BME 6938 Neurodynamics

Instructor: Dr Sachin S Talathi

Two Dimensional Neuron model-General Representation

$$\frac{dV}{dt} = \frac{I - I_{\rm ch}(V, t)}{C}$$
$$\frac{dn}{dt} = \frac{n_{\infty} - n(t)}{\tau(V)}$$

$$I_{\rm ch}(V,t) = g_{\rm ion}n(t)(V - E_{\rm ion}) + g_L(V - E_L)$$

Steady State: $I_{\rm ch}(V,t) = I_{\infty}(V)$

Define:
$$\mathbf{I}(V, I) = rac{I - I_{\infty}(V)}{C}$$

Condition for Saddle node bifurcation

Fixed point $\mathbf{I}(V,I)|_{V^*,I^*} = 0$

Non-Hyperbolic
$$\left. \frac{\partial \mathbf{I}(V,I)}{\partial V} \right|_{(V^*,I^*)} = 0$$

$$\left. \frac{\partial^2 \mathbf{I}(V,I)}{\partial V^2} \right|_{(V^*,I^*)} \neq 0$$

Transversal

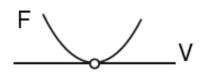
$$\frac{\partial \mathbf{I}(V,I)}{\partial I}\Big|_{(V^*,I^*)} \neq 0$$

Co-Dim 1 Bifurcation: One Equality Condition that characterizes the bifurcation

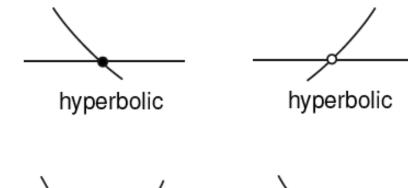
Visual Representation of Saddle Node Bifurcation Constraints

saddle-node

not saddle-node

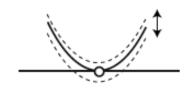


non-hyperbolic



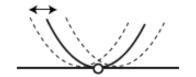
non-degenerate

degenerate

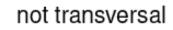


transversal

D



degenerate



not transversal

Normal form for Saddle Node Bifurcation

Define

$$a = \frac{1}{2} \left. \frac{\partial^2 \mathbf{I}(V, I)}{\partial V^2} \right|_{(V^*, I^*)}$$
$$c = \left. \frac{\partial \mathbf{I}(V, I)}{\partial I} \right|_{(V^*, I^*)}$$

Normal Form:
$$\frac{dV}{dt} = c(I - I^*) + a(V - V^*)^2$$

The I_{Na,p}+I_K model

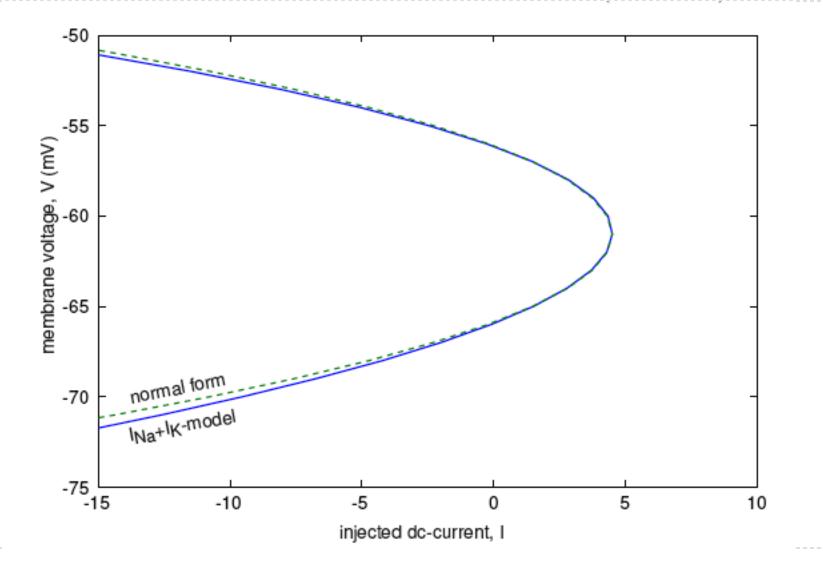
$$C\frac{dV}{dt} = I - g_L(V - V_L) - g_{Na}m_{\infty}(V)(V - V_{Na}) - g_K n(V - V_K)$$

