can use the fact that wi j =

〈
xix j

〉
by construction (6) to write

Fi j =
〈
x2
i x

2
j
〉
−w2

i j , (9)

but the question remains of how to estimate
〈
x2
i x

2
j

〉
, which is a fourth moment of the activity

distribution. It is possible (Appendix B) to expand this term as a function of means and correlations:〈
x2
i x

2
j
〉
= (1 − 2s)2

〈
xix j

〉
+ s(1 − s)(1 − 2s)

(〈
xi

〉
+

〈
x j

〉)
+ s2(1 − s)2

(10)

However, the expected activation rates
〈
xi

〉
and

〈
x j

〉
are not directly accessible during sequential

learning, since previously learned pa�erns are not ‘sampled’ by the network during the learning
process. �ese mean activations are correlated with the weights, and a simple closed-form approx-
imation does not exist. Using the fact that pa�erns are centered at zero-mean activation rates, we
can write the approximation

Fi j ≈ s2(1 − s)2 + (1 − 2s)2wi j −w2
i j . (11)

In two limiting cases, the dependence on the expected rates vanishes, and Eq. (11) holds with
equality. At s=0.5, Fi j= 1

16−w2
i j , and at s=0, Fi j=wi j (1−wi j ). We now focus on learning near the

sparse-coding limit, with s � 0.5. To simplify the online, local estimation of weight importance,
we consider an approximation for a perturbation around the sparse (s → 0) limit. Expanding Eq.
(11) to �rst-order in s gives

Fi j ≈ wi j (1 −wi j ) − 4swi j (12)

Figure 1 illustrates this approximation. Assuming that the weights are in the range w ∈ [0, 1]
for s → 0, there is a reasonable correspondence between the predicted and actual Fisher infor-
mation for s = 0.1, and the relationship is exactly reproduced for s = 0.5. Once several sparse
pa�erns are stored, only values to the le� of the maximum of the parabola given by Equation (12)
appear, an e�ect that becomes increasingly evident as more pa�erns are stored. �is is expected
because, in order to have wi j =

1
N

∑
ξni ξ

n
j > 0.5 and assuming ζiζj ∈ {0, 1} in the limit s → 0, we

need more than half of the connections to be

ξni ξ
n
j = 1. (13)
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s 2 pa�erns 5 pa�erns 10 pa�erns 20 pa�erns
0.05 6.2500e-06 1.5566e-07 5.0848e-14 0
0.1 1.0000e-04 9.8506e-06 2.0289e-10 0

Table 1: Estimated Probabilities of wi j > 0.5 for 2, 5, 10 and 20 pa�erns and sparsities s = 0.05 and s = 0.1.

�e probability for this to happen is

p(ζiζj = 1) = p(ζi = 1, ζj = 1) = p(ζi = 1)p(ζj = 1) = s2. (14)

When storing N pa�erns, at least N
2 have to be 1, which is a process that can be described by the

Cumulative Distribution Function of the binomial distribution, for which no analytical solution
exists. In table 1, some numerical values are shown.
As it can be seen, the probabilities for the weight being above 0.5 is decreasing with the number
of pa�erns and is negligible small for a su�cient number of pa�erns.

�ese results show that for a model storing sparse pa�erns, the weight sensitivities increase
monotonically with the value of the weight. �is relationship is well captured even with a linear
function. �is allows constructing heuristic, fully local and hence biologically plausible learning
rules that only modify irrelevant weights during continuous learning. To this end, we can gener-
alize Equation (8) to introduce an additional correction to the learning rate Ωi j depending on the
weight value.

In the following we investigate two approaches for learning rate correction. �e �rst consists
of imposing a threshold Θw on each weight:

Ωi j =

{
1, for wi j ≤ Θw

0, for wi j > Θw
(15)

Second, the relation between Fisher information and weight in Equation 12 suggests any strictly
positive, monotonically decreasing function of the weight should provide an appropriate learning
rate correction. An interpretation of the weight value as the curvature of a Gaussian approxima-
tion to the weight posterior predicts an inverse relationship (see Appendix C for derivation). In
simulations we however found a be�er performance using an exponential scaling of the weight
with

Ωi j = exp(−a |wi j |). (16)

Following the Bayesian interpretation, this rule can be further augmented by only updating weights
with strong changes:

Ωi j =

{
exp(−a |wi j |) for ∆wi j > Θ∆w

Ωi j = 0 else
(17)

In addition to not modifying important weights, this will prevent weight changes that do not
support the new pa�ern. In the following we show in simulations that these rules indeed prevent
overwriting of stored memories, and enable continuous learning in the Hop�eld network.
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Figure 1: �e Fisher information-based measure of importance as a function of the weight value in a network. Blue
dots refer to the true values, computed according to equation 6, green lines to the theoretically derived relation (11).
Top: measurements for s = 0.1 compared to the analytically available relation for s → 0, Equation 12. Bo�om: sparsity
s = 0.5.

