
Variational inference in (sparse) latent LDS models

bcseke@inf.ed.ac.uk

January 17, 2013

Abstract

Factored expectation constraints based approximate inference for Latent LDS models.
Details of sparse models are also considered.

Model

We consider the stationary homogeneous latent Gaussian model

xt+1 = Axt +But +Q−1/2wt, with wt ∼ N (0, I),

p(yt+1|xt+1) = φt+1,j(xt+1;yt+1)

where the inputs U = [u1, . . . ,uT ] and the outputs Y = [y1, . . . ,yT ] are observed and known
and φt+1,j is some, possibly non-Gaussian observation model. We put independent priors on the
elements of the parameters A, B and Q and write the joint density conditioned by the inputs as

p(Y ,X,A,Q,B|U) =

[∏
ij

p0(aij)
∏
ij

p0(bij)
∏
ij

p0(qij)

]
×
∏
t

N(xt+1|Axt+But,Q
−1)

∏
j

φt+1,j(xt+1;yt+1).

In the following we show how we plan to do inference with a factored expectation propagation
algorithm that is expected to get closer to the free form variational inference than the fixed form
variational approach. We start from the free form variational approach and then we present the
details of the expectation constraints based procedure.

Free form variational inference

Here we choose to approximate the joint density p(X,A,Q,B|Y ,U) with a factored form qx(X)qA(A)qQ(Q)qB(B)
by using the KL divergence D[·||·], that is we have

minimise
qx,qA,qQ,qB

D[qx(X)qA(A)qQ(Q)qB(B)||p(X,A,Q,B|Y ,U)] .

The stationary point of this minimisation problem yield the structured variational mean field
updates

[qx(X)]
new ∝ exp

{
〈log p(X,A,Q,B|Y ,U)〉qAqQ,qB

}
(1)

[qA(A)]
new ∝ exp

{
〈log p(X,A,Q,B|Y ,U)〉qXqQ,qB

}
(2)

[qQ(Q)]
new ∝ exp

{
〈log p(X,A,Q,B|Y ,U)〉qXqA,qB

}
(3)

[qB(B)]
new ∝ exp

{
〈log p(X,A,Q,B|Y ,U)〉qXqA,qQ

}
(4)

From now on we will use and alternative notation for expectations: and expectation hi(xi) ≡
〈h(x1, . . . , xi, . . . , xn)〉q1,...,qi−1,qi+1,...,qn

is also denoted as hi(xi) = 〈h(x1, . . . , xi, . . . , xn)〉\qi . It

1



will typically be clear from the context what the densities q1, . . . , qn are and which member of this
set of densities is omitted.

In the following sections we detail the form of all these densities and models in turn and
evaluate what further steps can be taken to approximate them. The crucial term is the transition
term that can be written as

logN(xt+1|Axt +But,Q
−1) =

1

2
log det(Q/2π)− 1

2
(xt+1 −Axt −But)

TQ(xt+1 −Axt −But) (5)

As we can see, the above separation of the variables is really justified: due to the form of the
interaction there joint modelling of the state space and the parameters is problematic as there is
hardly any parametric class that could deal with such high degree of interaction, whereas when
considered conditionally, they are all quadratic.

The model for qx

From (5) we obtain a qx that can be rewritten as

qx(X) ∝
∏
t

Ψt,t+1(xt,xt+1)
∏
j

φt+1,j(xt+1;yt+1) (6)

with Ψt,t+1(xt+1,xt) =
〈
logN(xt+1|Axt +But,Q

−1)
〉
qAqBqQ

is a canonical Gaussian with pa-

rameters
〈
hxt,t+1

〉
\qx

and
〈
Qx
t,t+1

〉
\qx

where

hxt,t+1 =

[
−ATQBut

0

]
Qx
t,t+1 =

[
ATQA −ATQ
−QA Q

]
.

Therefore, we have a latent Gaussian model and inference in this model can be addressed by
well-known approximations.

