
Leaky Integrate-and-Fire Model Neuron

Nernst Equation and Equilibrium/Reversal Potential

Considering one type of ion (diagram is typical of Potassium, K) with negative reversal
potential, EK ≈ −90mV .
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V = E

V = 0

Inside

Outside

Pumps (requiring ATP and without transferring charge) ensure concentration of potassium
[K+] is greater inside than outside the cell.

Potassium ions (carrying charge) would on average flow out of the cell through ion channels,
leaving the inside at a negative potential (EK < 0) until a dynamic equilibrium is reached where
the flow in matches the flow out.

Rate of flow in either direction is proportional to concentration at starting point.
But only a fraction of ions with enough energy can make it out once there is a potential

difference across the membrane.
Fraction with thermal energy, U , greater than −zqV is exp

(

zqV
kT

)

.

P(U)

Thermal Energy, U−zqV

exp(zqV/kT)

For one ion equilibrium potential E is where [inside] exp
(

zqE
kT

)

= [outside]. Hence

E =
kT

zq
ln

(

[outside]

[inside]

)

Nernst Equation (1)

Each ion has its own E. Calculation of equilibrium for all types of channel leads to a reversal
potential or equilibrium potential or leak potential, VL, of the cell, where overall charge flow is
zero. VL ≈ −70mV .

Membrane potential, Vm

If Vm > VL (that is we depolarize, make less negative) charge flows out of the cell and the
membrane potential potential goes back down (becomes more negative).

If Vm < VL (that is we hyperpolarize, make more negative) charge flows into the cell and
the membrane potential potential goes back up (becomes less negative).



Current flow per unit area out of the neuron through “leak” channels in the membrane is
given by Im = GL (Vm − VL). (Positive membrane current is outward.)

Change in potential due to current flow depends on the membrane capacitance, Cm, via
Q = CmVm where Q is excess charge inside the neuron.

Since dQ/dt = −Im we have in general:

Cm
dVm

dt
= −GL (Vm − VL) + Iapp (2)

where Iapp is an externally applied (inward) current. (Positive applied current is inward.)
cm is specific membrane capacitance = capacitance per unit area. Total capacitance, Cm =

cmA.
rm is specific membrane (surface) resistance, Total input resistance, Rin = rm/A.
gL = 1/rm is specific membrane conductance. Total conductance, GL = gLA.

Response to a long current pulse

t

I app

t

mV

V
L

ssV

Time course is exponential decay to a steady state
(Vss) with a time constant τm.
Proof: rewrite Eq. 2 as

dVm

dt
=

Vss − Vm

τm

where (3)

τm =
C

GL
= CRin ≈ 20ms (4)

and Vss = VL + I/GL (5)

If current switches at time, t = 0 then solution is:

Vm(t) = Vss + [Vm(0) − Vss] e
−t/tm . (6)

Leaky integrate-and-fire

We have already shown leaky integration. Now add a ‘fire’ by hand when Vm reaches a
threshold, Vth then reset to Vreset and wait a short refractory time, τref before further integration.

V reset

Vth
Vm

t

I app

What is the firing rate, f(I)? Time be-
tween spikes is τref +T where T is time for
Vm to increase from Vreset to Vth.
Again, integrating Eq. 3:

∫ Vth

Vreset

dVm

Vss − Vm
=
∫ T

0

dt

τm
(7)

leads to

T = −τm ln
[

Vss − Vth

Vss − Vreset

]

(8)

Then f(I) = 1/ (τref + T ) if I > Ic.
Ic defined by Vss = Vth leads to Ic = GL(Vth − VL).



Euler method for ODEs

Cf Numerical Recipes by W.H.Press et al.

See also: Modeling in Biology: Differential Equations by Clifford Taubes, Prentice Hall, 2001.
To solve numerically:

dx

dt
= f(x) with x0 = x(t = 0) (9)

Write xn = x(t = n∆t). Define: ∆xn+1 = xn+1 − xn then for small ∆t Eq. 9 becomes

∆xn+1

∆t
= f(xn) (10)

hence
xn+1 = xn + f(xn)∆t error per step ≈ (∆t)2 (11)

Euler method with white noise

White noise, w(t) is defined as having zero mean, but a variance that is a delta-function in
time.

〈w(t)〉 = 0 ; 〈w(t)w(t′)〉 = δ(t − t′) (12)

The integral (dt) over a delta-function gives, unity, so the delta-function has units of inverse time
(ms−1) and the white noise function has units of square-root of inverse-time, (ms−1/2).

Equation to integrate:
dx

dt
= f(x) + σw(t) (13)

Must be implemented numerically:

xn+1 = xn + f(xn)∆t + σ
√

∆tw̃n (14)

where w̃n is a random selection from a Gaussian, with distribution:

p (w̃n) =
1√
2π

e−w̃2
n/2 (15)

This has zero mean, and variance 1 for a particular n but covariance 0 for terms with different
n: this can be written 〈w̃nw̃n′〉 = δn−n′ .

Warning: only read further if everything up until now is straight-
forward to you!
Why scale noise term by

√
∆t in simulations?

In words: the white noise term adds variance to x, not a mean effect.
For N independent choices of noise term (one for each time step) if the amplitude of the noise

term is A then the variance of N terms is NA2. Hence at time T = N∆t the variance is NA2.
If we change ∆t the number of time steps, N to reach T changes inversely, N = T/(∆t). But

we do not want the variance to change as we change the time step of our simulation, so we want
NA2 to remain fixed. This means A2 scales as 1/N ∝ ∆t. Recall A is the amplitude of the noise
term, so the amplitude scales as A ∝

√
∆t.



Mathematical proof: just consider contribution of the noise term, which only depends on
time, so we ignore f(x) in Eq. 13. If:

dx

dt
= σw(t) (16)

then

x(T ) = x0 + σ
∫ T

0

w(t′)dt′ (17)

and 〈x(t)〉 = x0 while

V ar(x) =
〈

(x − x0)
2
〉

=

〈

σ2

∫ T

0

w(t′)dt′
∫ T

0

w(t′′)dt′′
〉

= σ2

∫ T

0

dt′
∫ T

0

dt′′ 〈w(t′)w(t′′)〉

= σ2

∫ T

0

dt′
∫ T

0

dt′′δ(t′ − t′′)

= σ2

∫ T

0

dt′ = σ2T. (18)

This is the analytic solution (using continuous time) that we must achieve numerically (using
discrete time steps).

Now we prove that Eq. 14, ignoring the f(xn) term, gives the correct result:

xn+1 = xn + σ
√

∆tw̃n (19)

leads to

xN = x0 + σ
√

∆t
N
∑

k=1

w̃k (20)

where the sum is over N independent variables, each with mean 0 and variance 1 so 〈xN 〉 = x0

and

V ar(xN) =
〈

(xN − x0)
2
〉

= σ2∆t
N
∑

k=1

N
∑

k′=1

〈w̃kw̃k′〉

= σ2∆t
N
∑

k=1

N
∑

k′=1

δk−k′

= σ2∆t
N
∑

k=1

1

= σ2∆tN = σ2T where T = N∆t. (21)

This agrees with Eq. 18 as required.