7



100 101 102 103

Time (epochs)

0

0

0

0

1

1

1

1
Di

ce
 c

oe
ffi

cie
nt

20 stored patterns

100 101 102 103

Time (epochs)

0

0

0

0

1

1

1

1

New pattern
Hopfield
Weight thresh.
Exponential
Exp. with thresh.

Figure 2: Modi�ed local Hebbian learning rules prevent catastrophic forge�ing. A network of 100 neurons was ini-
tialised with 20 pa�erns, and a novel pa�ern was learned with the incremental rule (Equation 3), and augmented
versions of this rule. �e learning rate was η = 0.01, curves show the average Dice coe�cient from 20 simulations.
Parameters for the augmented learning rules: weight threshold, Eqn. 15 - Θw = 0.001; exponential, Eqn. 16 - a = 220;
exponential with threshold, Eqn. 17 - a = 220 and Θ∆w = 0.2 ∗ η

Simulations

We �rst consider a network with 20 pa�erns stored using Equation 1, and a new pa�ern learned
with the incremental rule (Eqn. 3). Pa�ern retention is assessed by the Sørensen-Dice coe�cient
D = 2 · |A∩B |/(|A|+ |B |), whereA and B re�ect the binary bit-vectors re�ecting a target (true) pat-
tern and a recovered (stored) pa�ern, computed at each learning rule iteration by synchronously
applying Equation 2 ten times.

As expected, the incremental rule rapidly removes all traces of the previously stored pa�erns,
while the new pa�ern is reliably stored. Reducing the learning rate η can increase retention as
overwriting is slower, but this also slows down the learning of the new pa�ern, always resulting
in exponentially fast forge�ing [4]. In contrast, for the augmented local rules the stored pa�erns
are retained. Since the modi�ed rule e�ectively shows the learning rate, storing the new pa�ern is
slower than during normal Hop�eld learning. Importantly, in these simulations the learning rate
correction is re-computed at each iteration based on the current weights. �erefore successful
retention is possible even for a rule operating entirely locally on each weight and in time.

Next we extend our approach to continuous learning, presenting new pa�erns one by one for
a �xed number of iterations, and updating weights with the incremental rule. Since the Fisher
information is �at for a randomly connected network, which would prevent learning with the
augmented rules, the network was initialized with 20 pa�erns that are not tracked. For each
learning rule, parameters were numerically optimized to maximize the DICE coe�cient for 60
pa�erns with the Nelder-Mead simplex algorithm (fmin() in SciPy).

As for a single pa�ern, the augmented learning rules prevent forge�ing also for continuous
learning multiple pa�erns (Fig. 3). �e hard weight threshold allows loading the network up to the
theoretical capacity of about 60 pa�erns (100 units, sparseness s = 0.1). Beyond this capacity, all
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Figure 3: Continuous learning without catastrophic forge�ing. In a 100 unit network, pre-trained with 20 pa�erns
(disregarded for evaluation and not shown in these �gures), 80 novel pa�erns were learned in succession. Each pa�ern
was presented for �ve epochs, with learning rate η = 0.1, and with parameters optimized to maximize recall for 60
pa�erns. A �e average DICE coe�cient for all previously stored pa�erns, computed every time a new pa�ern was
stored, using di�erent learning rules. �e averages are for 20 simulations, and shaded areas indicate the standard
deviation. B �e average Dice coe�cient for each pa�ern as a function of the training epoch, for di�erent learning
rules. �e simulations show that augmented learning rules have improved retention, compared to the normal Hebb
rule, but their behavior di�ers with increasing network loading.
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stored pa�erns are erased simultaneously. In contrast, the exponential rule, which continuously
modi�es all weights, exhibits gradual forge�ing, but can, at any one time, retain a �xed number of
pa�erns. While this behavior e�ectively reduces the network capacity, it also prevents catastrophic
forge�ing due to network overloading. Finally, when only larger weight changes beyond a �xed
threshold are allowed for the exponential rule, full network loading is again possible.

Discussion

How neurons in the brain coordinate globally to store and retrieve information remains a major
open question. In particular, we do not understand how global optimization problems can be
solved reliably and robustly using only local learning rules. In this work, we have explored in a
Hop�eld network one aspect of this global coordination: how pa�erns might be routed and stored
in an associative memory to reduce pa�ern interference and catastrophic forge�ing.