The model for qA

Let is use the notation A = [a1, . . . ,an] and let [A]c be the column ordered vectorised form of A,
namely [A]Tc = [aT1 , . . . ,a

T
n ]. Then it follows that

qA(A) ∝ exp

{
〈hA〉T\qA [A]c −

1

2
[A]Tc 〈QA〉\qA [A]c

}
×
∏
ij

p0(aij), (7)

where

hA =

[
Q
∑
t

xt+1x
T
t −QB

∑
t

utx
T
t

]
c

,

QA =
∑
t

xtx
T
t ⊗Q

The model for qB

The model for B follows a similar structure and is given by

qB(B) ∝ exp

{
〈hB〉T\qB [B]c −

1

2
[B]Tc 〈QB〉\qB [B]c

}
×
∏
ij

p0(bij) (8)

2



with

hB =

[
Q
∑
t

(xt+1 −Axt)uTt

]
c

,

QB =
∑
t

utut ⊗Q.

The model for qQ

This model is rather complicated because it involves a log determinant term, but suitable choices
for the structure of Q and the prior p0(Q) can help to make inference tractable. The distribution
qQ has the form

qQ(Q) ∝ exp

{
1

2
log detQ− 1

2
tr(QTHQ)

}
×
∏
ij

p0(qij), (9)

where

Hq = 〈xt+1xt+1〉qx − 2 tr
{
〈A〉qA

〈
xtx

T
t+1

〉
qx

}
+ tr

{〈
ATA

〉
qA

〈
xtx

T
t

〉
qx

}
− 2 〈B〉qB

∑
t

ut(〈xt+1〉qx − 〈A〉qA 〈xt〉qx)T +
〈
BTB

〉
qB

∑
t

utu
T
t .

Inference with factored expectation propagation

With the exception of qQ, all model above are latent Gaussian models where exact inference can
be intractable due to the priors or the likelihoods. For this reason we will introduce a factored EP
algorithm which basically simplifies to doing EP in these models. In the following we introduce
a family of marginals, expectation constraints and the corresponding entropy approximation for
each of the above models.

Approximate marginals for qx

We define the family of approximate marginal densities

Qx = {{qxt,t+1}t, {q
x,f
t }t, {q

x,g
t,j }t,j , {q

g
t,j}t,j}. (10)

where we assign the density qxt,t+1(xt,xt+1) to Ψt,t+1(xt,xt+1) and qxt+1,j(xt+1) to φt+1,j(xt+1).
This family can be viewed as a set of marginals that defines a joint density

qx(X) ∝

∏
t
qxt,t+1(xt,xt+1)∏
t
qx,ft+1(xt+1)

×
∏
t,j

qxt+1,j(xt+1)

qx,lt+1,j(xt+1)
.

As we will see later, this representation of qx is exact up to the normalisation constant, how-
ever, the factors themselves are only approximations of the marginal densities. and we assume
that expectation constraints w.r.t. f(xt+1) and lj(xt+1) hold between qxt,t+1 and qxt+1,t+2 and
qxt,t+1 and qxt+1,j respectively. The families f and lj will be restricted Gaussians, that is, f
and lj will correspond to a sparse Gaussian Markov random fields. In many cases we consider

φt+1,js that depend on a subset Ij of xt+1s elements or only one element xjt+1, that is, we

have φt+1,j(xt+1;yt+1) = φt+1,j(x
Ij
t+1;yt+1) or φt+1,j(xt+1;yt+1) = φt+1,j(x

j
t+1; yjt+1) and thus

lj(xt+1) = lj(x
Ij
t+1) or lj(xt+1) = lj(x

j
t+1). The choice of these sufficient statistics depends on

the specific model at hand and, as we will see later, our selection criteria will be the tractability
of the computations they require, that is, the sparsity they generate.

Since we ...

3



The expectation constraints can be written as

〈f(xt+1)〉qxt,t+1
= 〈f(xt+1)〉qx,f

t+1
and 〈f(xt+1)〉qxt+1,t+2

= 〈f(xt+1)〉qx,f
t+1

, (11)

and
〈lj(xt+1)〉qxt,t+1

= 〈lj(xt+1)〉qx,l
t+1,j

and 〈lj(xt+1)〉qxt+1,j
= 〈lj(xt+1)〉qx,l

t+1,j
, (12)

respectively.
As a consequence we introduce the approximate entropy

−H̃(Qx) =
∑
t

〈
log qxt,t+1

〉
qxt,t+1

−
∑
t

〈
log qx,ft

〉
qx,f
t

+
∑
t,j

〈
log qxt,j

〉
qxt,j
−
∑
t,j

〈
log qx,lt,j

〉
qx,l
t,j

(13)

and Lagrange multiplier terms

C(Qx,Λx) =
∑
t

λβt+1 ·
[
〈f(xt+1)〉

q
x,f
t+1
− 〈f(xt+1)〉qxt,t+1

]
+
∑
t

λαt+1 ·
[
〈f(xt+1)〉

q
x,f
t+1
− 〈f(xt+1)〉qxt+1,t+2

]
∑
t,j

λ0
t+1,j ·

[
〈l(xt+1)〉

q
x,l
t+1,j

− 〈l(xt+1)〉qxt,t+1

]
+
∑
t,j

λl
t+1,j ·

[
〈l(xt+1)〉

q
x,l
t+1,j

− 〈l(xt+1)〉qxt+1,j

]
(14)

