Susceptibility for Ising mean-field model

June 23, 2017

Here we estimate the susceptibility matrix for a spin-glass model with N neurons, using mean-field approximation. We infer consequences on its spectrum.

1 Self-consistent equations for magnetisation.

In the Ising spin-glass model the potential reads:

$$
\phi = \sum_{i=1}^{N} b_i S_i + \sum_{i,j=1}^{N} J_{ij} S_i S_j
$$

where some J_{ij} can vanish and where $J_{ij} = J_{ji}$. Here $S_i = \pm 1$.

We call $\langle S_i \rangle$ the average of S_i . The susceptibility matrix is:

$$
\chi_{ii'} = \frac{\partial \langle S_i \rangle}{\partial b'_i} = \langle S_i S_{i'} \rangle - \langle S_i \rangle \langle S_{i'} \rangle. \tag{1}
$$

From the fluctuation-dissipation theorem it is equal to the pairwise correlation.

In what follows $\beta = \frac{1}{k_B}$ $\frac{1}{k_BT}$ is the inverse temperature and k_B is the Boltzmann constant. As we don't have thermodynamics issues we may take $k_B = 1$ here. $\langle S_i \rangle$ can be approximated with increasing order approximations in terms of self-consistent equations.

• Mean-Field approximation.

$$
\langle S_i \rangle = \tanh\left[\beta \left(b_i + \sum_j J_{ij} \langle S_j \rangle\right)\right]. \tag{2}
$$

• TAP approximation.

$$
\langle S_i \rangle = \tanh\left[\beta \left(b_i + \sum_j J_{ij} \left[\langle S_j \rangle - J_{ij} (1 - \langle S_j \rangle^2) \langle S_i \rangle \right] \right)\right], \quad (3)
$$

where we used $J_{ij} = J_{ji}$.

• Plefka approximation. This is an expansion in terms of J_{ij} s and m_i s that we should investigate if the previous approximation are not accurate enough.

2 Susceptibility.

We now compute χ in the different approximations.

2.1 Mean-Field approximation

2.1.1 Solution

We have:

$$
\chi_{ii'} = \frac{\partial \langle S_i \rangle}{\partial b_{i'}} = \beta \left(1 - \tanh^2 \left(b_i + \sum_j J_{ij} \langle S_j \rangle \right) \right) \frac{\partial}{\partial b_{i'}} \left(b_i + \sum_j J_{ij} \langle S_j \rangle \right)
$$

$$
= \beta \left(1 - \langle S_i \rangle^2 \right) \left(\delta_{ii'} + \sum_j J_{ij} \frac{\partial \langle S_j \rangle}{\partial b_{i'}} \right).
$$

Introducing the matrices $\mathcal{M} = \beta \, diag \left(1 - \langle S_i \rangle^2 \right)$, \mathcal{I} the identity and \mathcal{J} with entries J_{ij} , we obtain:

$$
\chi = \mathcal{M}.\left(\mathcal{I} + \mathcal{J}.\chi\right) = \mathcal{M} + \mathcal{M}.\mathcal{J}.\chi
$$

giving:

$$
(\mathcal{I} - \mathcal{M}.\mathcal{J}) \cdot \chi = \mathcal{M}.
$$

This equation has a solution if the matrix $\mathcal{I} - \mathcal{M} \mathcal{J}$ is invertible. Non invertibility correspond to a change in the number of solutions (controlled actually by β). This condition is given by a condition on the spectrum of $\mathcal{M}.\mathcal{J},$ $Sp(\mathcal{M}.\mathcal{J})$: $1 \in Sp(\mathcal{M}.\mathcal{J})$, i.e. the spectrum contains the eigenvalue 1. This change in the number of solutions correspond to a bifurcation (typically a saddle-node).

Away from the bifurcation points we have:

$$
\chi = (\mathcal{I} - \mathcal{M}.\mathcal{J})^{-1}.\mathcal{M}.
$$
\n(4)

As $\mathcal J$ is symmetric it is diagonalized by a variable change (orthogonal matrix) P where the diagonal for of \mathcal{J}, Λ_J is $\Lambda_J = P^* \mathcal{J} P$, where P^* is the transpose, with $P^*P = \mathcal{I}$. Therefore:

$$
\Lambda = P^* \chi P = P^* (\mathcal{I} - \mathcal{M} \mathcal{J})^{-1} P P^* \mathcal{M} P
$$

We analyze now several cases.

