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1 Seven problems

A recent series of papers [3–8] develops a theory of signal recovery from highly incomplete
information. The central results state that a sparse vector x0 ∈ RN can be recovered from a
small number of linear measurements b = Ax0 ∈ RK , K � N (or b = Ax0 + e when there is
measurement noise) by solving a convex program.

As a companion to these papers, this package includes MATLAB code that implements this
recovery procedure in the seven contexts described below. The code is not meant to be cutting-
edge, rather it is a proof-of-concept showing that these recovery procedures are computationally
tractable, even for large scale problems where the number of data points is in the millions.

The problems fall into two classes: those which can be recast as linear programs (LPs), and
those which can be recast as second-order cone programs (SOCPs). The LPs are solved using
a generic path-following primal-dual method. The SOCPs are solved with a generic log-barrier
algorithm. The implementations follow Chapter 11 of [2].

For maximum computational efficiency, the solvers for each of the seven problems are imple-
mented separately. They all have the same basic structure, however, with the computational
bottleneck being the calculation of the Newton step (this is discussed in detail below). The code
can be used in either “small scale” mode, where the system is constructed explicitly and solved
exactly, or in “large scale” mode, where an iterative matrix-free algorithm such as conjugate
gradients (CG) is used to approximately solve the system.

Our seven problems of interest are:

• Min-`1 with equality constraints. The program

(P1) min ‖x‖1 subject to Ax = b,

also known as basis pursuit, finds the vector with smallest `1 norm

‖x‖1 :=
∑
i

|xi|

that explains the observations b. As the results in [4, 6] show, if a sufficiently sparse x0

exists such that Ax0 = b, then (P1) will find it. When x,A, b have real-valued entries, (P1)
can be recast as an LP (this is discussed in detail in [10]).

• Minimum `1 error approximation. Let A be a M × N matrix with full rank. Given
y ∈ RM , the program

(PA) min
x
‖y −Ax‖1
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finds the vector x ∈ RN such that the error y − Ax has minimum `1 norm (i.e. we are
asking that the difference between Ax and y be sparse). This program arises in the context
of channel coding [8].

Suppose we have a channel code that produces a codeword c = Ax for a message x. The
message travels over the channel, and has an unknown number of its entries corrupted.
The decoder observes y = c+ e, where e is the corruption. If e is sparse enough, then the
decoder can use (PA) to recover x exactly. Again, (PA) can be recast as an LP.

• Min-`1 with quadratic constraints. This program finds the vector with minimum `1
norm that comes close to explaining the observations:

(P2) min ‖x‖1 subject to ‖Ax− b‖2 ≤ ε,

where ε is a user specified parameter. As shown in [5], if a sufficiently sparse x0 exists such
that b = Ax0 + e, for some small error term ‖e‖2 ≤ ε, then the solution x?2 to (P2) will be
close to x0. That is, ‖x?2 − x0‖2 ≤ C · ε, where C is a small constant. (P2) can be recast
as a SOCP.

• Min-`1 with bounded residual correlation. Also referred to as the Dantzig Selector,
the program

(PD) min ‖x‖1 subject to ‖A∗(Ax− b)‖∞ ≤ γ,

where γ is a user specified parameter, relaxes the equality constraints of (P1) in a different
way. (PD) requires that the residual Ax− b of a candidate vector x not be too correlated
with any of the columns of A (the product A∗(Ax−b) measures each of these correlations).
If b = Ax0+e, where ei ∼ N (0, σ2), then the solution x?D to (PD) has near-optimal minimax
risk:

E‖x?D − x0‖22 ≤ C(logN) ·
∑
i

min(x0(i)2, σ2),

(see [7] for details). For real-valued x,A, b, (PD) can again be recast as an LP; in the
complex case, there is an equivalent SOCP.

It is also true that when x,A, b are complex, the programs (P1), (PA), (PD) can be written as
SOCPs, but we will not pursue this here.

If the underlying signal is a 2D image, an alternate recovery model is that the gradient is
sparse [18]. Let xij denote the pixel in the ith row and j column of an n×n image x, and define
the operators

Dh;ijx =

{
xi+1,j − xij i < n

0 i = n
Dv;ijx =

{
xi,j+1 − xij j < n

0 j = n
,

and

Dijx =
(
Dh;ijx
Dv;ijx

)
. (1)

The 2-vector Dijx can be interpreted as a kind of discrete gradient of the digital image x. The
total variation of x is simply the sum of the magnitudes of this discrete gradient at every point:

TV(x) :=
∑
ij

√
(Dh;ijx)2 + (Dv;ijx)2 =

∑
ij

‖Dijx‖2.

With these definitions, we have three programs for image recovery, each of which can be recast
as a SOCP:
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• Min-TV with equality constraints.

(TV1) min TV(x) subject to Ax = b

If there exists a piecewise constant x0 with sufficiently few edges (i.e. Dijx0 is nonzero for
only a small number of indices ij), then (TV1) will recover x0 exactly — see [4].

• Min-TV with quadratic constraints.

(TV2) min TV(x) subject to ‖Ax− b‖2 ≤ ε

Examples of recovering images from noisy observations using (TV2) were presented in [5].
Note that if A is the identity matrix, (TV2) reduces to the standard Rudin-Osher-Fatemi
image restoration problem [18]. See also [9, 11–13] for SOCP solvers specifically designed
for the total-variational functional.

• Dantzig TV.

