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Abstract

This is a tutorial describing the Expectation Propagation (EP) algorithm for a gen-
eral exponential family. Our focus is on simplicity of exposition. Although the overhead
of translating a specific model into its exponential family representation can be consid-
erable, many apparent complications of EP can simply be sidestepped by working in
this canonical representation.

Note: This material is extracted from the Appendix of my PhD thesis (see
www.kyb.tuebingen.mpg.de/bs/people/seeger/papers/thesis.html).

1 Exponential Families

Definition 1 (Exponential Family) A set F of distributions with densities

P (x|θ) = exp
(
θT φ(x)− Φ(θ)

)
, θ ∈ Θ,

Φ(θ) = log
∫

exp
(
θT φ(x)

)
dµ(x)

w.r.t. a base measure µ is called an exponential family. Here, θ are called natural param-
eters, Θ the natural parameter space, φ(x) the sufficient statistics, and Φ(θ) is the log
partition function. Furthermore, η = Eθ [φ(x)] are called moment parameters, where Eθ [·]
denotes expectation w.r.t. P (x|θ).

One of the important reasons for considering exponential families is that the likelihood
function for i.i.d. data from F is a function of the sample average of the sufficient statistics
φ(x) which has the fixed dimensionality of θ, independent of the sample size. Even if a
model does not give rise to posteriors in an exponential family, members of F can be used as
approximating distributions, since new information can be incorporated without increasing
the size of the parametric representation. Many familiar distributions form exponential
families, such as Gaussians, multinomials, gammas, etc.

The natural parameter space Θ for θ is always convex. If there are linear or affine depen-
dencies between the components of φ(x), then some components in θ are redundant, and
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the representation is called overcomplete. Otherwise, it is called minimal. Note that many
useful properties hold only (in general) for minimal representations, which are also most
useful in practice, however sometimes notationally clumsy to work with. Our approach here
is to state general properties for minimal representations only, however use these properties
for special overcomplete representations occasionally. This can be justified by adding linear
constraints on θ, which do not destroy the convexity of Θ. In the remainder of this section,
we assume that the representation of F is minimal.

The log partition function Φ(θ) is closely related to the cumulant generating function of
φ(x), x ∼ P (x|θ):

log Eθ

[
exp(εT φ(x))

]
= Φ(θ + ε)− Φ(θ)

which exists iff θ + ε ∈ Θ. Thus, if θ is in the interior of Θ, the cumulants of φ(x) are
obtained as derivatives of Φ(θ), especially ∇θΦ = Eθ [φ(x)] = η and ∇∇θΦ = Varθ [φ(x)].
Since the representation is minimal, we see that Φ(θ) is strictly convex, and using Legendre
duality [3] we obtain the following

Lemma 1 (Natural and Moment Parameters) If F is an exponential family with
minimal representation, then there is a bijective mapping between the natural parameters θ
and the moment parameters η. The log partition function Φ(θ) is strictly convex and has
the Legendre dual

Ψ(η) = Eη [log P (x|η)] ,

where Eη [·] denotes expectation w.r.t. P (x|η) = P (x|θ(η)). Conversions between θ and η
are done as follows:

η(θ) = ∇θΦ, θ(η) = ∇ηΨ.

Ψ is a convex function of the moment parameters η (strictly convex for a minimal represen-
tation), but in many cases there is no simple explicit form for Ψ so that the Legendre pair
θ has to be found in order to evaluate Ψ(η). Note that θ are sometimes called expnential
parameters, and η are also known as mean parameters.

Note that the class of all exponential family distributions is not closed w.r.t. marginalization.
For example, if P (x|θ) is a joint of a continuous Gaussian and a discrete multinomial
variable, marginalizing over the latter results in a mixture of Gaussians which is in general
not in an exponential family. A number of exponential subfamilies such as the (multivariate)
Gaussian or multinomial ones are however closed under marginalization.

Lemma 2 (Product of Exponential Distributions) A product of densities from F is
an unnormalised member of F :

m∏
j=1

P (x|θj) = P

x

∣∣∣∣∣∣
m∑

j=1

θj

 exp

Φ

 m∑
j=1

θj

− m∑
j=1

Φ(θj)

 ,

given that
∑

j θj lies in Θ.

If P (x|θ) ∈ F for an exponential family F , then the convexity of Φ implies that log P (x|θ)
is concave in θ (strictly so for a minimal representation). In other words, exponential family
densities are log-concave:

P (x|λθ + (1− λ)θ′) ≥ P (x|θ)λP (x|θ′)1−λ, λ ∈ [0, 1].



Given a positive function f(x), we can induce a tilted exponential family from F by modi-
fying the base measure µ and recomputing the log partition function.

Definition 2 (Tilted Exponential Family) If F is an exponential family with natural
parameter θ and f(x) is a positive function such that

Φf (θ) = log Eθ [f(x)] + Φ(θ)

exists for every θ, then the tilted exponential family Ff induced by f(x) from F contains
the densities

Pf (x|θ) = exp
(
θT φ(x)− Φf (θ)

)
w.r.t. the modified base measure dµf (x) = f(x)dµ(x). Ff has the same natural parameter
space Θ than F .

Since Ff is a proper exponential family, the moment parameter of Pf (x|θ) can be computed
as derivatives of Φf (θ), i.e.

EPf (·|θ)[φ(x)] = ∇θ log Eθ [f(x)] + η. (1)

If we “update” a distribution from F by multiplying with a positive factor and renormalising,
we will end up in F iff the update factor has the structure of a ratio of members of F .