Approximate marginals for qA

In case of qA we define the family

QA = {qA0 , {qAij}ij , {q
A,g
ij }ij} (15)

where we associate qA0 with the exponentiated quadratic form in qA and we associate qAij(aij) with
the prior p0(aij). We also define a set of expectation constraints between the members of QA.
Because of latent Gaussian nature of qA, we will require expectation constraints up to second
order. That is, we choose g(z) = (z,−z2/2) and we set the constraints 〈g(aij)〉qA,g

ij
= 〈g(aij)〉qA0

and 〈g(aij)〉qAij = 〈g(aij)〉qA0 . The family QA defines a set of marginal densities that corresponds

to a density written in the form

qA(A) ∝ qA0 (A)
∏
ij

qAij(aij)

qA,gij (aij)
. (16)

The corresponding entropy approximation will be defined as

−H̃(QA) =
〈
log qA0

〉
qA0

+
∑
ij

〈
log qAij

〉
qAij
−
∑
ij

〈
log qA,gij

〉
qA,g
ij

, (17)

and a set of Lagrangian term for the expectation constraints can be written as

C(QA,ΛA) =
∑
ij

λAg,ij ·
[
〈g(aij)〉qA,g

ij
− 〈g(aij)〉qAij

]
+
∑
ij

λA0,ij ·
[
〈g(aij)〉qA,g

ij
− 〈g(aij)〉qA0

]
. (18)

Issues related to the sparsity constraint on A will be discussed in Section (?).

Approximate marginals for qB

In case of qB we define the family

QB = {qB0 , {qBij}ij , {q
B,g
ij }ij} (19)

4



and we assign qB0 with the exponentiated quadratic form in qB and we assign qBij(bij) with the prior
p0(bij). We define the expectation constraints similarly as in the section above. The corresponding
approximating density can be viewed as

qB(B) ∝ qB0 (B)
∏
ij

qBij(bij)

qB,gij (bij)
. (20)

The approximate entropy term will be

−H̃(QB) =
〈
log qB0

〉
qB0

+
∑
ij

〈
log qBij

〉
qBij
−
∑
ij

〈
log qB,gij

〉
qB,g
ij

(21)

and the Langrangian term corresponding to the expectation constraints will be written as

C(QB ,ΛB) =
∑
ij

λBg,ij ·
[
〈g(bij)〉qB,g

ij
− 〈g(bij)〉qBij

]
+
∑
ij

λB0,ij ·
[
〈g(bij)〉qB,g

ij
− 〈g(bij)〉qB0

]
. (22)

Approximate marginals for qQ

We do not define any approximation for qQ, we assume that the free form variational update can
be done analytically and all the expectation and the entropy term needed are also tractable.

Free energy optimisation and message passing

The Lagrangian corresponding to the free energy minimisation expressed in therm of Qx,QA,QB
and qQ is

L(Qx,QA,QQ,QB , Λx,ΛA,ΛQ,ΛB) = −〈log p(Y ,X,A,Q,B|U)〉Qx,QA,QQ,QB

− H̃(Qx)− H̃(QA)−H(qQ)− H̃(QB)

+ C(Qx,Λx) + C(QA,ΛA) + C(QB ,ΛB) + normalisation constraints.

In addition, let us define Collapse(p(z);f) as the (moment) projection of p(x) into the exponential
family defined by f(x), that is,

Collapse[p(z);f ] = argmin
θ

D[p(z)||exp(θ · f(z)− logZ(θ))] .