(TVD) min TV(x) subject to ‖A∗(Ax− b)‖∞ ≤ γ

This program was used in one of the numerical experiments in [7].

In the next section, we describe how to solve linear and second-order cone programs using modern
interior point methods.

2 Interior point methods

Advances in interior point methods for convex optimization over the past 15 years, led by the
seminal work [14], have made large-scale solvers for the seven problems above feasible. Below we
overview the generic LP and SOCP solvers used in the `1-magic package to solve these problems.

2.1 A primal-dual algorithm for linear programming

In Chapter 11 of [2], Boyd and Vandenberghe outline a relatively simple primal-dual algorithm
for linear programming which we have followed very closely for the implementation of (P1),(PA),
and (PD). For the sake of completeness, and to set up the notation, we briefly review their
algorithm here.

The standard-form linear program is

min
z
〈c0, z〉 subject to A0z = b,

fi(z) ≤ 0,

where the search vector z ∈ RN , b ∈ RK , A0 is a K×N matrix, and each of the fi, i = 1, . . . ,m
is a linear functional:

fi(z) = 〈ci, z〉+ di,

for some ci ∈ RN , di ∈ R. At the optimal point z?, there will exist dual vectors ν? ∈ RK , λ? ∈
Rm, λ? ≥ 0 such that the Karush-Kuhn-Tucker conditions are satisfied:

(KKT ) c0 +AT0 ν
? +

∑
i

λ?i ci = 0,

λ?i fi(z
?) = 0, i = 1, . . . ,m,

A0z
? = b,

fi(z?) ≤ 0, i = 1, . . . ,m.
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In a nutshell, the primal dual algorithm finds the optimal z? (along with optimal dual vectors
ν? and λ?) by solving this system of nonlinear equations. The solution procedure is the classical
Newton method: at an interior point (zk, νk, λk) (by which we mean fi(zk) < 0, λk > 0), the
system is linearized and solved. However, the step to new point (zk+1, νk+1, λk+1) must be
modified so that we remain in the interior.

In practice, we relax the complementary slackness condition λifi = 0 to

λki fi(z
k) = −1/τk, (2)

where we judiciously increase the parameter τk as we progress through the Newton iterations.
This biases the solution of the linearized equations towards the interior, allowing a smooth, well-
defined “central path” from an interior point to the solution on the boundary (see [15,20] for an
extended discussion).

The primal, dual, and central residuals quantify how close a point (z, ν, λ) is to satisfying (KKT )
with (2) in place of the slackness condition:

rdual = c0 +AT0 ν +
∑
i

λici

rcent = −Λf − (1/τ)1
rpri = A0z − b,

where Λ is a diagonal matrix with (Λ)ii = λi, and f =
(
f1(z) . . . fm(z)

)T .

From a point (z, ν, λ), we want to find a step (∆z,∆ν,∆λ) such that

rτ (z + ∆z, ν + ∆ν, λ+ ∆λ) = 0. (3)

Linearizing (3) with the Taylor expansion around (z, ν, λ),

rτ (z + ∆z, ν + ∆ν, λ+ ∆λ) ≈ rτ (z, ν, λ) + Jrτ (z, νλ)

∆z
∆ν
∆λ

 ,

where Jrτ (z, νλ) is the Jacobian of rτ , we have the system 0 AT0 CT

−ΛC 0 −F
A0 0 0

∆z
∆v
∆λ

 = −

c0 +AT0 ν +
∑
i λici

−Λf − (1/τ)1
A0z − b

 ,

where m × N matrix C has the cTi as rows, and F is diagonal with (F )ii = fi(z). We can
eliminate ∆λ using:

∆λ = −ΛF−1C∆z − λ− (1/τ)f−1 (4)

leaving us with the core system(
−CTF−1ΛC AT0

A0 0

)(
∆z
∆ν

)
=
(
−c0 + (1/τ)CT f−1 −AT0 ν

b−A0z

)
. (5)

With the (∆z,∆ν,∆λ) we have a step direction. To choose the step length 0 < s ≤ 1, we ask
that it satisfy two criteria:

1. z + s∆z and λ+ s∆λ are in the interior, i.e. fi(z + s∆z) < 0, λi > 0 for all i.

2. The norm of the residuals has decreased sufficiently:

‖rτ (z + s∆z, ν + s∆ν, λ+ s∆λ)‖2 ≤ (1− αs) · ‖rτ (z, ν, λ)‖2,

where α is a user-sprecified parameter (in all of our implementations, we have set α = 0.01).
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Since the fi are linear functionals, item 1 is easily addressed. We choose the maximum step size
that just keeps us in the interior. Let

I+
f = {i : 〈ci,∆z〉 > 0}, I−λ {i : ∆λ < 0},

and set
smax = 0.99 ·min{1, {−fi(z)/〈ci,∆z〉, i ∈ I+

f }, {−λi/∆λi, i ∈ I
−
λ }}.

Then starting with s = smax, we check if item 2 above is satisfied; if not, we set s′ = β · s and
try again. We have taken β = 1/2 in all of our implementations.

When rdual and rpri are small, the surrogate duality gap η = −fTλ is an approximation to how
close a certain (z, ν, λ) is to being opitmal (i.e. 〈c0, z〉− 〈c0, z?〉 ≈ η). The primal-dual algorithm
repeats the Newton iterations described above until η has decreased below a given tolerance.

