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Spatiotemporal wave activity in beta oscillations in motor cortex can be described in terms of the beta-band
analytic LFP signal, which has both a magnitude and a phase, and who’s real part is equal to the
time-domain value of the beta-�ltered signal.

zk(t) = βk(t) + iHilbert(βk)(t) = rk(t)eiθk(t), where k indexes over channels (1)

Circular statistics can be used to summarize the distribution of analytic signal phase, in order to detect
synchrony and wave events. For example, Kuramoto’s order parameter (Eqn. 2) summarizes phase
concentration across the population. A related measure of synchrony (Eqn. 3) weights channels by their
current amplitude. (In this document I use angle brackets ⟨⋅⟩ to denote averaging over channels.) Note:
the value in equation 2 is also more generally known as the �rst moment of circularly distributed data,
sometimes denoted as R or R1.

Kuramoto = ⟨ z
∣z∣

⟩ (2)

Synchrony = ∣⟨z⟩∣
⟨∣z∣⟩

(3)

However, the evolution of the population of beta analytic LFP signals in phase space is complicated. There
is dispersion in both amplitude and phase, and dispersion in amplitude can evolve into dispersion in phase
and vice versa (e.g. Fig. 2). Directional statistics like (2) and (3) assess phase concentration, but fail to
describe amplitude dispersion, or account for ways in which signal amplitude interacts with estimates of
phase concentration.

A log-polar description of the analytic signal.

The analytic signal can be broken down into phase and magnitude components. The phase distribution
can be described by circular statistics. The complex logarithm of the analytic signal separates phase and
log-amplitude components (phase is identi�ed modulo 2π).

ln(z) = ln(∣z∣) + iarg(z) = r + iθ (4)

We model the log-amplitude as Gaussian.

ln ∣z∣ ∼ N (µr, σr) (5)

The mean of a circular variable can be estimated as the angle of the average analytic signal vector (Eqn.
6). The circular standard deviation, which is analogous to the standard deviation of the circularly wrapped
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Gaussian distribution, is de�ned in terms of a phase concentration measure Sz by equation 7. Phase
concentration Sz is typically computed as the magnitude of the average of unit-length vectors, i.e. ⟨z/∣z∣⟩
as in equation 2. For our data, it is more reliable to perform a weighted average when computing Sz , since
signal values with lower amplitude have poorly estimated phase, in which case Sz is analogous to the
synchrony measure de�ned in equation 3.

µθ = arg(⟨z⟩) (6)

σθ =
√
−2 ln(Sz), Sz =

∣⟨z⟩∣
⟨∣z∣⟩

(7)

The log-polar description of the analytic signal describes the dispersion in amplitude and phase separately,
and is particularly appropriate for traveling wave states, which display uniformly high amplitude and a
gradient of phases across the population (Fig. 2c). The log-polar model breaks down when the population
is highly asynchronous with a mean signal value close to zero (Fig. 2e), when there amplitude and phase
are interdependent (Fig. 2b,d), and when the phase distribution is bimodal (e.g. standing waves) (Fig.
2d).

Extending the log-polar description with a covariance term Kempter et al. (2012) devise a
method of computing the correlation coe�cient between a circular and linear variable. Their work was
aimed at correlating the phase at which a spike occurs relative to hippocampal theta oscillations with
a linear positional behavioral covariate. The approach is general, and will provide a way to compute
a covariance term between log-amplitude and phase, extending the log-polar description to incorporate
amplitude-phase dependence. However, the this does not resolve the problem of unde�ned phases when
the signal is distributed about zero, and it does not resolve the problem of describing bimodally distributed
phase.

The complex Gaussian model of the analytic signal.

The distribution of the beta analytic signal over channels can be approximated as a 2D Gaussian in the
complex plane with a mean signal µz = ⟨z⟩ and a covariance matrix Σz . This model has the advantage
of capturing correlations between amplitude and phase (Fig. 2b). The distribution is well de�ned during
asynchronous states, where the analytic signal is approximately normally distributed about the origin (Fig.
2e). The complex Gaussian distribution can handle those times in our data when the phase distribution
is bimodal (Fig. 2d). Evolution of wave dynamics from asyncrony, to synchrony and standing waves, to
traveling waves, can be captured by the complex Gaussian model when phase is not too disperse.

A polar model with negative amplitudes

Two of the conditions under which the log-polar statistics break down both occur when the distribution of
analytic signal amplitudes includes zero. In the case when amplitude is distributed about 0, the recti�cation
when computing ∣z∣ leads to an inaccurate description of the data. In the case of standing waves, phase
is concentrated, but the amplitude distribution crosses zero. This creates an apparently bimodal phase
distribution, but the data would be better described as having a single preferred phase axis, with some
channels having negative amplitude to explain the π phase shift.