Definition 3 (Unnormalised Exponential Family) If F is an exponential family with
natural parameter θ ∈ Θ, the set of functions

PU (x|θ) = exp
(
θT φ(x)

)
, θ = θ1 − θ2, θ1, θ2 ∈ Θ,

is referred to as unnormalised exponential family FU associated with F .

Note that members of FU are in general no probability densities, and some of them may not
be normalisable at all. If P (x|θ) ∈ F , PU (x|θ̃) ∈ FU , then P (x|θ)PU (x|θ̃) is proportional
to a member of F (namely, to P (x|θ + θ̃)) iff θ + θ̃ ∈ Θ. Note also that 1 ≡ PU (x|0) ∈ FU .

2 Expectation Propagation

Expectation Propagation (EP) [11] provides a general-purpose framework for approximating
posterior beliefs by exponential family distributions. The Gaussian special case has been
proposed by Opper and Winther [16] as ADATAP, see also Section 6. General papers on EP
include [10, 9]. The tutorial description of EP here does not include any new material, but
tries to simplify earlier expositions by consequently working with the exponential family
framework introduced in Section 1.

Suppose we are given some statistical model with observables S and latent variables u, and
with a prior distribution1 P (0)(u) from an exponential family F . We do not assume here

1In some applications of EP, the tractable P (0) is the likelihood, so our nomenclature could be misleading.



that the parameterization of F is minimal, but allow for overcomplete parameterizations as
well. The likelihood function P (S|u) often factors in a particular way,

P (S|u) =
n∏

i=1

ti(u),

for example in the case of i.i.d. data S or Bayesian networks. We refer to the ti(u) as sites.
If the true posterior

P (u|S) ∝ P (0)(u)
n∏

i=1

ti(u) (2)

is analytically intractable, we may approximate it by a distribution Q(u) from F :

Q(u) = Q(u|θ) = exp
(
θT φ(u)− Φ(θ)

)
, θ ∈ Θ.

An often tractable way for choosing Q is to start from Q(u) = P (0)(u) and incorporate
the sites ti(u) one after the other, following some sequential ordering. Namely, in order to
incorporate ti(u), first compute the true Bayesian update

P̂ (u) = Z−1
i Q(u)ti(u), Zi = Eu∼Q[ti(u)].

P̂ lies in the tilted exponential family Fti which is different from F in general. In order to
approximate P̂ , we choose Qnew to have the same F-moments than P̂ :

Qnew(u) = argmin
Q̃∈F

D
[
P̂ (u) ‖ Q̃(u)

]
⇔ ηnew = EP̂ [φ(u)].

We refer to this process as inclusion of site ti(u) into the belief Q. An inclusion is different
from a true Bayesian update, since the full updated belief P̂ is “collapsed” to Qnew, a
member of F , which allows inclusions to be chained. The moments of P̂ can be computed
via Eq. 1 which is often feasible (or amenable to numerical approximations) even though
the moments of the full posterior P (u|S) remain intractable. This simple idea has been
used extensively, for example in the context of Bayesian on-line learning [15] or switching
linear dynamical systems [1, 4, 14], see [11] for more exhaustive references. It is known as
assumed density filtering (ADF). Nevertheless, each site may be included only once, and
in the context of dynamical systems we are restricted to updates in one direction along
the backbone chain (filtering), while bidirectional smoothing would maybe improve the
approximation.

In [11], a new view on ADF is established which allows these shortcomings to be removed.
The process of including ti(u) results in Q(u) being replaced by Qnew(u), which can also
be seen as multiplying Q(u) by the ratio t̃i(u) ∝ Qnew(u)/Q(u) and renormalising. This
operation becomes particularly simple in the natural parameters: θnew = θ + (θnew − θ).
The ratio t̃i(u) is a member of the unnormalised exponential family FU associated with F
(Definition 3): it has a form very similar to Q and Qnew, but θnew − θ will not in general
lie in the natural parameter space Θ of F .2 This view motivates representing Q as

Q(u) ∝ P (0)(u)
n∏

i=1

t̃i(u), (3)

2For example, if F is the family of Gaussians, then t̃i may correspond to a “Gaussian with negative
variance”.



where the t̃i(u) = t̃i(u|θ(i)) ∈ FU are referred to as site approximations, and their natural
parameters θ(i) as site parameters. If θ(0) denotes the parameters of P (0)(u), then

θ = θ(0) +
n∑

i=1

θ(i).

Note that we allow θ(i) = 0, t̃i(u) ≡ 1, in fact in the beginning all site approximations are
constant, leading to θ = θ(0), i.e. Q(u) = P (0)(u). An ADF update (inclusion) w.r.t. site ti
can now be seen as follows (note that t̃i ≡ 1):

Definition 4 (ADF Update, Inclusion)

1. Compute moments of P̂ (u) ∝ Q(u)ti(u) and pick Qnew(u) ∈ F with these moments.

2. In order to replace Q(u) by Qnew(u), we replace t̃i(u) ≡ 1 by t̃new
i (u) ∝

Qnew(u)/Q(u).

From this viewpoint, it becomes clear how ADF can be generalised to a full-fledged iter-
ative approximation scheme, allowing for multiple iterations over the sites. An EP update
(inclusion-deletion) w.r.t. site ti works as follows:

Definition 5 (EP Update, Inclusion-Deletion)

1. Delete the site approximation t̃i(u) from Q(u) by renormalising Q(u)/t̃i(u), obtaining

Q\i(u) ∝ P (0)(u)
∏
j 6=i

t̃j(u).

