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In these notes we show a simplified expression for the Pairwise Phase Consistency (PPC) measure of Vinck
et al. (2010). We illustrate it’s relation to a bias-corrected spike-field coherence measure from Grasse et al.
(2010), and discuss an third notion of spike-field coherence that is intermediate between the two.

In this document, we use the term “event-triggered” rather than “spike-triggered”, because we want to apply
these measures to neural events other than spikes (e.g. beta-frequency transients in motor cortex).

Pairwise Phase Consistency

Vinck et al. (2010) define Pairwise Phase Consistency (PPC) as the expected dot product between all pairs
of (spike-triggered) phase measurements.
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There is an alternative way to express PPC that is faster to calculate, and also reveals a relationship between
PPC and similar alternatives. Denote each event-triggered LFP measurement with amplitude r and phase
θ as

Sj = rje
iθj .

Represent each phase measurement as a phase vector, represented by the complex number z:

zj = Sj/|Sj | = eiθj .

Define the average of these phase vectors as z̄:

z̄ =
1

N

∑
j=1..N

zj .

Note: |z̄| is of the same form as Kuramoto’s order parameter, where in this case we are averaging phase
across event-triggered LFP samples, as opposed to an ensemble of oscillators.

|z̄| = Sj/|Sj |

Consider the expression |z̄|2 and expand it.
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Moving the normalization by N to the left-hand side, and with a bit of algebra...

(N |z̄|)2 =

 ∑
j=1..N

cos(θj)

2

+
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∑
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This reveals a relationship between the order parameter |z̄| and the PPC statistic:

N

2
(N |z̄|2 − 1) =

∑
j=1..N−1

∑
k=j+1..N

cos(θj − θk).

It follows that PPC can be calculated as

Υ̂ =
N |z̄|2 − 1

N − 1
.

Grasse et al. (2010) bias corrected spike-field coherence

The alternative expression for PPC is reminiscent of the bias-corrected event-field coherence from Grasse
et al. (modified from Eqn. 10 Grasse et al. 2010)

Ĉ =
Nĉ− 1

N − 1

Where ĉ is a biased coherence measurement taken by normalizing the event-triggered phase-amplitude vector
by an expected magnitude based on the background LFP power.

ĉ =
|S̄|2

|SLFP |2

Recalling the definition of the phase and amplitude vector S and how it relates to z:

|z̄| =
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∣∣∣∣∣∣ ,
we see that Vinck et al. (2010) and Grasse et al. (2010) are similar. The main difference is that Grasse et
al. (2010) normalizes using the average power over all time, whereas Vinck et al. (2010) normalizes each
phase vector by the instantaneous amplitude before averaging.

The approach of Grasse et al. (2010) places more weight on LFP samples with higher amplitude. This is
useful if LFP phase estimates are contaminated by noise, since higher-amplitude events have better signal-
to-noise ratio. However, it still exhibits some bias if fluctuations in LFP amplitude are correlated with
changing firing (event) rate. We suggest another statistic that mitigates this below.
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A third option

There is a closely related measure where the background power |SLFP |2 is estimated not from the whole-trial
LFP, but instead from those times around events. This will remove any spurious coherence arising from
coupling between LFP amplitude envelope and event (e.g. spiking) rate.

ĝ =
|s̄|2

|s|2
=
(
|s̄|/|s|

)2

Which, after applying finite-sample-size bias correction, would give

Ĝ =
N
(
|s̄|/|s|

)2
− 1

N − 1

If we expand the term |z̄| = sj/|sj | in our expression for the PPC, we see that Ĝ and Υ̂ are very similar.

Υ̂ =
N
(
sj/|sj |

)2
− 1

N − 1

The main difference is that PPC normalizes phase vectors to unit length before averaging, whereas this
approach averages first and then normalizes. Using a local estimate of amplitude, rather than time-average
power, may further reduce bias in some applications.

Summary

The PPC measure from Vinck et al. (2010) can be efficiently computed by an expression that resembles Ku-
ramoto’s order parameter for coupled oscillators, with the event-triggered LFP phases being our “ensemble”
so to speak, followed by a finite sample size bias correction.

This bias correction is identical to that derived in Grasse et al. (2010) for another variation of coherence.
The coherence measure outlined in Grasse et al. (2010) can still be biased by a correlation between firing
rate and LFP power fluctuations, but normalizing based on the estimated LFP power at the time of each
event mitigates this.
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1 Three measures of spike-field coherence, cheat sheet:

Unbiased coherence

Ĉ =
N
(
|S̄|
|SLFP |

)2
− 1

N − 1

Grasse’s unbiased coherence is useful when one is interested in event-field coherence, and either the LFP
power is believed to be stationary, or an bias in the coherence estimate caused by correlations between firing
rate and LFP power is desired.

Unbiased coherence with local LFP power estimate

Ĝ =
N
(
|S̄|/|S|

)2
− 1

N − 1

This measure weights examples with higher LFP power more strongly, and normalizes by the LFP power
around each event to reduce bias from correlated changes in power and rate.

Pairwise Phase Consistency

Υ̂ =
N
(
Sj/|Sj |

)2
− 1

N − 1

Pairwise Phase Consistency is useful when one is interested in a notion of event-field coherence that is
not susceptible to correlations between rate and LFP power, and weights all event-triggered LFP samples
equally when summarizing the distribution of event-triggered LFP phases.
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