Almost all of the computational burden falls on solving (5). When the matrix −CTF−1ΛC is
easily invertible (as it is for (P1)), or there are no equality constraints (as in (PA), (PD)), (5)
can be reduced to a symmetric positive definite set of equations.

When N and K are large, forming the matrix and then solving the linear system of equations
in (5) is infeasible. However, if fast algorithms exist for applying C,CT and A0, A

T
0 , we can use

a “matrix free” solver such as Conjugate Gradients. CG is iterative, requiring a few hundred
applications of the constraint matrices (roughly speaking) to get an accurate solution. A CG
solver (based on the very nice exposition in [19]) is included with the `1-magic package.

The implementations of (P1), (PA), (PD) are nearly identical, save for the calculation of the
Newton step. In the Appendix, we derive the Newton step for each of these problems using
notation mirroring that used in the actual MATLAB code.

2.2 A log-barrier algorithm for SOCPs

Although primal-dual techniques exist for solving second-order cone programs (see [1,13]), their
implementation is not quite as straightforward as in the LP case. Instead, we have implemented
each of the SOCP recovery problems using a log-barrier method. The log-barrier method, for
which we will again closely follow the generic (but effective) algorithm described in [2, Chap.
11], is conceptually more straightforward than the primal-dual method described above, but at
its core is again solving for a series of Newton steps.

Each of (P2), (TV1), (TV2), (TVD) can be written in the form

min
z
〈c0, z〉 subject to A0z = b

fi(z) ≤ 0, i = 1, . . . ,m (6)

where each fi describes either a constraint which is linear

fi = 〈ci, z〉+ di

or second-order conic
fi(z) =

1
2
(
‖Aiz‖22 − (〈ci, z〉+ di)2

)
(the Ai are matrices, the ci are vectors, and the di are scalars).

The standard log-barrier method transforms (6) into a series of linearly constrained programs:

min
z
〈c0, z〉+

1
τk

∑
i

− log(−fi(z)) subject to A0z = b, (7)
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where τk > τk−1. The inequality constraints have been incorporated into the functional via a
penalty function1 which is infinite when the constraint is violated (or even met exactly), and
smooth elsewhere. As τk gets large, the solution zk to (7) approaches the solution z? to (6): it
can be shown that 〈c0, zk〉 − 〈c0, z?〉 < m/τk, i.e. we are within m/τk of the optimal value after
iteration k (m/τk is called the duality gap). The idea here is that each of the smooth subproblems
can be solved to fairly high accuracy with just a few iterations of Newton’s method, especially
since we can use the solution zk as a starting point for subproblem k + 1.

At log-barrier iteration k, Newton’s method (which is again iterative) proceeds by forming a series
of quadratic approximations to (7), and minimizing each by solving a system of equations (again,
we might need to modify the step length to stay in the interior). The quadratic approximation
of the functional

f0(z) = 〈c0, z〉+
1
τ

∑
i

− log(−fi(z))

in (7) around a point z is given by

f0(z + ∆z) ≈ z + 〈gz,∆z〉+
1
2
〈Hz∆z,∆z〉 := q(z + ∆z),

where gz is the gradient

gz = c0 +
1
τ

∑
i

1
−fi(z)

∇fi(z)

and Hz is the Hessian matrix

Hz =
1
τ

∑
i

1
fi(z)2

∇fi(z)(∇fi(z))T +
1
τ

∑
i

1
−fi(z)

∇2fi(z).

Given that z is feasible (that A0z = b, in particular), the ∆z that minimizes q(z + ∆z) subject
to A0z = b is the solution to the set of linear equations

τ

(
Hz AT0
A0 0

)(
∆z
v

)
= −τgz. (8)

(The vector v, which can be interpreted as the Lagrange multipliers for the quality constraints
in the quadratic minimization problem, is not directly used.)

In all of the recovery problems below with the exception of (TV1), there are no equality con-
straints (A0 = 0). In these cases, the system (8) is symmetric positive definite, and thus can be
solved using CG when the problem is “large scale”. For the (TV1) problem, we use the SYMMLQ
algorithm (which is similar to CG, and works on symmetric but indefinite systems, see [16]).

With ∆z in hand, we have the Newton step direction. The step length s ≤ 1 is chosen so that

1. fi(z + s∆z) < 0 for all i = 1, . . . ,m,

2. The functional has decreased suffiently:

f0(z + s∆z) < f0(z) + αs∆z〈gz,∆z〉,

where α is a user-specified parameter (each of the implementations below uses α = 0.01).
This requirement basically states that the decrease must be within a certain percentage of
that predicted by the linear model at z.

As before, we start with s = 1, and decrease by multiples of β until both these conditions are
satisfied (all implementations use β = 1/2).

The complete log-barrier implementation for each problem follows the outline:
1The choice of − log(−x) for the barrier function is not arbitrary, it has a property (termed self-concordance)

that is very important for quick convergence of (7) to (6) both in theory and in practice (see the very nice
exposition in [17]).
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1. Inputs: a feasible starting point z0, a tolerance η, and parameters µ and an initial τ1. Set
k = 1.

2. Solve (7) via Newton’s method (followed by the backtracking line search), using zk−1 as
an initial point. Call the solution zk.

3. If m/τk < η, terminate and return zk.

4. Else, set τk+1 = µτk, k = k + 1 and go to step 2.

In fact, we can calculate in advance how many iterations the log-barrier algorithm will need:

barrier iterations =
⌈

logm− log η − log τ1

logµ

⌉
.