To differentiate between the free from densities, for example qA, and the corresponding family of
marginals, for example QA, we use a different kind of notation for expectations. The quantities
corresponding to hA and QA will be denoted by 〈hA〉\QA

and 〈QA〉\QA
and the same rule applies

for qB and QB . For qx and Qx we use the shortcut notation 〈log Ψt,t+1(xt,xt+1)〉\Qx
, but the

same usage applies.
From the stationary conditions of L w.r.t the members of the families Qx,QA and QB we can

derive the form of the approximating densities. The stationarity conditions corresponding to the
expectation constraints will be used to define a message passing algorithm.

These are as follows

(1) for the members of the family Qx we have

qxt,t+1(xt,xt+1) ∝ exp
{
〈log Ψt,t+1(xt,xt+1)〉\Qx

(23)

+ λαt · f(xt) + λβt+1 · f(xt+1) +
∑
j

λ0
t+1,j · lj(xt+1)

}
, (24)

qxt+1,j(xt+1) ∝ ψt+1,j(xt+1;yt+1)× exp{λlt+1,j · lj(xt+1)}, (25)

qx,lt+1,j(xt+1) ∝ exp{(λ0
t+1,j + λlt+1,j) · lj(xt+1)}, (26)

qx,ft+1(xt+1) ∝ exp{(λαt+1 + λft+1) · f(xt+1)}, (27)

5



and the corresponding expectation constraints lead the update equations

[λlt+1,j ]
new

= Collapse(qxt,t+1[xt+1); lj ]− λ0
t+1,j , (28)

[λ0
t+1,j ]

new
= Collapse(qxt+1,j [xt+1); lj ]− λlt+1,j , (29)

[λαt+1]
new

= Collapse(qxt,t+1[xt+1);f ]− λβt+1, (30)

[βαt+1]
new

= Collapse(qxt+1,t+2[xt+1);f ]− λαt+1, (31)

(2) for the members of the family QA we have

qA0 ∝ exp
{

[A]Tc 〈hA〉\QA
− 1

2
[A]Tc 〈QA〉\QA

[A]c +
∑
ij

λA0,ij · g(aij)
}
, (32)

qAij ∝ p0(aij)× exp
{
λAg,ij · g(aij)

}
, (33)

qA,gij ∝ exp
{

(λA0,ij + λAg,ij) · g(aij)
}
, (34)

and the corresponding expectation constraints lead the equations

[λA0,ij ]
new

= Collapse[qAij(aij); g]− λAg,ij , (35)

[λAg,ij ]
new

= Collapse[qA0 (aij); g]− λA0,ij , (36)

(3) for the members of the family QB we have

qB0 ∝ exp
{

[B]Tc 〈hB〉\QB
− 1

2
[B]Tc 〈QB〉\QB

[B]c +
∑
ij

λB0,ij · g(bij)
}
, (37)

qBij ∝ p0(bij)× exp
{
λBg,ij · g(bij)

}
, (38)

qB,gij ∝ exp
{

(λB0,ij + λBg,ij) · g(bij)
}
, (39)

and the corresponding expectation constraints lead the equations

[λB0,ij ]
new

= Collapse[qBij(aij); g]− λBg,ij , (40)

[λBg,ij ]
new

= Collapse[qB0 (aij); g]− λB0,ij . (41)

Details of the collapse operations

The collapse operations on qxt,t+1

Let λαt = (hαt ,Q
α
t ), λβt = (hβt ,Q

β
t ) and λ0

t+1,j = (h0
t+1,j ,Q

0
t+1,j). Then the density qxt,t+1 is a

multivariate Gaussian with canonical parameters

h̃xt,t+1 =
〈
hxt,t+1

〉
\Qx

+

[
hαt+1,j

hβt+1,j +
∑
j

h0
t+1,j

]
, (42)

=

 −〈A〉TQA
〈Q〉qQ〈B〉QB

ut + hαt+1,j

hβt+1,j +
∑
j

h0
t+1,j

 , (43)

Q̃xt,t+1 =
〈
Qx
t,t+1

〉
\Qx

+

[
Qα
t 0

0 Qβ
t+1 +

∑
j

Q0
t+1,j

]
(44)

=


〈
AT 〈Q〉qQA

〉
QA

+Qα
t −〈A〉TQA

〈Q〉qQ
−〈Q〉qQ〈A〉QA

〈Q〉qQ +Qβ
t+1 +

∑
j

Q0
t+1,j

 (45)

6



and the collapse operations are equivalent to computing the mean and covariance values corre-
sponding to the non-zeros in Qα

t , Qβ
t and Q0

t+1,j . Moreover, since further covariance values are
needed for QA and qQ, it is necessary to compute all covariance values corresponding to the non-
zeroes in

〈
Qx
t,t+1

〉
\Qx

. This can be achieved by applying sparse (reordered) Cholesky factorisation

and partial matrix inversion that makes use of the Cholesky factor to solve the Takahashi equa-
tions. As expected all collapse operations on qxt,t+1 are connected, for this reason, we will detail
each of them and then we assess how can we perform them in the most efficient way.