In natural parameters: θ\i = θ − θ(i).

2. Let P̂ (u) = Z−1
i ti(u)Q\i(u) and compute

ηnew = EP̂ [φ(u)] = ∇θ\i log Zi + η\i, Zi = Eθ\i [ti(u)],

and pick Qnew ∈ F with these moments.

3. Replace t̃i by t̃new
i (u) ∝ Qnew(u)/Q\i(u).

In natural parameters: θ(i) = θnew − θ\i.

In line with [16], we will refer to Q\i as cavity distribution.

On networks with discrete nodes or Gaussian Markov random fields, EP can be seen as gen-
eralisation of loopy belief propagation, allowing for a more flexible choice of approximating
structure and distribution family (see [11] and [21], Chap. 6). The algorithm does not al-
ways converge, but if it does, the fixed point must be a saddle points of an approximation
to the free energy which is a generalisation of the Bethe free energy [9, 7, 21]. Double-loop
concave-convex algorithms can be applied in order to ensure convergence [7]. Problems of



convergence can sometimes be overcome by using “damped” updates: instead of θ → θnew,
we update θ to a convex combination of θ and θnew. Also, updates which lead to θnew

outside of Θ (or very close to its boundary) should be rejected. In practice, it is important
to address the issue of numerical stability: the conversion between natural and moment pa-
rameters is typically not a stable operation.3 If possible, an implementation should remain
in the moment parameters entirely and fold conversions with update operations into a single
mapping which can then be stabilised. This is of course less generic than the presentation
above, and it is also not clear how to do damped updates (which are convex combinations
in the natural parameters) in this way.

It is important to note that EP is not simply a local approximation of the sites ti(u) by
corresponding t̃i(u), but a global fit by Q ∈ F to the distribution obtained by replacing t̃i(u)
by ti(u) in the current belief Q(u). In fact, the sites may not even be continuous functions
of u. EP has been applied for approximate inference in two very different regimes: sparsely
connected Bayesian or Markov networks and models with fully connected Gaussian prior
P (0)(u). In the former regime, every single ti(u) depends on a small number of components
of u only, e.g. in the Markov network case on small cliques of the underlying graph. By
choosing a special structure of the approximating distribution Q, based on a tractable
subgraph of the decomposable extension of the model graph, and requiring that the prior
P (0)(u) follows this structure, one can run EP as a message-passing scheme, updating
the parameters of Q and certain small extensions thereof. This notion is developed and
generalised in [21], Chap. 6 (for discrete variables), and in [9] (does not address the issue
of how to represent Q). In the second regime, F is the family of Gaussians, and P (0)(u) is
typically densely connected, while the likelihood factors ti(u) are local again. The special
case for a completely factorised likelihood P (S|u) has been given in [16, 5].

2.1 Marginal Likelihood Approximation

The marginal likelihood

P (S) =
∫ n∏

i=1

ti(u)P (0)(u) dµ(u)

can be approximated within EP as well which allows to optimize over free hyperparameters.
As long as EP is used only to approximate the posterior P (u|S), it does not matter how
the site approximations t̃i are normalized, but now we make the normalization explicit by
using the site approximations

Cit̃i(u), t̃i(u) = exp
(
θ(i)T φ(u)

)
.

The idea is to match the normalization constants in the same way as the moments making
use of the cavity distributions. Let

Zi = Eθ\i [ti(u)] , Z̃i = Eθ\i

[
t̃i(u)

]
= exp

(
Φ(θ)− Φ(θ\i)

)
.

We require the cavity expectations of ti and Cit̃i to be the same for all i, which means that
Zi = CiZ̃i or

log Ci = log Zi − Φ(θ) + Φ(θ\i).
3For example, for the Gaussian family we have to invert a matrix.



An approximation to log P (S) is obtained by replacing the sites ti by their approximations
Cit̃i:

L = log
∫

exp

(
n∑

i=1

log Ci + θT φ(u)− Φ(θ(0))

)
dµ(u)

=
n∑

i=1

log Ci + Φ(θ)− Φ(θ(0)).

In order to maximize L we require its gradient w.r.t. hyperparameters. Note that L depends
on these directly as well as through the site parameters θ(i). We assume that there exists
an open region around the current hyperparameters within which the θ(i) are continuously
differentiable4. The computation can be simplified greatly by making use of the fixed point
conditions which hold at convergence of EP. After an update of site i we have EP̂i

[φ(u)] =
EQ[φ(u)], where P̂i(u) ∝ ti(u)Q\i(u) and Q(u) ∝ t̃i(u)Q\i(u). Using our remarks on
tilted exponential families in Section 1 we have

∇θ(0) log Zi =

(
∂θ\i

∂θ(0)

)T (
EP̂i

[φ(u)]− η\i
)

=

(
∂θ\i

∂θ(0)

)T (
η − η\i

)
,

because EP̂i
[φ(u)] = EQ[φ(u)] = η. Furthermore,

∇θ(0) log Z̃i =

(
∂θ

∂θ(0)

)T

η −

(
∂θ\i

∂θ(0)

)T

η\i,

so that

∇θ(0)

n∑
i=1

log Ci = −JT η, J =
∂θ\0

∂θ(0)

where θ\0 =
∑n

i=1 θ(i). Also,

∇θ(0)

(
Φ(θ)− Φ(θ(0))

)
=
(
I + JT

)
η − η(0),

since (∂θ)/(∂θ(0)) = I + J . The Jacobian J (which could not be computed in general)
drops out and

∇θ(0)L = EQ[φ(u)]− EP [φ(u)] = η − η(0) = EQ[∇θ(0) log P (0)(u)].