The final issue is the selection of τ1. Our implementation chooses τ1 conservatively; it is set so
that the duality gap m/τ1 after the first iteration is equal to 〈c0, z0〉.

In Appendix, we explicitly derive the equations for the Newton step for each of (P2), (TV1), (TV2), (TVD),
again using notation that mirrors the variable names in the code.

3 Examples

To illustrate how to use the code, the `1-magic package includes m-files for solving specific
instances of each of the above problems (these end in “ example.m” in the main directory).

3.1 `1 with equality constraints

We will begin by going through l1eq example.m in detail. This m-file creates a sparse signal,
takes a limited number of measurements of that signal, and recovers the signal exactly by solving
(P1). The first part of the procedure is for the most part self-explainatory:

% put key subdirectories in path if not already there
path(path, ’./Optimization’);
path(path, ’./Data’);

% load random states for repeatable experiments
load RandomStates
rand(’state’, rand_state);
randn(’state’, randn_state);

% signal length
N = 512;
% number of spikes in the signal
T = 20;
% number of observations to make
K = 120;

% random +/- 1 signal
x = zeros(N,1);
q = randperm(N);
x(q(1:T)) = sign(randn(T,1));

7



We add the ’Optimization’ directory (where the interior point solvers reside) and the ’Data’
directories to the path. The file RandomStates.m contains two variables: rand state and
randn state, which we use to set the states of the random number generators on the next
two lines (we want this to be a “repeatable experiment”). The next few lines set up the prob-
lem: a length 512 signal that contains 20 spikes is created by choosing 20 locations at random
and then putting ±1 at these locations. The original signal is shown in Figure 1(a). The next
few lines:

% measurement matrix
disp(’Creating measurment matrix...’);
A = randn(K,N);
A = orth(A’)’;
disp(’Done.’);

% observations
y = A*x;

% initial guess = min energy
x0 = A’*y;

create a measurement ensemble by first creating a K × N matrix with iid Gaussian entries,
and then orthogonalizing the rows. The measurements y are taken, and the “minimum energy”
solution x0 is calculated (x0, which is shown in Figure 1 is the vector in {x : Ax = y} that is
closest to the origin). Finally, we recover the signal with:

% solve the LP
tic
xp = l1eq_pd(x0, A, [], y, 1e-3);
toc

The function l1eq pd.m (found in the ’Optimization’ subdirectory) implements the primal-dual
algorithm presented in Section 2.1; we are sending it our initial guess x0 for the solution, the
measurement matrix (the third argument, which is used to specify the transpose of the measure-
ment matrix, is unnecessary here — and hence left empty — since we are providing A explicitly),
the measurements, and the precision to which we want the problem solved (l1eq pd will termi-
nate when the surrogate duality gap is below 10−3). Running the example file at the MATLAB
prompt, we have the following output:

>> l1eq_example

Creating measurment matrix...

Done.

Iteration = 1, tau = 1.921e+02, Primal = 5.272e+01, PDGap = 5.329e+01, Dual res = 9.898e+00, Primal res = 1.466e-14

H11p condition number = 1.122e-02

Iteration = 2, tau = 3.311e+02, Primal = 4.383e+01, PDGap = 3.093e+01, Dual res = 5.009e+00, Primal res = 7.432e-15

H11p condition number = 2.071e-02

Iteration = 3, tau = 5.271e+02, Primal = 3.690e+01, PDGap = 1.943e+01, Dual res = 2.862e+00, Primal res = 1.820e-14

H11p condition number = 2.574e-04

Iteration = 4, tau = 7.488e+02, Primal = 3.272e+01, PDGap = 1.368e+01, Dual res = 1.902e+00, Primal res = 1.524e-14

H11p condition number = 8.140e-05

Iteration = 5, tau = 9.731e+02, Primal = 2.999e+01, PDGap = 1.052e+01, Dual res = 1.409e+00, Primal res = 1.380e-14

H11p condition number = 5.671e-05

Iteration = 6, tau = 1.965e+03, Primal = 2.509e+01, PDGap = 5.210e+00, Dual res = 6.020e-01, Primal res = 4.071e-14

H11p condition number = 2.054e-05

Iteration = 7, tau = 1.583e+04, Primal = 2.064e+01, PDGap = 6.467e-01, Dual res = 6.020e-03, Primal res = 3.126e-13

H11p condition number = 1.333e-06

Iteration = 8, tau = 1.450e+05, Primal = 2.007e+01, PDGap = 7.062e-02, Dual res = 6.020e-05, Primal res = 4.711e-13

H11p condition number = 1.187e-07

Iteration = 9, tau = 1.330e+06, Primal = 2.001e+01, PDGap = 7.697e-03, Dual res = 6.020e-07, Primal res = 2.907e-12

H11p condition number = 3.130e-09

Iteration = 10, tau = 1.220e+07, Primal = 2.000e+01, PDGap = 8.390e-04, Dual res = 6.020e-09, Primal res = 1.947e-11

H11p condition number = 3.979e-11

Elapsed time is 0.141270 seconds.