The Collapse[qxt,t+1(xt+1);f ] operation. This operation involves projecting the the marginal
density qxt,t+1 into the (sparse) Gaussian family defined by f . The optimisation corresponding to
this collapse step can be written as

(46)

Sparse approximations with known structure for A and Q

In this section we discuss the sparsity issue that are essential for the scalability of the procedure
we present. The basic assumptions we started with are that both A and Q are sparse. We also
assume that B is a full matrix, although if we want to assume some structural sparsity, the issue
can be addressed in the same way as for A.

An crucial observation is that in all collapse steps we perform, we act on a sparse precision ma-
trix and we compute all correlation values corresponding to the non-zero positions in this precision
matrix. We argue that these correlation values are sufficient to keep the algorithm running, that
is, there is no need to compute extra correlations and the correlations we compute always lead
to positive semi-definite precision matrices. Given our observation about the computation of the
correlation values, the first argument is quite intuitive: wherever there is a term with quadratic
interaction between two variables of the same type be it X, A, B the moments of the other
variables be it quadratic or just means are computed by their corresponding inference scheme
and thus this property is conserved. The second argument related to positive (semi)-definiteness
requires a closer look.

Firs we explore the connection between X and A. We have
〈
Qx

t,t+1

〉
\Qx

=
〈
Qx

t,t+1

〉
qA0 qQ

. Since

(xt+1 −Axt)
TQ(xt+1 −Axt) ≥ 0 for any xt,xt+1,A and positive semi-definite Q, it follows that〈

(xt+1−Axt)T 〈Q〉qQ (xt+1−Axt)
〉
qA0
≥ 0 for any positive semi-definite 〈Q〉qQ thus

〈
Qx

t,t+1

〉
\Qx

is

positive semi-definite for all semi-definite 〈Q〉qQ . The argument for 〈QA〉\QA
is as follows: first we

construct the matrix
∑
t

〈
xtx

T
t

〉
Qx
⊗ 〈Q〉qQ =

∑
t

〈
xtx

T
t

〉
qxt,t+1

⊗ 〈Q〉qQ which, since it is a Kronecker

product of positive semi-definite matrices, it is also positive semi-definite. Now, by eliminating
the the rows and columns corresponding to the a-priori set structural zeros in [A]c we arrive
to a principal minor that also has to be positive semi-definite. The (i, j) block of 〈QA〉\QA

is〈
xitx

j
t

〉
[〈Q〉qQ ]Ii,Ij where Ii and Ij are the supports of ai and aj respectively. Since the elements

of ATQA are aTIi,iQIi,IjaIj ,j , it follows that
〈
xitx

j
t

〉
is always computed when needed, that is,

when Ii ∩ Ij 6= ∅. This shows that the sparsity structures can be exploited and that that the
resulting inference keeps the matrices positive semi-definite.

7



A Appendix

A.1 Structured mean field approximation

D[q1(xI1)q2(xI2) . . . q(xIK )||p(x)] = −〈log p(x)〉q1q2...qK +
∑
j

〈
log qj(xIj )

〉
qj (47)

qj(xIj ) ∝ exp{〈log p(x)〉\qj} (48)

A.2 Inference using expectation constraints

Let us assume that we have a density that factors as

p(x) =
1

Zp

∏
j

Ψj(xIj )

and let us assume that the factors Ψj represent this density at the largest resolution, that is, no
Ψj can be factored further. Now, say, we want to approximate p with a density q that has some
desirable features, say, easy access to marginals or expectations (features common in exponential
families), that p has not. The Kullback-Leibler divergence D[·||·] or some of its versions like the α-
divergence come as natural measures to minimise. The D[p||q] version is typically out of question
because it typically requires computations of expectations and marginals that we want to get
around of in the first place. A few examples are: (1) say, we want to do a mean field approximation

in the D
[
p(x)||

∏
j q(xi)

]
sense, then, the optimality conditions lead to q(xi) = p(xi) or (2) we

want to q to have an exponential form q(x;θ) = exp(θ ·f(x)− logZ(θ)), then we hve to compute
〈fx〉p followed by the moment transformation specific to this family. All these alternatives, involve
the very steps we want to avoid.