FIM-based approaches to continuous learning have been adopted before [32, 15, 1]. However,
these approaches employ a regularized loss function to account for previously learned tasks. Kir-
patrick et al. [15] approximate the negative log-likelihood curvature using the diagonal of the
Fisher Inforation Matrix (FIM) for each learned task, and Zenke et al. [32] propose a similar ap-
proach that can be calculated online. Recently, an approach which can be generalized to be local
in supervised feed-forward networks has been described by Aljundi et al. [1]. �is approach can
be generalized as a local learning rule only given certain assumptions such as a Recti�ed Linear
Unit (ReLU) activation function. However, all of those approaches rely on implementing a regu-
larized loss function. In contrast, scaling the learning rates alters the timescales of forge�ing, but
does not change the asymptotic behavior of the network: at su�ciently long timescales, the ac-
cumulated information of new pa�erns will still overwrite previously stored pa�erns. �erefore,
our approach a�enuates forge�ing and interference in the learning phase, and might be combined
with other strategies to achieve more permanent stability. In addition to immediate impact in how
we understand learning in biological neural networks, local learning rules have potential to ac-
celerate machine learning as global connectivity requirements can su�er from memory transfer
bo�lenecks in large-scale parallel implementations running on graphics processes and clusters.

We demonstrate our approach in a Hop�eld network, a fully connected network that stores
pa�erns via Hebbian learning, and retrieves those pa�erns through dynamics that minimize an
energy function, moving activity into local basins of a�raction [13, 6]. Its inherent instabilities
and unlearning of previously learned pa�erns have a�racted considerable interest in the past
[14, 24, 8]. �e Hebbian learning rule and neural-like dynamics make the Hop�eld network a
relevant model of biological memory, although the required symmetric weights are biologically
implausible. Our model however makes two speci�c predictions for networks that implement sim-
ilar a�ractor dynamics, which are both supported by experimental data. First, individual synapse
stability is expected to be proportional to its strength, since strong synapses are the most impor-
tant retaining memories. �is e�ect has been reported in chronic in vivo experiments monitoring
cortical spines [12, 18]. Second, as cortical networks mature, and more synapses are involved in
maintaining stored memories, the proportion of stable synapses should increase. Chronic imaging
during cortical development, which demonstrated an increase in the fraction of stable synapses
a�er the critical period, con�rm this prediction [10, 12]. It is interesting to note that there appears
to be less synapse stability in the hippocampus [3], which may be consistent with its function as
a temporary episodic memory system, and suggests potential di�erences in the synaptic plasticity
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rule.
Further evidence for protection from catastrophic forge�ing in cortical networks comes from

studies investigating the stability of neural activity over longer time intervals. �ese found a small
fraction of very stable neurons, which had high �ring rates and were important for stabilizing the
whole network dynamics, while the remaining neurons showed considerable changes [21, 9]. �is
pa�ern does not emerge in the Hop�eld model, where the activity of neurons is more homogeneous
than in cortical circuits, and suggests an additional organizing principle in cortical networks that
conveys stability of acquired knowledge [25, 7].

In addition to biological learning, our results can be generalized to stochastic ANNs. �e Hop-
�eld model exactly replicates the behavior of a fully visible Boltzmann machine (FVBM) at zero
temperature, where the structure of the weights between neurons allows only certain activity con-
�gurations corresponding to local minima in the energy landscape. Hence, the Hop�eld energy
function can also be interpreted as negative log-likelihood of a FVMB. In this case, a Fisher In-
formation based learning rule will protect low-energy network con�gurations which correspond
to high probability states. Since the learning rule protects the joint con�guration of the whole
network, relevant learned con�gurations, for instance trained through backpropagation in a deep
network, are stable during continuous learning of new tasks, as demonstrated using a penalty in
a global loss function by Kirpatrick et al. [15].
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Appendix A: Derivation of Fisher information as covariance

Under certain regularity assumptions, we can rewrite the Fisher Information as

Fwi j ,wkl = −
〈

∂

∂wi j∂wkl
log

(
p(x)

)〉
.

�is form provides an intuitive interpretation of Fi j as the curvature of the energy landscape. A
high Fisher Information hence corresponds to a high curvature - and hence a strong change in
energy when perturbing the given parameter. in the above equation, the probability of a pa�ern
is given by

p(x) = 1
Z

exp
(
− E

)
=

1
Z

exp
(∑
n,m

xnxmwnm

)
(18)

with Z being
Z =

∑
{x }

exp
(∑
n,m

xnxmwnm

)
We can hence write the log-probability as

log
(
p(x)

)
=

(∑
n,m

xnxmwnm

)
− log(Z )

Plugging this into (4) leads to

Fwi j ,wkl =

〈(
∂

∂wi j

(∑
n,m

xnxmwnm

)
− log(Z )

) (
∂

∂wkl

(∑
n,m

xnxmwnm

)
− log(Z )