$$\frac{dn}{dt} = \frac{n_{\infty}(V) - n}{\tau(V)}$$

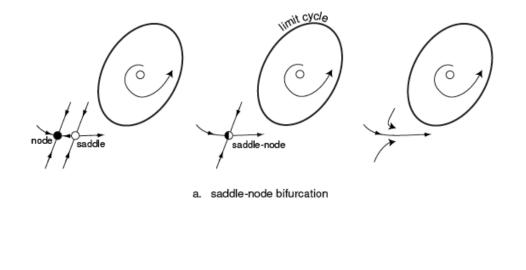
Parameters: C=1; EL=-80; gL=8;gNa=20,gK=10; ENa=60; EK=-90, tau(V)=1

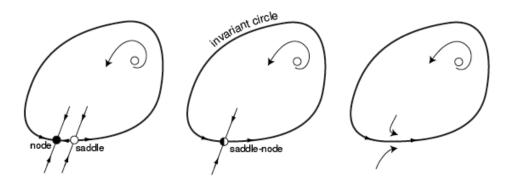
$$m_{\infty}$$
 has V1/2=-20; K=15 High Threshold K-Currents n_{\infty} has V1/2=-25; K=5 Normal Form $\frac{dV}{dt}=(I-4.51)+0.1887(V+61)^2$

Bifurcation Diagram



Two types of saddle-node bifurcations

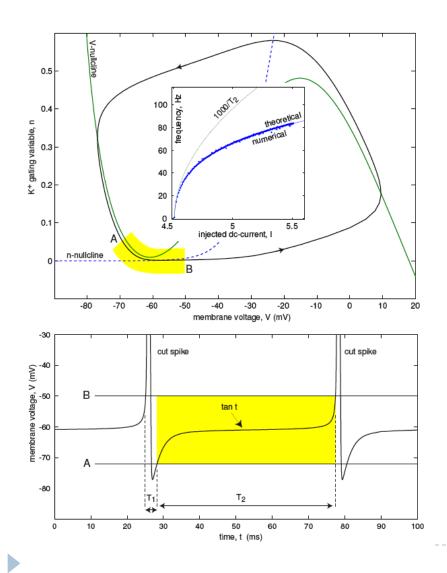




b. saddle-node on invariant circle (SNIC) bifurcation

D

Determining the period of spiking



$$T_2 = \frac{\pi}{\sqrt{ac(I-I^*)}} \quad \text{(ms)}$$

$$F = \frac{1000}{T_1 + T_2}$$

(Hz)

Hopf Bifurcation

$$\dot{v} = F(u, v, I)$$
$$\dot{u} = G(u, v, I)$$
$$J = \begin{pmatrix} F_v & F_u \\ G_v & G_u \end{pmatrix}$$

Let the fixed point u=v=0 be the bifurcation point at I=0

The system at the bifurcation point undergoes Hopf Bifurcation if

$$\operatorname{tr}(J) = F_v + G_u = 0$$
$$\omega^2 = \det(J) = F_v G_u - F_u G_v > 0$$

At the fixed point u=v=0 at parameter I=0

Remember
$$\lambda_{1,2} = \frac{\tau \pm \sqrt{\tau^2 - 4\Delta}}{2}$$
 $\Delta = \lambda_1 \lambda_2$ $\tau = \lambda_1 + \lambda_2$

Two additional Conditions

Transversality:

Let $c(I) \pm i\omega(I)$ be the complex-conjugate eigen values of J, such that c(0) = 0 and $\omega(0) = \omega$. Transversality requires that the real part c(l) must be non-degenerate wrt to I; $\frac{\partial c}{\partial I}\Big|_{I=0} \neq 0$

Non-Degeneracy:

Substituting
$$v = x$$
 and $F_u u = -F_v x - \omega y$ we have
 $\dot{x} = -\omega y + f(x, y)$
 $\dot{y} = \omega x + g(x, y)$

Where $f(x,y) = F(v,u) + \omega y$ and $g(x,y) = -(F_v \cdot F(v,u) + F_u \cdot G(v,u))/\omega - \omega x$

Continued next slide.....