However, the other version D[q||p] requires the computation of the entropy of q which can
become complicated. Nonetheless, as a trade of we get a relatively easy access to p and we can
exploit its factorisation. The latter, so called variational version of D[·||·] reads as

D[q||p] = 〈log q(x)〉q(x) −
∑
j

〈
log Ψj(xIj )

〉
q(xIj

)
+ logZp (49)

In the above mentioned example we obtain the objectives

D[q||p] =
∑
j

〈log qj(xj)〉qj(x)j −
∑
j

〈
log Ψj(xIj )

〉 ∏
k∈Ij

qk(xk)
(50)

and
D[q||p] = θ · ∂θ logZ(θ)− logZ(θ)−

∑
j

〈
log Ψj(xIj )

〉
q(xIj

)
(51)

which are more manageable than the former version D[p||q].
In the following we’ll try to go beyond the mean field approach in Equation (50). Let us assume

that we have constructed an junction tree on the graph defined by the interactions in the cliques
Ij , and let us denote the node sets of this tree by C1, . . . , CK and let us use the notation S1, . . . , SL
for the separator corresponding to this tree. Moreover, let us restructure the factors Ψj(xIj ) by
forming new factors Φj(xCj ) corresponding to the clique structure of the junction tree. A factor
Ψj(xIj ) can be attached to any factor Φj(xCj ) where Ik ⊆ Cj holds. We will assume that the
approximating density follows the structure of the junction tree and thus can be written as

q(x) =

∏
j q(xCj

)∏
k q(xSk

)nk−1
.

8



where nk is the number of cliques a separator appears in. Note that since Sk is separator nk ≥ 2.
Since q has a clique-tree structure we can write the corresponding variational KL-divergence as

D[q||p] =
∑
j

〈
log q(xCj

)
〉
q(xCj

)
−
∑
k

(nk−1) 〈log q(xSk
)〉q(xSk

)−
∑
j

〈
log Φj(xCj

)
〉
q(xCj

)
+logZp.

Clearly, in order to turn this into an optimisation problem we have to replace q by a family of
approximate marginals Q = {{qCj (xCj )}j , {qSk

(xSk
)}k} where we assume that the constrains∫

dxCj\Sk
qCj (xCj ) = qSk

(xSk
) hold for any Sk ⊆ Cj . With these constraints we define the

variational objective

F (Q) ≡
∑
j

〈
log qCj (xCj )

〉
qCj

(xCj
)
−
∑
k

(nk−1) 〈log qSk
(xSk

)〉qSk
(xSk

)−
∑
j

〈
log Φj(xCj )

〉
qCj

(xCj
)

(52)
and the Lagrangian

L(Q,Λ) ≡ F (Q) +
∑

j,k:Sk⊆Cj

∫
dxSk

µj,k(xSk
)[qSk

(xSk
)− qCj

(xSk
)]

+
∑
j

zCj [

∫
dxCj qCj (xCj )− 1] +

∑
k

zSk
[1−

∫
dxSk

qSk
(xSk

)].

From the stationarity conditions we obtain that

qCj
(xCj

) = Φj(xCj
)× exp

{ ∑
k:Sk⊆Cj

µj,k(xSk
)− zCj

}
qSk

(xSk
) = exp

{ 1

nk − 1

∑
j:Cj⊇Sk

µj,k(xSk
)− zSk

/(nk − 1)
}

qSk
(xSk

) = qCj
(xSk

) for any Cj ∩ Sk 6= ∅.

The latter equation can be written as

exp
{ 1

nk − 1

∑
j′:Cj⊇Sk

µj′,k(xSk
)−zSk

/(nk−1)
}

=

∫
dxCj\Sk

Φj(xCj
)×exp

{ ∑
k′:Sk⊆Cj

µj,k′(xSk′ )−zCj

}
(53)

We introduce a non-singular linear transformation of the Lagrange multipliers

µjk(xSk
) =

∑
j′ 6=j:Cj′⊇Sk

µ̂j′k(xSk
).