2.1.2 Specific case. The mean-field ferromagnetic model.

Here the matrix $\mathcal{J} = J\mathcal{I}$ where $J > 0$ is a constant. Then the equation of the susceptibility becomes:

$$
\chi = (\mathcal{I} - J\mathcal{M})^{-1} \cdot \mathcal{M}.
$$
 (5)

As M is diagonal χ is diagonal. This is because, in this model, neurons are independent in the thermodynamic limit. Eigenvalues are therefore:

$$
\lambda_i = \frac{\beta (1 - \langle S_i \rangle^2)}{1 - \beta J \left(1 - \langle S_i \rangle^2\right)},
$$

where $\langle S_i \rangle$ depends on β . The condition for criticality is $J\left(1-\langle S_i \rangle^2\right)=1$ for some i.

Note that $\langle S_i \rangle$ is found by solving the self-consistent equation [\(2\)](#page-0-0).

2.1.3 The Sherrington-Kirckpatrick model.

Here $\mathcal J$ is a random, symmetric matrice with independent entries, Gaussian with mean zero and variance $\frac{J^2}{N}$ $\frac{J^2}{N}$. From the theory of random matrices (Girko) it is possible to know the distribution of eigenvalues of the matrix $\mathcal{J}\mathcal{M}$. Indeed, \mathcal{JM} is Gaussian, with mean zero and entries on line i having a variance $\sigma_i^2 = J^2 \mathbb{E}_{\mathcal{J}} \left[(1 - \langle S_i \rangle^2) \right]^2$ where $\mathbb{E}_{\mathcal{J}} \left[\right]$ denotes the average of \mathcal{J} . Thus:

$$
\sigma_i^2 = J^2 \left[1 - 2q_i + r_i \right] \tag{6}
$$

with:

$$
q_i = \mathbb{E}_{\mathcal{J}}\left[\langle S_i \rangle^2\right] = \int_{-\infty}^{+\infty} \tanh^2\left(J\sqrt{q_i}h + b_i\right) \frac{e^{-\frac{h^2}{2}}}{\sqrt{2\pi}};
$$

$$
r_i = \mathbb{E}_{\mathcal{J}}\left[\langle S_i \rangle^4\right] = \int_{-\infty}^{+\infty} \tanh^4\left(J\sqrt{q_i}h + b_i\right) \frac{e^{-\frac{h^2}{2}}}{\sqrt{2\pi}}.
$$
 (7)

 $\sum_{i,j=1}^{N} J_{ij} \langle S_i \rangle$ is, under the law of J_{ij} s, Gaussian with mean zero and variance The rightmost equalities come from the fact that the local field $\eta_i =$ q_i .

When all external fiels b_i are equal the real eigenvalues of $\mathcal{J}M$ are distributed, in the thermodynamic limit, according to the Wiener semi-circular law with density:

$$
\rho(x) = \frac{2}{\pi \sigma^2} \sqrt{\sigma^2 - x^2}, \quad |x| \le Jq.
$$

Especially, the largest eigenvalue is $\sigma = J\sqrt{1-2q+r}$. In this case the high temperature condition max $Sp(\mathcal{MI}) < 1$ corresponds to the De Almeida-Thouless characterizing the limit of the spin-glass phase.

Above this line the spectral radius of $\mathcal{M}\mathcal{J}$ is $\lt 1$ and we obtain χ by expand $(\mathcal{I} - \mathcal{M} \mathcal{J})^{-1}$ in series in [\(5\)](#page-2-0), giving:

$$
\chi = \sum_{n=0}^{+\infty} (\mathcal{M}\mathcal{J})^n \mathcal{M} = \mathcal{M} + \mathcal{M}\mathcal{J}\mathcal{M} + \mathcal{M}\mathcal{J}\mathcal{M}\mathcal{J}\mathcal{M} + \dots
$$

Note that in general \mathcal{M}, \mathcal{J} do not commute. If all external fiels b_i are equal they do and:

$$
\chi = \mathcal{M} + \mathcal{M}^2 \mathcal{J} + \mathcal{M}^3 \mathcal{J}^2 + \dots
$$

Here, if P is the orthogonal variable change diagonalizing J and $\Lambda_{\mathcal{J}}$ the diagonal form of \mathcal{J} :

$$
P^*\chi P = \mathcal{M} + \mathcal{M}^2\Lambda_{\mathcal{J}} + \mathcal{M}^3\Lambda_{\mathcal{J}}^2 + \cdots = (I - \mathcal{M}\Lambda_{\mathcal{J}})^{-1}\mathcal{M}
$$

which is diagonal. This if μ_i is the *i*-th eigenvalue of $\mathcal J$ and λ_i the *i*-th eigenvalue of χ :

$$
\lambda_i = \frac{\beta \mu_i (1 - \langle S \rangle^2)}{1 - \beta \mu_i (1 - \langle S \rangle^2)}
$$

In this example we see that the spectrum of χ is widely conditioned by the spectrum of $\mathcal J$. More generally, this is expressed by eq. [\(5\)](#page-2-0).

Below the AT line the mean-field approximation [\(2\)](#page-0-0) is not valid anymore and one has to use [\(3\)](#page-1-0).