Hopf Bifurcation continued

Define parameter a as follows:

 $a = \frac{1}{16} \left(f_{xxx} + f_{xyy} + g_{xxy} + g_{yyy} \right) + \frac{1}{16\omega} \left[f_{xy} (f_{xx} + f_{yy}) - g_{xy} (g_{xx} + g_{yy}) - f_{xx} g_{xx} + f_{yy} g_{yy} \right]$

Non-degeneracy requires $a \neq 0$

- If a < 0 we have supercritical Hopf bifurcation (appearance of stable limit cycle)
- If a > 0 we have subcritical Hopf bifurcation (Remember HH model) (disappearance of unstable limit cycle)

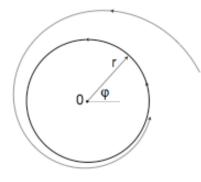
Note: Derivation of the formula for a is given in Guckenheimer and Holmes, 1983.

Normal form for Hopf-Bifurcation

$$\dot{r} = c(I)r + ar^3$$

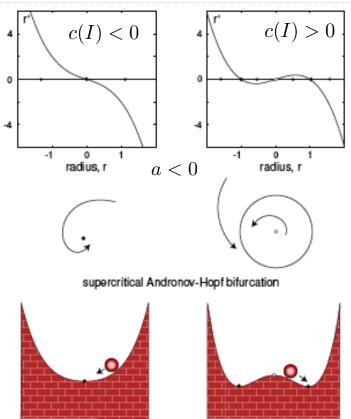
 $\dot{\phi} = \omega(I) + dr^2$

Where $r \text{ and } \phi$ are defined in polar coordinates through figure below



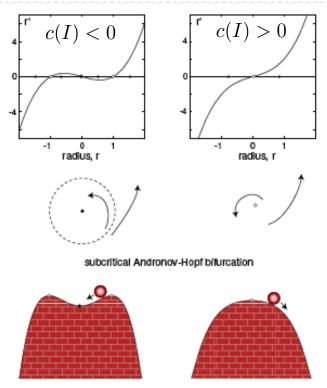
The function c(I) determines the stability of the equilibrium r = 0. The function $\omega(I)$ determines the frequency of damped or sustained oscillations around this state. The parameter d describes how the frequency depends on the amplitude. The sign of the non-zero parameter a determines the type of Andronov-Hopf bifurcation: see the non-degeneracy condition.

Supercritical Hopf Bifurcation Normal Form



The ODE for **r** variable is similar to the normal form for one-dimensional pitch Fork bifurcation When c(I)>0, the normal form has a family of stable periodic solutions with amplitude $r = \sqrt{c(I)/|a|}$ and frequency $\omega = \omega(I) + d.c(I)/|a|$

Sub-critical Hopf Bifurcation Normal Form

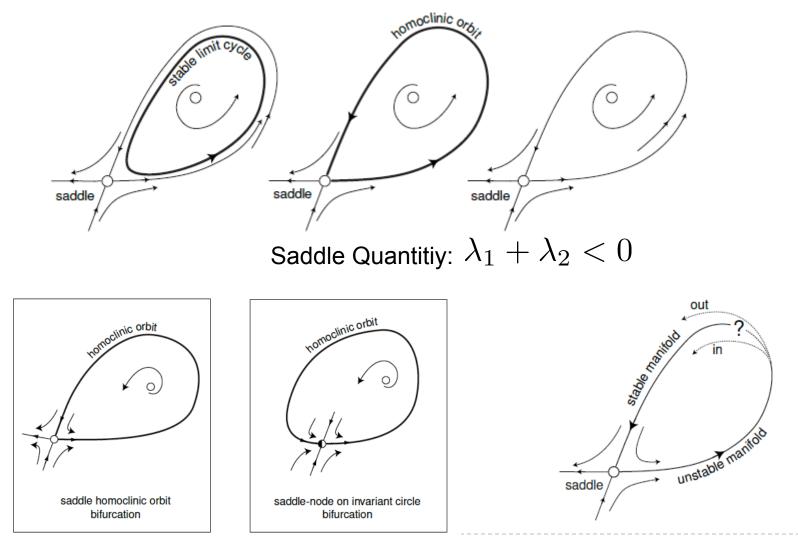


When c(I)<0; there exist pair of unstable fixed points corresponding to unstable Limit cycle with radius $r = \sqrt{c(I)/|a|}$. When c(I)>0 the trajectory diverges from r=0 towards the stable limit cycle present through fold-limit cycle bifurcation