In other words, although the dependence of L on θ(0) is direct as well as through the site
parameters θ(i), the second one can be ignored for the purpose of the gradient computa-
tion, as long as the EP fixed point conditions hold. For the gradient computation, the site
parameters can be considered fixed.

It is important to note the following consistency property. We may ask what the true
gradient ∇θ(0) log P (D) is:

∇θ(0) log P (D) = P (D)−1

∫ ∏
i

ti(u)P (0)(u)∇θ(0)

(
θ(0)T φ(u)− Φ(θ(0))

)
du

= EP (u|D)[φ(u)]− EP [φ(u)].
4We do not know whether this is guaranteed in general. The problem is that for EP, the site parameters

are not unique solutions of some smooth optimization problem.



Therefore, the two approaches of either approximating log P (D) by L and deriving the
gradient of L, or of approximating the gradient of log P (D) (by replacing P (·|D) by Q) do
lead to the same result.

If α is a parameter of the site tj(u), the dependence of L on α is direct or through θ\0 (we
assume that ∂θ(0)/∂α = 0. We show that the dependence through θ\0 can be ignored. If
we ignore the direct dependence,

∂

∂α
log Zi =

(
η − η\i

)T ∂θ\i

∂α
,

∂

∂α
log Z̃i = ηT ∂θ

∂α
− η\iT ∂θ\i

∂α
,

therefore
∂

∂α

n∑
i=1

log Ci = −ηT ∂θ\0

∂α
.

Also,
∂

∂α

(
Φ(θ)− Φ(θ(0))

)
= ηT ∂θ

∂α
= ηT ∂θ\0

∂α
,

because θ(0) does not depend on α. Therefore, only the direct dependence counts:

∂L

∂α
=

∂

∂α
log Cj =

∂

∂α
log Zj = EP̂j

[
∂

∂α
log tj(u)

]
where P̂j(u) ∝ tj(u)Q\j(u).

2.2 Unnormalized Prior Measure

We assumed above that P (0)(u) is a proper exponential family distribution. However, in
some situations, P (0)(u) will rather be a member of an unnormalized family: P (0)(u) =
exp(θ(0)T φ(u) + C), where Φ[θ(0)] need not be finite. For example, EP can be applied to
models where

∏
i ti(u) corresponds to the prior distribution, and P (0)(u) is a likelihood

function.

Running EP for such a case is slightly more challenging. For example, we cannot start
from t = θ(0), but have to initialize the θ(i) to non-zero values such that Φ[θ] is finite.
Furthermore, computing EP updates can be numerically less stable. One useful remedy in
such situations is to do fractional updates [12], but this is not discussed here.

The marginal likelihood approximation works in the same way as described in Section 2.1.
First, we have L =

∑
i log Ci+Φ[θ]+C in this case. Furthermore, the arguments surrounding

the gradient computation remain valid, so that ∇θ(0)L = η +∇θ(0)C. If α is a parameter
of tj , the result of Section 2.1 remains valid if C does not depend on α.

3 Locality Property. Feasibility of EP

The general EP method discussed above can be used with any exponential family F . How-
ever, only under further restrictions do we actually end up with a feasible method, given
that exact inference is intractable. In this section, we discuss these additional properties of
F .



In our setting, intractability of inference means that the moments EP (u|D)[φ(u)] cannot be
computed directly. EP will only be tractable if we can compute these moments for the cavity
distributions P̂ (u) ∝ Q\i(u)ti(u), or more specifically if we can find θnew for Qnew ∈ F
with these moments. In general, this places two restrictions on F as well as the ti. First, the
ti must be “local”, in the sense that although P̂ 6∈ F , we can compute EP̂ [φ(u)] efficiently,
given that we know EQ[φ(u)], for example requiring an integration over few variables only.
Second, F must be a tractable family itself: marginal inference within F must be tractable.
Given these two properties, we can perform EP updates based on Q marginals only, which
requires local moment matching only. These updates affect Q in the same way as local
evidence, and the feasibility of F allows us to propagate these changes towards marginals
for the next EP update.

It is not insightful to formalize these requirements further, and we prefer to give some exam-
ples. First, let F be the family of multivariate Gaussians. F is closed under marginalization,
and marginal inference is clearly tractable. Furthermore, suppose that ti(u) is a function of
vi = cT

i u only. Then, it is easy to see that the EP update can be done using the marginal
Q(vi) only, and it is sufficient to use t̃i(u) = t̃i(vi), which is parameterized by two scalars
only. To see this, assume w.l.o.g. that ci = δ1, so that vi = u1. This is achieved by extend-
ing ci to a nonsingular transformation, noting that F is closed under such as well. Now,
P̂ (u) = P̂ (u1)Q\i(u\1|u1) and

D[P̂ (u) ‖Qnew(u)] = D[P̂ (u1) ‖Qnew(u1)]

+ Eu1∼P̂

[
D[Q\i(u\1|u1) ‖Qnew(u\1|u1)]

]
.

In order to minimise this expression, we set Qnew(u\1|u1) = Q\i(u\1|u1) and match moments
between the marginals P̂ (u1) and Qnew(u1). It follows that t̃i(u) = t̃i(u1), having the form of
Qnew/Q, i.e. the site approximations inherit the locality of the corresponding sites and can
be parameterised economically, in the sense that many of the components in θ(i) are clamped
to zero. Furthermore, since Q(u) ∝ Q\i(u)t̃i(u1), we see that Q(u1) ∝ Q\i(u1)t̃i(u1), so that
in order to update the site approximation t̃i, we only need to access the marginal Q(u1).
Note however that a change of t̃i(u1) in general affects all marginals of Q(u), due to the
densely connected prior.