The recovered signal xp is shown in Figure 1(c). The signal is recovered to fairly high accuracy:

>> norm(xp-x)
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(a) Original (b) Minimum energy reconstruction (c) Recovered

Figure 1: 1D recovery experiment for `1 minimization with equality constraints. (a) Original length
512 signal x consisting of 20 spikes. (b) Minimum energy (linear) reconstruction x0. (c) Minimum `1
reconstruction xp.

ans =

8.9647e-05

3.2 Phantom reconstruction

A large scale example is given in tveq phantom example.m. This files recreates the phantom
reconstruction experiment first published in [4]. The 256×256 Shepp-Logan phantom, shown in
Figure 2(a), is measured at K = 5481 locations in the 2D Fourier plane; the sampling pattern is
shown in Figure 2(b). The image is then reconstructed exactly using (TV1).

The star-shaped Fourier-domain sampling pattern is created with

% number of radial lines in the Fourier domain
L = 22;

% Fourier samples we are given
[M,Mh,mh,mhi] = LineMask(L,n);
OMEGA = mhi;

The auxiliary function LineMask.m (found in the ‘Measurements’ subdirectory) creates the star-
shaped pattern consisting of 22 lines through the origin. The vector OMEGA contains the locations
of the frequencies used in the sampling pattern.

This example differs from the previous one in that the code operates in large-scale mode. The
measurement matrix in this example is 5481 × 65536, making the system (8) far too large to
solve (or even store) explicitly. (In fact, the measurment matrix itself would require almost 3
gigabytes of memory if stored in double precision.) Instead of creating the measurement matrix
explicitly, we provide function handles that take a vector x, and return Ax. As discussed above,
the Newton steps are solved for using an implicit algorithm.

To create the implicit matrix, we use the function handles

A = @(z) A_fhp(z, OMEGA);
At = @(z) At_fhp(z, OMEGA, n);
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(a) Phantom (b) Sampling pattern (c) Min energy (d) min-TV reconstruction

Figure 2: Phantom recovery experiment.

The function A fhp.m takes a length N vector (we treat n× n images as N := n2 vectors), and
returns samples on the K frequencies. (Actually, since the underlying image is real, A fhp.m
return the real and imaginary parts of the 2D FFT on the upper half-plane of the domain shown
in Figure 2(b).)

To solve (TV1), we call

xp = tveq_logbarrier(xbp, A, At, y, 1e-1, 2, 1e-8, 600);

The variable xbp is the initial guess (which is again the minimal energy reconstruction shown
in Figure 2(c)), y are the measurements, and1e-1 is the desired precision. The sixth input is
the value of µ (the amount by which to increase τk at each iteration; see Section 2.2). The last
two inputs are parameters for the large-scale solver used to find the Newton step. The solvers
are iterative, with each iteration requiring one application of A and one application of At. The
seventh and eighth arguments above state that we want the solver to iterate until the solution
has precision 10−8 (that is, it finds a z such that ‖Hz− g‖2/‖g‖2 ≤ 10−8), or it has reached 600
iterations.

The recovered phantom is shown in Figure 2(d). We have ‖XTV −X‖2/‖X‖2 ≈ 8 · 10−3.

3.3 Optimization routines

We include a brief description of each of the main optimization routines (type help <function>
in MATLAB for details). Each of these m-files is found in the Optimization subdirectory.
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cgsolve
Solves Ax = b, where A is symmetric positive definite, using the
Conjugate Gradient method.

l1dantzig pd Solves (PD) (the Dantzig selector) using a primal-dual algorithm.

l1decode pd
Solves the norm approximation problem (PA) (for decoding via
linear programming) using a primal-dual algorithm.

l1eq pd
Solves the standard Basis Pursuit problem (P1) using a primal-dual
algorithm.

l1qc logbarrier
Barrier (“outer”) iterations for solving quadratically constrained
`1 minimization (P2).

l1qc newton
Newton (“inner”) iterations for solving quadratically constrained
`1 minimization (P2).

tvdantzig logbarrier Barrier iterations for solving the TV Dantzig selector (TVD).

tvdantzig newton Newton iterations for (TVD).

tveq logbarrier Barrier iterations for equality constrained TV minimizaiton (TV1).

tveq newton Newton iterations for (TV1).

tvqc logbarrier
Barrier iterations for quadratically constrained TV minimization
(TV2).

tvqc newton Newton iterations for (TV2).

4 Error messages

Here we briefly discuss each of the error messages that the `1-magic may produce.

• Matrix ill-conditioned. Returning previous iterate. This error can occur when
the code is running in small-scale mode; that is, the matrix A is provided explicitly. The
error message is produced when the condition number of the linear system we need to solve
to find the step direction (i.e. (5) for the linear programs, and (8) for the SOCPs) has an
estimated condition number of less than 10−14.

This error most commonly occurs during the last iterations of the primal-dual or log-barrier
algorithms. While it means that the solution is not within the tolerance specified (by the
primal-dual gap), in practice it is usually pretty close.

• Cannot solve system. Returning previous iterate. This error is the large-scale
analog to the above. The error message is produced when the residual produced by the
conjugate gradients algorithm was above 1/2; essentially this means that CG has not solved
the system in any meaningful way. Again, this error typically occurs in the late stages of
the optimization algorithm, and is a symptom of the system being ill-conditioned.

• Stuck backtracking, returning last iterate. This error occurs when the algorithm,
after computing the step direction, cannot find a step size small enough that decreases the
objective. It is generally occurs in large-scale mode, and is a symptom of CG not solving
for the step direction to sufficient precision (if the system is solved perfectly, a small enough
step size will always be found). Again, this will typically occur in the late stages of the
optimization algorithm.