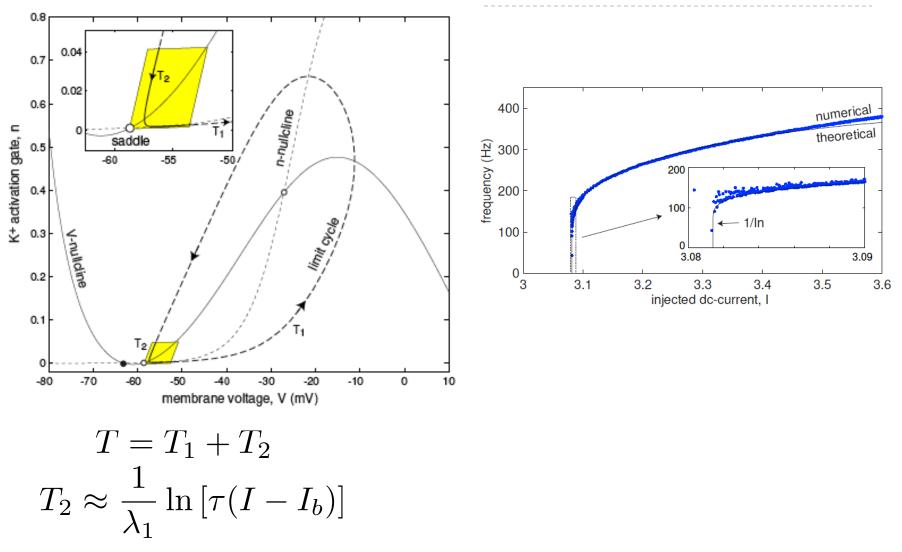
Homoclinic bifurcation-

- Homoclinic bifurcation is similar to saddle node bifurcation in that the I-V curve must be non-monotonic
- The key difference between SNIC bifurcation and homoclinic bifurcation is that the equilibrium is saddle in the later case and it is a saddle node in the former.
- The saddle equilibrium persists after bifurcation while saddle node point vanishes after bifurcation.
- Homoclinic bifurcations are much harder to detect, since they depend on the global properties of the flow and not just the local properties around the bifurcation point.

Homoclinic Bifurcation-Visualize



Period of Oscillation for spiking generated through homoclinic bifurcation



D

Summary of bifurcation of equilibrium in neuron models

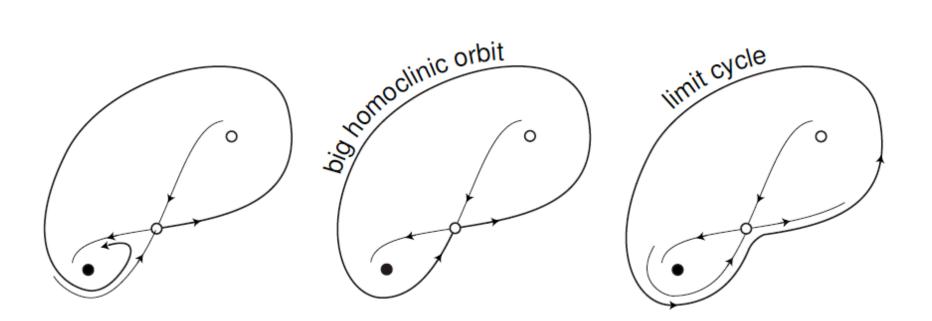
Bifurcation of an equilibrium	fast subthreshold oscillations	amplitude of spikes	frequency of spikes	
saddle-node	no	non-zero	non-zero	
saddle-node on invariant circle	no	non-zero	$A\sqrt{I-I_{\rm b}} \rightarrow 0$	
supercritical Andronov-Hopf	yes	$A\sqrt{I-I_{\rm b}} \rightarrow 0$	non-zero	
subcritical Andronov-Hopf	yes	non-zero	non-zero	
saddle-node bifurcation	Andnronov-H	opf bifurcation		
rest state $I(V)$ 0 rest state $I(V)$ 0 rest state $I(V)$ 0 rest state $I(V)$ 1=0 1>0 1>0 1=0 1=0				

membrane voltage, V (mV)