Squaring the analytic signal will fold over negative amplitude values and eliminate "bimodal" phase
distributions where the two modes are separated by π. This allows us to estimate the axis of phase
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concentration φ.
φ = 1

2
arg⟨z2⟩ (8)

We will represent out signal in polar (not log-polar) coordinates, inverting the sign of amplitude along the
axis of phase concentration.

r = ∣z∣ ⋅ sign[cos(arg(z) − φ)], θ = arg(z) +
⎧⎪⎪⎨⎪⎪⎩

π if sign[cos(arg(z) − φ] = −1

0 otherwise
(9)

Figure 3 demonstrates that, while this model can describe synchronous events (Fig. 3a), and also can
model situations with bimodal phase (Fig. 3b), it performs poorly overall. Identifying the axis of phase
concentration can lead to unexpected (Fig. 3d) results. Times when the distribution of the signal is centered
around 0 are poorly described (3c). Nevertheless, statistics from this model can be used to di�erentiate
distributions with certain properties, and combined with the complex Gaussian and log-polar models, it
may be useful in describing the data.

1 Concluding notes

Of the distributions explored so far, the complex Gaussian distribution most accurately describes the
analytic signal distributions in our data. Times when the complex Gaussian approximation fails can be
detected. For the purposes of characterizing synchrony, it may be enough to analyze statistics from both
the the log-polar distribution and the complex Gaussian distribution.
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Figure 1: Evolution of a wave event in analytic signal phase space A wave event begins by excitation of
oscillations in each channel. This excitation of amplitudes shifts, creating a plane wave where, in this case,
the phase of area PM lags behind that in areas PMd and M1. This even lasts only for a few cycles of the
beta oscillation, before collapsing back to an asynchronous state.
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(b) Correlated amplitude and phase
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(c) Concentrated amplitude, disperse phase

70 0 70
µV

70

0

70

µ
V

=
(z

)
=

(z
)

=
(z

)
=

(z
)

=
(z

)
=

(z
)

=
(z

)
=

(z
)

=
(z

)
=

(z
)

=
(z

)
=

(z
)

=
(z

)
=

(z
)

=
(z

)
=

(z
)

=
(z

)
=

(z
)

=
(z

)
=

(z
)

=
(z

)
=

(z
)

=
(z

)
=

(z
)

=
(z

)
=

(z
)

<(z)<(z)<(z)<(z)<(z)<(z)<(z)<(z)<(z)<(z)<(z)<(z)<(z)<(z)<(z)<(z)<(z)<(z)<(z)<(z)<(z)<(z)<(z)<(z)<(z)<(z)

Analytic Signal 17-27Hz
SPK120918 trial 16 t=870ms

M1

PMv

PMd

(d) Bimodal phase concentration
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Figure 2: Neither the complex Gaussian nor log-polar statistics perfectly describe the distributions of analytic
signal. In these plots, the black ellipse represents a complex Gaussian model of the data, with the ellipse
boundary at one standard deviation, and the ellipse axes representing the eigenvectors of the covariance
matrix Σ. The cyan contours represent a log-polar model of the data, which uses the mean and standard
deviation of the log-amplitude, as well as the circular mean and standard deviation of the phases, to model
the data in log-polar space. (a) When phase is concentrated, and not correlated with amplitude, both
the log-polar statistics and the complex Gaussian distribution describe the data well. (b) When phase
and amplitude are correlated, the log-polar model cannot capture the phase-amplitude dependence. (c)
During traveling wave events, signal amplitude is high, and there is dispersion in phase. In these cases,
the log-polar statistics are more appropriate than the complex Gaussian. (d) Traveling wave events appear
to often evolve from states that show a mixture of synchrony and standing wave dynamics. The log-polar
statistics break down when the phase distribution is bimodal, but the complex Gaussian can describe these
states well. (e) At low signal amplitudes, the system is often asynchronous, and the phase and amplitude of
the log-polar model are poorly de�ned. (f) Although rare or absent in our data, a hypothetical distribution
with uniform phase and concentrated amplitude could occur, say, during traveling wave events with short
wavelength. In this case, the complex Gaussian model is especially bad.
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(a) Concentrated amplitude
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(b) Correlated amplitude and phase
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(c) Bimodal phase concentration
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Figure 3: A polar model that allows negative amplitudes can capture distributions with bimodal phase. These
plots illustrate a polar model which �rst identi�es an axis of phase concentration, and then restricts phase
to within π/2 of the preferred phase axis, using negative amplitudes to represent signals that are close
to π out of phase with the main axis phase concentration. (a) The negative-amplitude polar description
accurately describes distributions with a clear amplitude and phase concentration (b) When the phase
distribution is bimodal, this model captures that, albeit with a singularity at zero amplitude (c) When
the distribution is centered at zero, this model attempts to approximate it as a distribution with bimodal
phase. This is incorrect. (d) When there are dependencies between amplitude and phase, this model
behaves strangely. In this case, the amplitude distribution does not truly cross zero, but the phases of the
oscillations are dispersed enough that identifying the axis of phase concentration fails. This model cannot
gracefully describe certain transitions from standing waves to plane waves.
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