• Starting point infeasible; using x0 = At*inv(AAt)*y. Each of the optimization
programs expects an initial guess which is feasible (obeys the constraints). If the x0
provided is not, this message is produced, and the algorithm proceeds using the least-
squares starting point x0 = AT (AAT )−1b.

11



Appendix

A `1 minimization with equality constraints

When x, A and b are real, then (P1) can be recast as the linear program

min
x,u

∑
i

ui subject to xi − ui ≤ 0
−xi − ui ≤ 0,

Ax = b

which can be solved using the standard primal-dual algorithm outlined in Section 2.1 (again,
see [2, Chap.11] for a full discussion). Set

fu1;i := xi − ui
fu2;i := −xi − ui,

with λu1;i, λu2;i the corresponding dual variables, and let fu1 be the vector (fu1;1 . . . fu1;N )T

(and likewise for fu2 , λu1 , λu2). Note that

∇fu1;i =
(
δi
−δi

)
, ∇fu2;i =

(
−δi
−δi

)
, ∇2fu1;i = 0, ∇2fu2;i = 0,

where δi is the standard basis vector for component i. Thus at a point (x, u; v, λu1 , λu2), the
central and dual residuals are

rcent =
(
−Λu1fu1

−Λu2fu2

)
− (1/τ)1,

rdual =
(
λu1 − λu2 +AT v
1− λu1 − λu2

)
,

and the Newton step (5) is given by:Σ1 Σ2 AT

Σ2 Σ1 0
A 0 0

∆x
∆u
∆v

 =

w1

w2

w3

 :=

(−1/τ) · (−f−1
u1

+ f−1
u2

)−AT v
−1− (1/τ) · (f−1

u1
+ f−1

u2
)

b−Ax

 ,

with
Σ1 = Λu1F

−1
u1
− Λu2F

−1
u2
, Σ2 = Λu1F

−1
u1

+ Λu2F
−1
u2
,

(The F•, for example, are diagonal matrices with (F•)ii = f•;i, and f−1
•;i = 1/f•;i.) Setting

Σx = Σ1 − Σ2
2Σ−1

1 ,

we can eliminate

∆x = Σ−1
x (w1 − Σ2Σ−1

1 w2 −AT∆v)
∆u = Σ−1

1 (w2 − Σ2∆x),

and solve
−AΣ−1

x AT∆v = w3 −A(Σ−1
x w1 − Σ−1

x Σ2Σ−1
1 w2).

This is a K×K positive definite system of equations, and can be solved using conjugate gradients.

Given ∆x,∆u,∆v, we calculate the change in the inequality dual variables as in (4):

∆λu1 = Λu1F
−1
u1

(−∆x+ ∆u)− λu1 − (1/τ)f−1
u1

∆λu2 = Λu2F
−1
u2

(∆x+ ∆u)− λu2 − (1/τ)f−1
u2
.
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B `1 norm approximation

The `1 norm approximation problem (PA) can also be recast as a linear program:

min
x,u

M∑
m=1

um subject to Ax− u− y ≤ 0
−Ax− u+ y ≤ 0,

(recall that unlike the other 6 problems, here the M×N matrix A has more rows than columns).
For the primal-dual algorithm, we define

fu1 = Ax− u− y, fu2 = −Ax− u+ y.

Given a vector of weights σ ∈ RM ,∑
m

σm∇fu1;m =
(
ATσ
−σ

)
,
∑
m

σm∇fu2;m =
(
−ATσ
−σ

)
,

∑
m

σm∇fu1;m∇fTu1;m =
(
ATΣA −ATΣ
−ΣA Σ

)
,
∑
m

σm∇fu2;m∇fTu2;m =
(
ATΣA ATΣ

ΣA Σ

)
.

At a point (x, u;λu1 , λu2), the dual residual is

rdual =
(
AT (λu1 − λu2)
−λu1 − λu2

)
,

and the Newton step is the solution to(
ATΣ11A ATΣ12

Σ12A Σ11

)(
∆x
∆u

)
=
(
−(1/τ) ·AT (−f−1

u1
+ f−1

u2
)

−1− (1/τ) · (f−1
u1

+ f−1
u2

)

)
:=
(
w1

w2

)
where

Σ11 = −Λu1F
−1
u1
− Λu2F

−1
u2

Σ12 = Λu1F
−1
u1
− Λu2F

−1
u2
.

Setting
Σx = Σ11 − Σ2

12Σ−1
11 ,

we can eliminate ∆u = Σ−1
11 (w2 − Σ22A∆x), and solve

ATΣxA∆x = w1 −ATΣ22Σ−1
11 w2

for ∆x. Again, ATΣxA is a N ×N symmetric positive definite matrix (it is straightforward to
verify that each element on the diagonal of Σx will be strictly positive), and so the Conjugate
Gradients algorithm can be used for large-scale problems.

Given ∆x,∆u, the step directions for the inequality dual variables are given by

∆λu1 = −Λu1F
−1
u1

(A∆x−∆u)− λu1 − (1/τ)f−1
u1

∆λu2 = Λu2F
−1
u2

(A∆x+ ∆u)− λu2 − (1/τ)f−1
u2
.