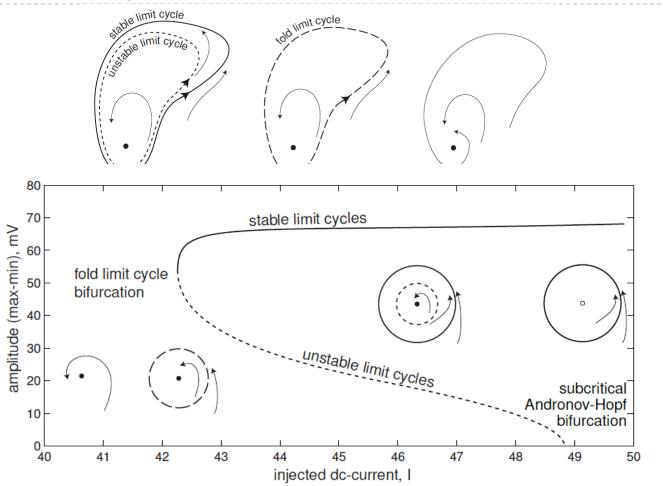
membrane voltage, V (mV)

Big-Saddle Homoclinic Bifurcation

Þ



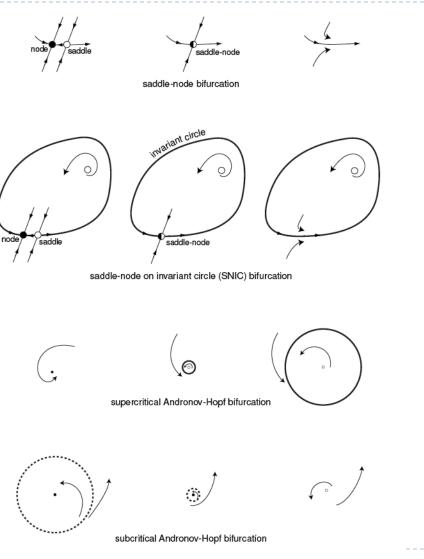
Fold Limit Cycle Bifurcation



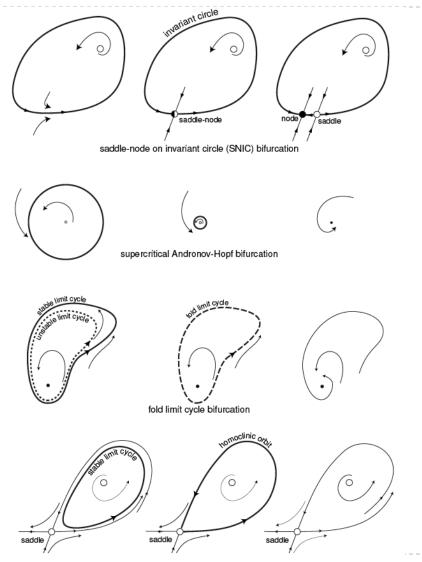
Bifurcation analysis of Fold limit cycle bifurcation can be done using Floquet theory-Not topic for this course

Other option is simple brute force transformation of the dynamics to polar coordinates and demonstrating that the radius under goes saddle node bifurcation- Homework

Summary of all co-dim 1 bifurcations of resting state



Summary of all co-dim 1 bifurcations of spiking state



Other interesting cases

Co-dim 2 bifurcation: Two strict constraints need to be satisfied; Requires change of 2 parameters of the dynamical system (Examples from 2d dynamical systems)

- Cusp Bifurcation Intersection of two saddle node bifurcation points.
- Bogdanev-Taken Bifurcation Saddle node and Hopf bifuracations occuring simultaneously
- Bautin Bifurcation Super and sub critical Hopf bifurcation happening simultaneously
- Saddle node homoclinic Bifurcation SNIC occuring together with homoclinic bifurcation

Hard and Soft Loss of Stability

- Bifurcation that results in noticeable change in the dynamics of the system- catastropic and non-reversible cause hard loss of stability
- Eg. Sub-critical Hopf Biufurcation; Saddle Homoclinic Bifurcations
- Bifurcation that results in un-noticeable change in the dynamics of the system and the change is reversible
- Eg. Supercritical Hopf Bifurcation