By rearranging the terms we get

exp
{
µjk(xSk

) + µ̂jk(xSk
)
}
∝
∫
dxCj\Sk

Φj(xCj
)× exp

{ ∑
k′:Sk′⊆Cj

µjk′(xSk′ )
}

∝
∫
dxCj\Sk

Φj(xCj
)× exp

{ ∑
k′:Sk′⊆Cj

∑
j′ 6=j:Cj′⊇Sk

µ̂j′k′(xSk′ )
}
.

Using these notations and stationarity conditions one can derive the fixed point equations/updates
known as message passing. This has the form

qCj (xCj ) ∝ Φj(xCj )× exp
{ ∑
k′:Sk′⊆Cj

µjk′(xSk′ )
}
, (54)

qSk
(xSk

) ∝ exp
{ ∑
j′:Cj′⊃Sj

µ̂j′k(xSk
)
}
, (55)

µ̂jk(xSk
) $ log

{∫
xCj\Sk

qCj (xCj )
}
− µjk(xSk

), (56)

µjk(xSk
) $ log

{
qSk

(xSk
)
}
− µ̂jk(xSk

). (57)

9



where we use the symbol “$” to denote equality up to a constant, for example, 2x $ 2x+ 1. The
functions µjk and µ̂jk are called messages. There are several specialisations of this algorithm, in
the following we detail two of these: (1) when the constraints qSk

(xSk
) = qCj

(xSk
) is replaced

by moment constraints and (2) when we no longer operate on clique-trees that is Cj and Sj are
arbitrary.

A.2.1 Expectation constraints

In many cases the integrals in equations (53) and (61) are not analytically computable and having
free form messages as shown above can be computationally demanding. To get a handle on this
issue a plausible approach is to parameterise the messages (Lagrange multipliers). However, in
many cases the marginal consistency constraints in (53) cannot be satisfied and further approxima-
tions have to be applied. First we show that parameterised Lagrange multipliers or messages are
formally equivalent to moment matching constraints (instead of marginal matching constraints).
Say, we want all messages to be in the linear parametric family defined by θ · f(z). Then the
Lagrange multiplier terms have the form∫
dxSk

[µjk·f(xSk
)][qSk

(xSk
)−qCj

(xSk
)] = µjk·

[ ∫
dxSk

qSk
(xSk

)f(xSk
)−
∫
dxSk

qCj
(xSk

)f(xSk
)
]

(58)
an thus this can be formally interpreted as replacing the marginal matching constraints qCj

(xSk
) =

qSk
(xSk

) with the moment matching constraints 〈f(xSk
)〉qCj

= 〈f(xSk
)〉qSk

. This implies that

the the marginal matching in Equation (53) is replaced my moment matching. Let us define

Collapse[p(z);f ] = argmin
θ

D[p(z)||exp(θ · f(z)− logZ(θ))]

and assume that it is unique. Then the message passing algorithm can be rewritten as

qCj
(xCj

) ∝ Φj(xCj
)× exp

{ ∑
k′:Sk′⊆Cj

µjk′ · f(xSk′ )
}
, (59)

qSk
(xSk

) ∝ exp
{ ∑
j′:Cj′⊃Sj

µ̂j′k · f(xSk
)
}
, (60)

µ̂jk = Collapse[qCj
(xSk

);f ]− µjk, (61)

µjk = Collapse[qSk
(xSk

);f ]− µ̂jk. (62)

Note that qSk
(xSk

) is already in the family defined by f , therefore, the only role of Collapse[qSk
(xSk

);f ]
is parameter identification. It is important to mention that at no point the messages µjk and µ̂jk
have to represent normalizable functions, that is, valid densities. It is sufficient to have qSk

and
qCj

normalizable. Moreover, f can vary from constraint to constraint as long as manage to keep
the computations under control.

A.2.2 Expectation propagation

A further algorithm follows by removing the clique-tree requirement, in this case we consider
Cj ∩Cj * Cj for any i and j and define the sets Sk as atomic sets satisfying the condition Sk ∩Cj
implies Sk ⊆ Cj . In this case we approximate the entropy by

H̃(Q) =
∑
j

〈
log q(xCj

)
〉
q(xCj

)
−
∑
k

(nk − 1) 〈log q(xSk
)〉q(xSk

) ,

where nk is again the number of sets of type Cj that Sk appears in, that is, nk = |{Cj : Sk ⊆ Sj}|.
This approximation of the entropy is similar to the Bethe entropy approximation in (?). The
resulting algorithm is known as expectation propagation (?).

10