This locality property extends straightforwardly to the case where each ti depends on a small
number of linear degrees of freedom of u. We have used three properties of the Gaussian
family: closedness under marginalization, closedness under nonsingular linear transforma-
tions, and tractable marginal inference.

A similar property holds for the multinomial family F , which is closed under marginalization
as well. Here, the ti may depend on small subsets of components of u. However, inference
is not tractable in general in the multinomial family, so that a subfamily has to be chosen.
Minka et.al.[13] suggest using a fixed tree-structured approximating distribution Q, so that
F is the family of all multinomial distributions on this tree. For a target undirected graphical
model, potentials coinciding with cliques of the tree are collected in P (0)(u), while all others
become ti factors. Note that F is once more closed under marginalization and allows for
tractable inference through Pearl’s belief propagation method. The ti may depend on few
variables only. For an update at ti, let Vi be the components ti depends upon. The form
of t̃i is deduced by checking which tree potentials within Q are affected by multiplying
with ti and projecting back onto the tree (moment matching): these are the ones of the



smallest subtree containing all nodes in Vi. To see this, note that the multiplication with ti
is equivalent to introducing evidence on the nodes in Vi of potentially arbitrary form. t̃i is
thus represented by the potentials on this subtree. If Vi is small for all ti (they use |Vi| = 2),
Pearl’s cutset conditioning method can be used to incorporate the “evidence” ti. The idea
is to partially instantiate ti in a minimal way, so that multiplying with the instantiated
potentials does not introduce any cycles. The true new tree marginals can be computed by
averaging the results for all partly instantiated ti variants. Note that between EP updates,
it is not necessary to update all tree marginals, this only needs to be done on the subtree
for the next ti potential. Their paper gives the details. Note that this example differs from
the Gaussian ones above, in that we do not have to compute marginals on Vi in order to do
the EP update for ti, the reason being that we are only interested in the modifications of
tree marginals this update will enduce.

Note that for all examples in this section, the underlying exponential family F is closed
under marginalization. This requirement somewhat restricts the use of EP to subfamilies
of the Gaussian or the multinomial family, based on a fixed structure. A similar restriction
holds in principle for other approximate inference techniques as well. However, closedness
under arbitrary marginalizations is not necessarily a binding requirement for being able
to apply EP efficiently. In the common situation where the ti are local factors which are
coupled by overlaps and/or a joint factor within F , we need to be able to propagate local
evidence changes coming from an EP update towards the marginal required for the next
one. This is certainly possible if F is closed under marginalizations and allows for tractable
marginal inference, but lesser requirements may be sufficient. For example, suppose that
all ti potentials depend on one component of u, say u1. In this case, we never need to
marginalize over u1 in order to run EP, and consequently F need not be closed under u1

marginalization.

4 Invariance of EP

By looking at the primitives EP iterates on, one guesses that the algorithm should be
invariant to invertible transformations of the variables u. This is true, as is shown here. It
is an important property of EP, not shared by several other approximate inference methods,
and it should be helpful for analyzing EP.

Let ŭ = T (u) be an invertible transformation satisfying the requirements for changing
measures from u to ŭ and back (via T−1). If Q(u) lives in the exponential family F , then
u ∼ Q iff ŭ ∼ QT , where

QT (ŭ) = exp
(
θT φ(u)− Φ(θ)

)
dµ̆(ŭ),

where dµ̆(ŭ) and dµ(u) are related through the Jacobian of T . Let FT be the class of all
QT , Q ∈ F . Note that the log partition function only depends on the distribution, not on
the parameterization of u, so is the same for F and FT . The latter has sufficient statistics
φ ◦ T−1 and a modified base measure.

If we do EP in FT , based on (P (0))T and sites ti ◦ T−1, the site approximations have
the same form as before, only that the sufficient statistics are the ones of FT . Therefore,
(Q\i)T = (QT )\i. The step to P̂ is a Bayesian update, which naturally is invariant to
transformations of u. Now, ηnew = EP̂ (ŭ)[φ(T−1(ŭ))] = EP̂ (u)[φ(u)] is the same in both



cases. Since the log partition function is invariant and determines the conversion to θnew,
we have shown that EP is invariant to transformations T . Note that this is a strong form
of invariance, in that every single intermediate Q does not depend on the form of u, not
just the final result.

This is certainly a desirable property. For a method which is not invariant in this sense,
inference results may depend on the particular representation chosen for u. For example,
variational mean field approximations make specific factorization assumptions and are not
invariant to transformations which couple variables in different factors. Common MCMC
techniques share the invariance property with EP, as of course does exact Bayesian inference.

Does this property render real advantages in practice? This has not been well understood
in general. We have shown that Q is the same distribution after each step, no matter
what T is. Convergence of EP is therefore in theory not affected by T , as long as it is
assessed by a criterion independent of the u representation (for example, the relative entropy
between successive Q). This is an advantage of EP over certain MCMC techniques such as
coordinate-wise Gibbs sampling or Metropolis-Hastings with a fixed proposal, where speed
of convergence can depend significantly on the u representation.