Note: SNIC bifurcation is catastrophic but reversible

Example

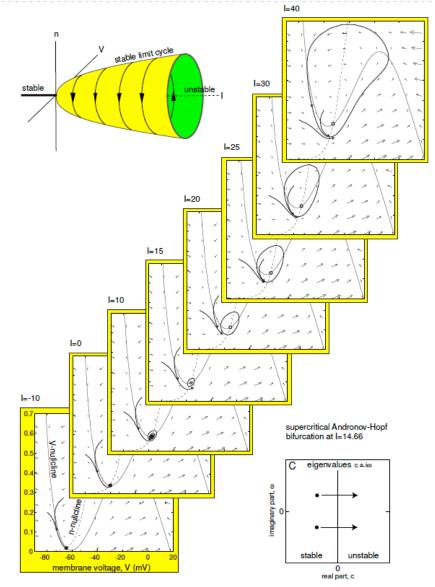
$$C\frac{dV}{dt} = I - g_L(V - V_L) - g_{Na}m_{\infty}(V)(V - V_{Na}) - g_Kn(V - V_K)$$
$$\frac{dn}{dt} = \frac{n_{\infty}(V) - n}{\tau(V)}$$

Parameters: C=1; EL=-80; gL=8;gNa=20,gK=10; ENa=60; EK=-90, tau(V)=1

A	m_∞ has V1/2=-20; K=15		Ex3.ode with high threshold K current	
	n_{∞}	has V1/2=-25; K=5	parameters	
Saddle node bifurcation				
	n_{∞}	has V1/2=-45; K=5	Ex3.ode with low threshold K current	
В		E _L =-78	parameters	
	furcation			

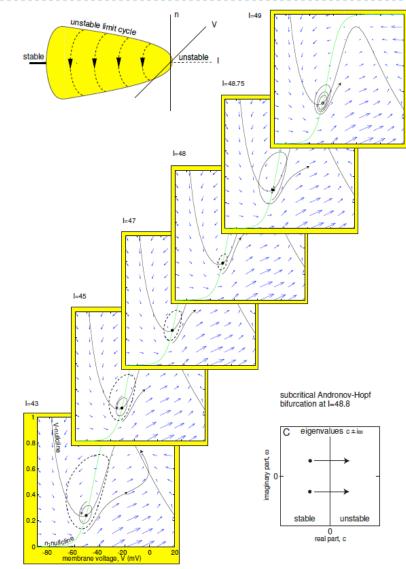
Hopf Bifurcation

b



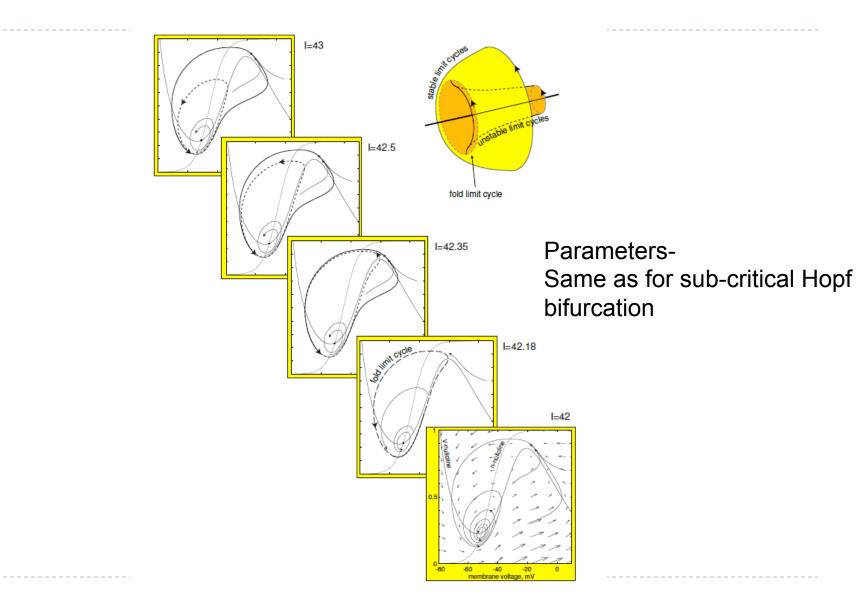
Super-Critical Parameter- See B

Hopf Bifurcation



Sub-Critical Parameter- See B with the following change gNa=gK=4; gL=1 and m_{∞} has V1/2=-30; K=7

Fold-Limit Cycle Bifurcation



Saddle Node Bifurcation-SNIC and Saddle Homoclinic

