
FISHER INFORMATION AND STATISTICAL MODELS

1. Definition

Consider a probability distribution on a measurable space X modelled by a probability
density function Pθ(X), X ∈ X dependent on a number of parameters globally identified by
θ ∈M, whereM is an arbitrary n-dimensional manifold. We define the Fisher Information
tensor of the parametric family P at a point θ as:

Fij(θ) = −
∫
X
Pθ(X)

∂

∂θi
logPθ(X)× ∂

∂θj
logPθ(X)dnX

Note that F is a symmetric and positive semidefinite tensor at any given point, so it
defines a Riemannian metric1 on the manifold of parameters.

1.1. FI and Information. Defining information as normal, Iθ(X) = − logPθ(X), we can
rewrite the above as

Fij(θ) =

∫
X
Pθ(X)

∂Iθ(X)

∂θi

∂Iθ(X)

∂θj
dnX

This can also be written, under simple regularity conditions, as

Fij(θ) =

∫
X
Pθ(X)

∂2Iθ(X)

∂θi∂θj
dnX.

2. FI and physical quantities

Consider a physical system described by the canonical ensemble, i.e. where by definition

Pθ(X) =
e−Hθ(X)

Zθ
, Hθ(X) =

n∑
k=1

θkfk(X)

(I have incorporated the kT factor used in physics into the θs, so we can assume kT = 1).
The Shannon entropy takes the form

Sθ = 〈Hθ(X)〉+ logZθ

Physically, the average of H is the internal energy, and F = − logZ is the Helmholtz free
energy. From the definition of the latter, Shannon entropy equals the canonical, physical
entropy.

1This should require positive definiteness. I’m not sure how the two things are compatible.
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2 FISHER INFORMATION AND STATISTICAL MODELS

2.1. Generalised susceptibilities. Simply applying this particular form of P to the def-
inition of Fisher Information, we find a direct connection between the covariance of the
physical quantities f and the FI:

Fij(θ) = Cov[fi(X), fj(X)].

This means that the FIM characterises the variances and correlations of the fs intended
as stochastic variables which are functions of the state X of the system.

2.2. Specific heat. We note that changing the temperature in the traditional canonical
ensemble corresponds to scaling the Hamiltonian by a factor β = 1/kT . In the formulation
above, this is equivalent to scaling all the θis by β. Given a point on M, the direction
∂/∂β can be expressed as

∂

∂β
=

1

n

n∑
k=1

∂

∂θk

which is just a linear combination. With a change of basis, which includes this vector as
a base vector together with other n− 1 linearly independent ones, we can arrange for the
specific heat to be one of the entries of the Fisher Information in matrix form. Analogous
considerations can be made for the magnetic field and magnetic susceptibility, and so on.

3. Critical points

There are physical situations, for example due to nonlinear effects in the model defined
by a certain Hamiltonian, where a small change of parameters can induce a sharp change
in the probability distributions. For example, a volume of water vapour at 100 degrees
suddenly becomes a liquid if the temperature is decreased by an amount no matter how
small. The distribution of states for the molecules in a gas is qualitatively different from
the one which describes the states of the same molecules behaving as a liquid.

3.1. FI and the KL divergence. A measure of the “distance” (although it does not
satisfy the mathematical definition of a distance) between two probability distributions
can be defined by the Kullback-Leibler divergence:

DKL(Pθ1 |Pθ0) =

∫
X
Pθ1(X) log

Pθ1(X)

Pθ0(X)
dX

if we now take θ1 = θ0 + δθ, in the limit of small δθ, it can be shown that

DKL(Pθ0+δθ|Pθ0) ≈ 1

2

∑
i,j

Fij(θ0)δθiδθj .

In other words, the FI is the second order approximation of the KL divergence.
If at a point θ0 an increase (or decrease) of the k-th parameter is known to immediately

lead to a phase transition, such as what happens when θ0 is a critical point, we expect the
KL divergence to be non-zero even for an arbitrarily small value of δθ. This implies, by
looking at the equation above, a divergence of at least one entry of the Fisher tensor.