C `1 Dantzig selection

An equivalent linear program to (PD) in the real case is given by:

min
x,u

∑
i

ui subject to x− u ≤ 0,
−x− u ≤ 0,

AT r − ε ≤ 0,

−AT r − ε ≤ 0,

13



where r = Ax− b. Taking

fu1 = x− u, fu2 = −x− u, fε1 = AT r − ε, fε2 = −AT r − ε,

the residuals at a point (x, u;λu1 , λu2 , λε1 , λε2), the dual residual is

rdual =
(
λu1 − λu2 +ATA(λε1 − λε2)

1− λu1 − λu2

)
,

and the Newton step is the solution to(
ATAΣaATA+ Σ11 Σ12

Σ12 Σ11

)(
∆x
∆u

)
=
(
−(1/τ) · (ATA(−f−1

ε1 + f−1
ε2 ))− f−1

u1
+ f−1

u2

−1− (1/τ) · (f−1
u1

+ f−1
u2

)

)
:=
(
w1

w2

)
where

Σ11 = −Λu1F
−1
u1
− Λu2F

−1
u2

Σ12 = Λu1F
−1
u1
− Λu2F

−1
u2

Σa = −Λε1F
−1
ε1 − Λε2F

−1
ε2 .

Again setting
Σx = Σ11 − Σ2

12Σ−1
11 ,

we can eliminate
∆u = Σ−1

11 (w2 − Σ12∆x),

and solve
(ATAΣaATA+ Σx)∆x = w1 − Σ12Σ−1

11 w2

for ∆x. As before, the system is symmetric positive definite, and the CG algorithm can be used
to solve it.

Given ∆x,∆u, the step directions for the inequality dual variables are given by

∆λu1 = −Λu1F
−1
u1

(∆x−∆u)− λu1 − (1/τ)f−1
u1

∆λu2 = −Λu2F
−1
u2

(−∆x−∆u)− λu2 − (1/τ)f−1
u2

∆λε1 = −Λε1F
−1
ε1 (ATA∆x)− λε1 − (1/τ)f−1

ε1

∆λε2 = −Λε2F
−1
ε2 (−ATA∆x)− λε2 − (1/τ)f−1

ε2 .

D `1 minimization with quadratic constraints

The quadractically constrained `1 minimization problem (P2) can be recast as the second-order
cone program

min
x,u

∑
i

ui subject to x− u ≤ 0,
−x− u ≤ 0,

1
2
(
‖Ax− b‖22 − ε2

)
≤ 0.

Taking

fu1 = x− u, fu2 = −x− u, fε =
1
2
(
‖Ax− b‖22 − ε2

)
,

we can write the Newton step (as in (8)) at a point (x, u) for a given τ as(
Σ11 − f−1

ε ATA+ f−2
ε AT rrTA Σ12

Σ12 Σ11

)(
∆x
∆u

)
=
(
f−1
u1
− f−1

u2
+ f−1

ε AT r
−τ1− f−1

u1
− f−1

u2

)
:=
(
w1

w2

)
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where r = Ax− b, and

Σ11 = F−2
u1

+ F−2
u2

Σ12 = −F−2
u1

+ F−2
u2
.

As before, we set
Σx = Σ11 − Σ2

12Σ−1
11

and eliminate ∆u
∆u = Σ−1

11 (w2 − Σ12∆x),

leaving us with the reduced system

(Σx − f−1
ε ATA+ f−2

ε AT rrTA)∆x = w1 − Σ12Σ−1
11 w2

which is symmetric positive definite and can be solved using CG.

E Total variation minimization with equality constraints

The equality constrained TV minimization problem

min
x

TV(x) subject to Ax = b,

can be rewritten as the SOCP

min
t,x

∑
ij

tij s.t. ‖Dijx‖2 ≤ tij

Ax = b.

Defining the inequality functions

ftij =
1
2
(
‖Dij‖22 − t2ij

)
i, j = 1, . . . , n (9)

we have

∇ftij =
(
DT
ijDijx
−tijδij

)
∇ftij∇fTtij =

(
DT
ijDijxx

TDT
ijDij −tijDT

ijDijxδ
T
ij

−tijδijxTDT
ijDij t2ijδijδ

T
ij

)
, ∇2ftij =

(
D∗ijDij 0

0 −δijδTij

)
,

where δij is the Kronecker vector that is 1 in entry ij and zero elsewhere. For future reference:

∑
ij

σij∇ftij =
(
DT
hΣDhx+DT

v ΣDvx
−σt

)
,

∑
ij

σij∇ftij∇fTtij =
(

BΣBT −BTΣ
−ΣTBT ΣT 2

)
,

∑
ij

σij∇2ftij =
(
DT
hΣDh +DT

v ΣDv 0
0 −Σ

)
where Σ = diag({σij}), T = diag(t), Dh has the Dh;ij as rows (and likewise for Dv), and B is a
matrix that depends on x:

B = DT
hΣ∂h +DT

v Σ∂v.

with Σ∂h = diag(Dhx), Σ∂v = diag(Dvx).
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The Newton system (8) for the log-barrier algorithm is then H11 BΣ12 AT

Σ12B
T Σ22 0

A 0 0

∆x
∆t
∆v

 =

DT
hF
−1
t Dhx+DT

v F
−1
t Dvx

−τ1− F−1
t t

0

 :=

w1

w2

0

 ,

where
H11 = DT

h (−F−1
t )Dh + DT

v (−F−1
t )Dv + BF−2

t BT .