However, our argument assumes that EP updates can be done exactly, or to very high
accuracy, while in practice often approximate computations such as numerical quadrature
are used. Such rules are invariant to linear transformations, but in general not to non-linear
ones, and their accuracy might well depend on the exact form of u. Furthermore, the update
of the Q representation may be more numerically stable for some forms of u than others. In
fact, we can even convert between different forms of u between local updates and evidence
distribution, or even use different forms depending on the site to be updated. Here, the
conversion should of course itself be a stable operation.

We are also not free in choosing every transformation T . The family F may be chosen with
a specific structure of the sufficient statistcs for efficiency properties. Any T destroying this
structure would make it much harder to run EP5.

5 The Gaussian Case

As noted in Section 2, an important application of EP is concerned with networks over
continuous variables with Gaussian prior P (0)(u). In this case, the posterior approximation
Q(u) is Gaussian as well. The locality property of EP within the Gaussian family was
discussed in Section 3. In this section, we elaborate this important special case in detail.

We assume that P (0) is fully coupled, and F is the family of all multivariate Gaussians.
Furthermore, u ∈ Rn, and ti(u) = ti(ui), so there are as many sites as variables. These
assumptions are made for simplicity and can easily be generalized to each ti depending
on a linear function of u (see Section 3), without almost no further complications. In the
underdetermined case of fewer sites than variables, additional measures have to be taken to
ensure numerical stability of the method, see [20]. The locality property of EP means that
in this case, we have to perform one-dimensional non-Gaussian integrals only in order to
compute the tilted moments, which can usually be done using Gaussian quadrature. If ti

5It should be clear that by “running EP on ŭ” we do not mean that conversions to the full u and back
are done all the time.



depends on a (small) number of components of u, these quadratures may still be possible,
but become quite hard to do accurately6.

The unnormalized Gaussian family is given by

NU (x|b,Π) = exp
(
−1

2
xTΠx + bT x

)
,

where Π is symmetric. The sufficient statistics φ(x) consist of −(1/2)xxT and x, the
natural parameters are Π and b. Note that this parameterization is not minimal. It would
be if we used the lower triangle of Π only.

The site approximations are t̃i(ui) = NU (ui|bi, πi). In order to do an EP update for site i,
we first need the marginal Q(ui) = N(hi, ai). The cavity marginal Q\i(ui) = N(h\i, a\i) is
obtained as

a\i =
ai

1− aiπi
, h\i =

hi − aibi

1− aiπi
.

If P̂i(ui) ∝ ti(ui)Q\i(ui) is the tilted marginal, we need to compute its first and second
moments, which is equivalent to minimizing D[P̂i ‖Q′] over Gaussian Q′(ui) = N(h′i, a

′
i).

A simple way of computing these moments is via the log partition function. Define Zi =
E\i[ti(ui)], where E\i[·] is w.r.t. Q\i. Note that Zi is the normalization constant for P̂i. Let

αi =
∂

∂h\i
log Zi, νi = − ∂2

∂h2
\i

log Zi.

Now, it is easy to see that

h′i = h\i + a\iαi, a′i = (1− a\iνi)a\i.

Furthermore, we can obtain Q′ by updating the site parameters as

π′
i =

νi

1− a\iνi
, b′i = π′

i(h\i + αi/νi) =
h\iνi + αi

1− a\iνi
.

Another possibility is to compute Zi, h′, a′ directly, which amounts to computing the mo-
ments Ik =

∫
uk

i ti(ui)Q\i(ui) dui, k = 0, 1, 2. If we cannot compute Zi analytically, we can
use Gaussian quadrature (of the Gauss-Hermite type) [6] in order to approximate the Ik,
from which b′i, π′

i can be obtained easily.

As an example, consider the binary classification probit noise model P (yi|ui) = Φ(yi(ui+β)),
Φ the c.d.f. of N(0, 1), yi ∈ {−1,+1}. We have

Zi =
∫

Φ(yi(ui + β))Q\i(ui) dui = Φ

(
yi(h\i + β)√

1 + a\i

)
,

and

zi =
yi(h\i + β)√

1 + a\i
, αi =

yiN(zi|0, 1)
Φ(zi)

√
1 + a\i

, νi = αi

(
αi +

h\i + β

1 + a\i

)
.

6The numerical stability, convergence properties, and approximation accuracy of EP all depend signifi-
cantly on the accuracy of the moment matching quadratures.



In practice, some care has to be taken towards numerical error. First, we compute log Zi

instead of Zi. For the probit noise, we use code to compute log Φ(z) directly. We also need
to take care of “0/0” situations, an example is N(zi|0, 1)/Φ(zi) = (d/dzi) log Φ(zi) in the
term for αi above. Another case where numerical stability is much more of a critical issue,
is elaborated in [20] (with Laplacian sites ti(ui) = e−τ |ui|).