)〉
We di�erentiate this using the chain rule

Fwi j ,wkl =

〈(
xix j −

1
Z

∂

∂wi j
Z

) (
xkxl −

1
Z

∂

∂wkl
Z

)〉
We di�erentiate Z

∂

∂wi j
Z =

∑
{x }

(
exp

(∑
n,m

xnxmwnm

)
xix j

)
and use (18) leading to

Fwi j ,wkl =
〈(
xix j −

∑
{x }

p(x)xix j
) (
xkxl −

∑
{x }

p(x)xkxl
)〉

which is the de�nition of covariance:

Fwi j ,wkl = Cov
[
xix j ,xkxl

]
.
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Appendix B: Expansion of FIM diagonal in terms of weights

In order to estimate the FIM diagonal entries for the weights, we must estimate fourth moments
of the activity,

〈
x2
i x

2
j

〉
. �e Hop�eld network represents the zero-temperature limit of a pairwise

spin model, which is determined entirely by the �rst two moments 〈x〉 and
〈
xx>

〉
. It is therefore

possible to derive an expression for this fourth moment,
〈
x2
i x

2
j

〉
, in terms of means and correlations.

We �rst expand
〈
x2
i x

2
j

〉
based on xi=pi−s and x j=pj−s , where p re�ects the binary pa�erns being

encoded, and s is the sparsity level of our encoding:〈
x2
i x

2
j
〉
=

〈
(pi − s)2(pj − s)2

〉
Because p is binary, p2 = p, and the quadratic terms simplify on expansion:

(p − s)2 = p2 − 2sp + s2

= p − 2sp + s2

= p(1 − 2s) + s2
(19)

One can therefore expand
〈
x2
i x

2
j

〉
as〈

x2
i x

2
j
〉
=

〈
(pi (1 − 2s) + s2)(pj (1 − 2s) + s2)

〉
= (1 − 2s)2

〈
pipj

〉
+ s2(1 − 2s)

[〈
pi

〉
+

〈
pj

〉]
+ s4 (20)

�is simpli�cation, arising the binary nature of the spinsp, will allow us to express
〈
x2
i x

2
j

〉
in terms

of lower-order moments. We would like this expansion in terms of weights wi j =
〈
xix j

〉
, and so

substitute pi=xi+s and pj=x j+s〈
x2
i x

2
j
〉
= (1 − 2s)2

〈
(xi + s)(x j + s)

〉
+ s2(1 − 2s)

[〈
xi + s

〉
+

〈
x j + s

〉]
+ s4

= (1 − 2s)2
[〈
xix j

〉
+ s

(〈
xi

〉
+

〈
x j

〉)
+ s2]

+ s2(1 − 2s)
[〈
xi

〉
+

〈
x j

〉
+ 2s

]
+ s4

= (1 − 2s)2
〈
xix j

〉
+ s(1 − s)(1 − 2s)

(〈
xi

〉
+

〈
x j

〉)
+ s2(1 − s)2

(21)

�is expresses
〈
x2
i x

2
j

〉
in terms of �st moments,

〈
xi

〉
, and second moments

〈
xix j

〉
. �e second

moments are identi�ed with the weights wi j by construction (Eq. 1). �e expected activations〈
xi

〉
could be estimated via sampling, if stored pa�erns are re-activated, or may be approximated

by their expected-value of zero.
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Appendix C: Curvature-aware Hebbian learning

We begin with the incremental learning rule, dropping indices for legibility,

∆w = Ω(ŵ −w), (22)

where w is a weight, ŵ is the new weight indicated by data, and Ω is a function that adjusts the
learning rate. Time constants, step size, and learning rates have been absorbed into Ω in this case.
�is equation can also be wri�en by interpreting Ω as a convex combination of the old and the
new weights as

wnew = w + ∆w = w + Ω(ŵ −w) = Ωŵ + (1 − Ω)w . (23)

We now consider a Bayesian update of a Gaussian approximation to the posterior state for the
value of a weight w . Let our current estimate have mean w and precision τ . Let our update have
estimated weight ŵ and a constant precision c . We then interpret the Fisher information as the
curvature (precision) of the prior, thus equating our FIM estimate with the precision τ .

�e Bayesian update to the mean of a Gaussian is the weighted sum

wnew =
cŵ + τw

c + τ
,

c

c + τ
ŵ +

τ

c + τ
w . (24)

Introducing
β =

c

c + τ
=

1
1 + 1

c τ
, (25)

we can write the weight update as the convex combination

wnew = βŵ + (1 − β)w . (26)

Interpreting τ as the FIM for weight w , and using τ ≈ w(1 −w), we obtain

β =
1

1 + 1
cw −

1
cw

2
. (27)
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