Eliminating ∆t

∆t = Σ−1
22 (w2 − Σ12B

T∆x)
= Σ−1

22 (w2 − Σ12Σ∂hDh∆x− Σ12Σ∂vDv∆x),

the reduced (N +K)× (N +K) system is(
H ′11 AT

A 0

)(
∆x
∆v

)
=
(
w′1
0

)
(10)

with

H ′11 = H11 −BΣ2
12Σ−1

22 B
T

= DT
h (ΣbΣ2

∂h − F−1
t )Dh + DT

v (ΣbΣ2
∂v − F−1

t )Dv +

DT
h (ΣbΣ∂hΣ∂v)Dv + DT

v (ΣbΣ∂hΣ∂v)Dh

w′1 = w1 −BΣ12Σ−1
22 w2

= w1 − (DT
hΣ∂h +DT

v Σ∂v)Σ12Σ−1
22 w2

Σb = F−2
t − Σ−1

22 Σ2
12.

The system of equations (10) is symmetric, but not positive definite. Note that Dh and Dv are
(very) sparse matrices, and hence can be stored and applied very efficiently. This allows us to
again solve the system above using an iterative method such as SYMMLQ [16].

F Total variation minimization with quadratic constraints

We can rewrite (TV2) as the SOCP

min
x,t

∑
ij

tij subject to ‖Dijx‖2 ≤ tij , i, j = 1, . . . , n
‖Ax− b‖2 ≤ ε

where Dij is as in (1). Taking ftij as in (9) and

fε =
1
2
(
‖Ax− b‖22 − ε2

)
,

with

∇fε =
(
AT r
0

)
, ∇fε∇fTε =

(
AT rrTA 0

0 0

)
, ∇2fε =

(
A∗A 0
0 0

)
where r = Ax− b.

Also,

∇2ftij =
(
D∗ijDij 0

0 −δijδTij

)
∇2fε =

(
A∗A 0
0 0

)
.
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The Newton system is similar to that in equality constraints case:(
H11 BΣ12

Σ12B
T Σ22

)(
∆x
∆t

)
=
(
DT
hF
−1
t Dhx+DT

v F
−1
t Dvx+ f−1

ε AT r
−τ1− tf−1

t

)
:=
(
w1

w2

)
.

where (tf−1
t )ij = tij/ftij , and

H11 = DT
h (−F−1

t )Dh + DT
v (−F−1

t )Dv + BF−2
t BT −

f−1
ε ATA + f−2

ε AT rrTA,

Σ12 = − TF−2
t ,

Σ22 = F−1
t + F−2

t T 2,

Again eliminating ∆t

∆t = Σ−1
22 (w2 − Σ12Σ∂hDh∆x− Σ12Σ∂vDv∆x),

the key system is
H ′11∆x = w1 − (DT

hΣ∂h +DT
v Σ∂v)Σ12Σ−1

22 w2

where

H ′11 = H11 −BΣ2
12Σ−1

22 B
T

= DT
h (ΣbΣ2

∂h − F−1
t )Dh + DT

v (ΣbΣ2
∂v − F−1

t )Dv +

DT
h (ΣbΣ∂hΣ∂v)Dv + DT

v (ΣbΣ∂hΣ∂v)Dh −
f−1
ε ATA + f−2

ε AT rrTA,

Σb = F−2
t − Σ2

12Σ−1
22 .

The system above is symmetric positive definite, and can be solved with CG.

G Total variation minimization with bounded residual cor-
relation

The TV Dantzig problem has an equivalent SOCP as well:

min
x,t

∑
ij

tij subject to ‖Dijx‖2 ≤ tij , i, j = 1, . . . , n

AT (Ax− b)− ε ≤ 0

−AT (Ax− b)− ε ≤ 0.

The inequality constraint functions are

ftij =
1
2
(
‖Dijx‖22 − t2ij

)
i, j = 1, . . . , n

fε1 = AT (Ax− b)− ε,
fε2 = −AT (Ax− b)− ε,

with ∑
ij

σij∇fε1;ij =
(
ATAσ

0

)
,
∑
ij

σij∇fε2;ij =
(
−ATAσ

0

)
,

and ∑
ij

σij∇fε1;ij∇fTε1;ij =
∑
ij

σij∇fε2;ij∇fTε2;ij =
(
ATAΣATA 0

0 0

)
.
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Thus the log barrier Newton system is nearly the same as in the quadratically constrained case:(
H11 BΣ12

Σ12B
T Σ22

)(
∆x
∆t

)
=
(
DT
hF
−1
t Dhx+DT

v F
−1
t Dvx+ATA(f−1

ε1 − f
−1
ε2 )

−τ1− tf−1
t

)
:=
(
w1

w2

)
.

where

H11 = DT
h (−F−1

t )Dh + DT
v (−F−1

t )Dv + BF−2
t BT + ATAΣaATA,

Σ12 = − TF−2
t ,

Σ22 = F−1
t + F−2

t T 2,

Σa = F−2
ε1 + F−2

ε2 .

Eliminating ∆t as before

∆t = Σ−1
22 (w2 − Σ12Σ∂hDh∆x− Σ12Σ∂vDv∆x),

the key system is
H ′11∆x = w1 − (DT

hΣ∂h +DT
v Σ∂v)Σ12Σ−1

22 w2

where

H ′11 = DT
h (ΣbΣ2

∂h − F−1
t )Dh + DT

v (ΣbΣ2
∂v − F−1

t )Dv +

DT
h (ΣbΣ∂hΣ∂v)Dv + DT

v (ΣbΣ∂hΣ∂v)Dh + ATAΣaATA,

Σb = F−2
t − Σ2

12Σ−1
22 .
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