Note that in general we cannot guarantee that an EP update actually can be done. Depend-
ing on ti and the current Q(u), it may be that the cavity distribution or P̂i are degenerate
and cannot be normalized. We now show that such a breakdown cannot occur for a large
class of frequently used site functions ti, and that EP is a numerically stable algorithm in
such cases. Namely, assume that ti(ui) is log-concave, in that log ti(ui) is concave in ui. A
powerful theorem states that if f(x) is a log-concave function of x ∈ Rm, then any marginal
of f (obtained by integrating out some components of x) is log-concave again [2]. Now, if
Zi = E\i[ti(ui)], as long as Q\i is a proper Gaussian, then Zi is log-concave as a function
of h\i. Namely, in this case both ti and Q\i are log-concave in (ui, h\i), and the product of
log-concave functions is log-concave. This means that νi ≥ 0 (as second derivative of the
convex function − log Zi), so that if 1 − a\iνi > 0, we have that π′

i ≥ 0. We can give an
argument why we should typically have νi < a−1

\i . Namely, if ti is Gaussian with variance σ2,
then νi = 1/(a\i+σ2) < 1/a\i. If ti is a Delta distribution at some point, we have νi = 1/a\i.
Therefore, we would argue that if ti is not concentrated infinitely, then 1 − a\iνi > 0. We
see that if we start with all πi = 0, they remain nonnegative throughout for log-concave ti,
which in turn means that the update of the EP representation is numerically stable. The
implications of log-concavity are the same in the case of the ti depending on more than a
single u value, or depeding on a linear mapping of u (if f is log-concave, A linear, then
f ◦A is log-concave).

In order to implement EP, we need a representation of the posterior Q(u) from which we
can extract the required marginals Q(ui) efficiently, and which can be updated efficiently
and in a numerically stable manner. The details of such a representation depends on the
exact setup, namely the form of the prior P (0)(u). In some applications, many of the site
parameters bi, πi remain clamped at zero, which leads to a more efficient representation, an
example is the Informative Vector Machine (IVM) [8, 18, 19].

We finally turn to the marginal likelihood approximation of Section 2.1. We have that

L =
∑

i

log Ci + Φ[Q]− Φ[P ], Φ[N(µ,Σ)] =
1
2

log |2πΣ|+ 1
2
µTΣ−1µ.

Note that for most concrete situations, many terms cancel out in the difference Φ[Q]−Φ[P ].
An illustrative example is the case of the IVM, described in [19], Sect. C.2. We have that
log Ci = log Zi − log Z̃i, where

log Z̃i = Φ[Q(ui)]− Φ[Q\i(ui)] =
1
2

(
log(1− πiai)−

πih
2
i − 2hibi + aib

2
i

1− πiai

)
.

Some algebra gives

log Z̃i =
1
2

(
log(1− πiai)−

πih
2
i − 2hibi + aib

2
i

1− πiai

)
.



The gradient of L is required to drive hyperparameter estimation by empirical Bayes. In
general, the prior P (0)(u) = NU (b(0),Π(0)), and the arguments in Section 2.1 result in

∇b(0)L = EQ[u]− EP [u], ∇Π(0)L =
1
2
(
EP [uuT ]− EQ[uuT ]

)
,

which can be used to obtain the gradient for parameters determining the prior. The reader
may wonder what happens if P (0)(u) is not a proper Gaussian in itself, because it cannot
be normalized. Recall that EP can still be used in such cases, given that the posterior Q(u)
is always proper. In this case, the mean of P might not even exist. However, neither are all
coefficients of b(0), Π(0) independent in this case, so if we derive the gradient expression for
the real independent prior parameters, the problematic terms will be projected to become
expressions whose prior expectations do exist.

6 Expectation Consistent Approximate Inference

Opper and Winther [17] proposed expectation consistent approximate inference (EC) as a
generalization of their previous ADATAP framework [16], which in turn was the basis for
expectation propagation. In this section, we introduce EC and describe its relationship to
EP. It turns out that EC is equivalent to a certain parallel way of running EP, while previous
applications of EP have used sequential local updates only. A parallel scheme like EC can
converge faster, and to a fixed point of higher approximation quality, because each step
makes use of global properties of the combination of all sites. On the other hand, local EP
is feasible to run in situations where the global EC updates are not feasible, for example
for setups with more sites than variables.

The goal of EC is to approximate moments of a target distribution Z−1fq(u)fr(u),
which is not tractable. To this end, an exponential family with sufficient statistics g(u)
is chosen, with the requirement that both tilted families ∝ fq(u) exp(λT

q g(u)) and ∝
fr(u) exp(λT

r g(u)) are tractable, in the sense that the log partition functions and g(u)
moments can be computed analytically, or through tractable quadrature. Note that g does
not play exactly the same role as φ above. The relationship is clarified below.

The idea is to keep two tilted distributions around,

q(u) = Z−1
q fq(u) exp

(
λT

q g(u)
)
, r(u) = Z−1

r fr(u) exp
(
λT

r g(u)
)
,

with the aim of matching their moments, Eq[g(u)] = Er[g(u)]. At convergence, the mo-
ments are the same, so q and r are expectation-consistent. Just as in other approximate
inference schemes, g(u) should be chosen to represent dominating moments of the original
distribution. Of course, there is a trade-off between accuracy (many moments, large cliques)
and computational tractability.

Opper and Winther derive EC as log partition function (or free energy) approximation.
Namely,

log Z = log Zq + log Eq

[
fr(u) exp

(
−λT

q g(u)
)]

.

The expectation over q is intractable, but we may replace q by the (non-tilted) exponential
family distribution s(u) = Z−1

s exp(λT
s g(u)), where λs = λq + λr. Plugging this in, we



obtain

log Z ≈ log Zq + log Z−1
s

∫
fr(u) exp

(
(λs − λq)T g(u)

)
du

= log Zq + log Zr − log Zs =: log ZEC .

(4)

The right hand side is the EC approximation to negative free energy log Z. Note that the
derivation is symmetric w.r.t. q, r, so we could just as well start with r. The replacement
q → s in the expectation above requires matching these distributions, and in EC we require
them to be consistent on g(u): Eq[g(u)] = Es[g(u)]. Since s(u) is defined by these moments,
there is no stronger sense of a match we could use. By symmetry, we should also require that
Er[g(u)] = Es[g(u)], so that our final fixed point conditions must be Eq[g(u)] = Er[g(u)].
Another way of arriving at these is to note that the left hand side in Eq. 4 does not depend on
λq, λr, to that the EC approximation should better be stationary w.r.t. variations in either
of these variables. In other words, our final choice of (λq,λr) should be a saddle-point of
log ZEC . We re-derive the fixed point conditions through∇λr log ZEC = Er[g(u)]−Es[g(u)]
and ∇λq log ZEC = Eq[g(u)]− Es[g(u)].

Note that log Zq, log Zr are convex in (λq,λr), while log Zs is concave, so that log ZEC is
a sum of convex and concave parts, reminescent of other free energy approximations (for
example, the Bethe free energy). Opper and Winther define a “single-loop” algorithm, which
consists of iterating the following two steps:

1. Determine λs so that Es[g(u)] = Er[g(u)]. Update λq ← λs − λr.

2. Determine λs so that Es[g(u)] = Eq[g(u)]. Update λr ← λs − λq.

If this algorithm converges, we have found a saddle-point of log ZEC so that Eq[g(u)] =
Er[g(u)]. We are not aware of further general results ensuring such convergence, or proving
uniqueness properties of the saddle-point attained. Opper and Winther propose a “double-
loop” algorithm whose inner loop minimizes convex upper bounds log Zq + log Zr − B to
log ZEC , where B is linear in (λq,λr). This algorithm is provably convergent, but for most
applications, the single-loop method is convergent and runs much faster.

At convergence, log ZEC can be used as approximation to the intractable log Z, the log
marginal likelihood (see Section 2.1). If τ is some (hyper-)parameter of fq or fr, the deriva-
tive d log ZEC/dτ is the sum of a direct part and a part involving d(λq,λr)/dτ . However,
at convergence, the latter part vanishes, precisely because ∇(λq ,λr) log ZEC = 0. This is the
same as we have shown in Section 2.1, albeit somewhat more direct.

6.1 Equivalence to EP

On certain models, EC is equivalent to a special parallel variant of EP. The global EC
updates, however, may lead to a better fixed point than applying a local EP scheme, and
this point may be reached faster.

To see the equivalence, let fq(u) = P (0)(u) and fr(u) =
∏

i ti(u). The choice of g(u) follows
the same rules as the choice of F in EP above. In EP, we need to ensure that any titled
distribution for a single site extension can be projected back onto F efficiently. Here, we



need to ensure that both q(·) and r(·) are tractable, the latter using the product of all sites
ti. This requirement is violated for example in a model with Gaussian prior, but more sites
than variables (see Section 3), and the parallel EC updates cannot be done in this case.

EC can be used in the setting of Section 5, where ti(u) = ti(ui). In this case, we choose
a factorizing Gaussian as g(u) family, and EC becomes equivalent to a parallel variant of
the scheme described in Section 5. We see that the choice of g(u) in EC is different from
the choice of F in local EP. In the latter, the tractable factor P (0) (fully coupled Gaussian
in the Gaussian prior examples) is contained in F , while in EC the underlying family given
by g(u) has the form of

∏
i t̃i, without the factor P (0). In EC, fq(u) and fr(u) are treated

symmetrically. For example, the approximating distribution Q(u) is q(u) here, not s(u).
In fact, Opper and Winther recommend using q(u) and r(u) at convergence, depending on
what prediction question is in fact asked. These agree on the g(u) moments, but apart from
that are very different distributions. Couplings between variables should be extracted from
q(u) (r(u) factorizes in their application), while higher-order marginal cumulants have to
be taken from r(u) (q(u) is Gaussian in their example). Differences between EC and EP can
be motivated for the application of Opper and Winther, which is briefly discussed below.

6.2 EC for the Ising Model

The main application in [17] is a method for obtaining correlation estimates in the Ising
model improving on the standard mean field ones. Here, fq(u) is Gaussian (the inverse
covariance matrix is given ), and fr(u) =

∏
i ti(ui), ti(ui) = (1/2)(I{ui=−1} + I{ui=+1}).

The Ising model is a Gaussian restricted to hypercube edges, and the restriction is done
by the factorizing fr(u). For a fixed tree structure, g(u) contains pairwise potentials on
the tree edges. They propose a mixture of the two domains EP has previously been applied
to separately, namely continuous Gaussian and discrete structured distributions. In conse-
quence, s(u) strictly speaking cannot even be seen as a single distribution anymore, but in
fact is merely a product of potentials on tree edges, and only the multiplication with fq(u)
or fr(u) supplies the underlying dominating measure (Lebesgue volume in the continuous
case, counting on {−1,+1}n in the discrete case).

The EC updates work as follows. First, q(u) is a dense Gaussian distribution, and the tree
moments can be obtained in O(n) using Gaussian belief propagation on the tree (recall that
the inverse covariance matrix of fq(u) is given). Second, r(u) is a discrete tree-structured
distribution, and discrete belief propagation on the tree is used to update the s(u) mo-
ments7.

Especially updates of the second kind should be compared to what we would do in local EP
on this model. Opper and Winther compare against EC with fully factorized s(u) family
(called “EC factorized” in their work), and their tree-based approach clearly outperforms
this simpler factorized variant. A more appropriate method to compare against would prob-
ably be Tree-EP [13], which could be used in the Ising model setting as well (although it
was previously applied to sparsely connected discrete models only).

7The potentials are then given locally via these moments, by the junction tree theorem.
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