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Abtract: This is a PDF transcript of the slides for the Methods in Computational Neuroscience (MCN)
�nal presentation talk, fall of 2014. It builds on Rule et al. (2011) "The origin and properties of �icker-
induced geometric phosphenes", which showed that oscillatory drive can excite patterned instabilities
in visual cortex. These patterns constitute attractor states that are stabilized by an external oscillatory
drive. This project explored the idea that similar oscillation-stabilized attractors might serve as a �ex-
ible working memory. Unfortunately, these notes are rather brief as I never had the time to write this
up properly.

1 Hypothesis and model

Hypothesis Attractor networks are hypothesized to store information in the brain, as a form of
working memory. However, stationary rate dynamics are seldom observed in the brain: real networks
have a tendency to oscillate due to the latency of inhibitory feedback. Can we generalize the idea of
information storage in attractor states to oscillatory networks? In this work, we will show how shared
oscillatory drive can activate a mode with distinct stable trajectorie, rather than �xed points.

A rate model E-I oscillator We begin by elaborating on the model of Rule et al. (2011), which
consisted of a two-population Wilson-Cowan model with excitatory (�) and inhibitory (� ) cells (Figuse
1). The euqations for this model are:

E IS

Figure 1: Network con�guration for a neural mass model of a network containing excitatory (E) and inhibitory
(I) neurons, driven by an external stimulus (S). Depending on the network parameters, the excitatory and in-
hibitory cells can exhibit a steady state, or they can oscillate spontaneously. This network can be con�gured so
that it is normally quiescent, but can be driven in resonance by an external oscillatory stimulus. See Rule et. al
(2011) for further details.

g4 ¤� = −� + 5 (�44� −�48� + \4 + ( (C) + [4 (C)),
g8 ¤� = −� + 5 (�84� −�88� + \8 + [8 (C)),

5 (G) = 1
1 + 4−G ,

[ ∼ N(0, f2),
where 5 is a logistic sigmoidal �ring-rate nonlinearity, � are synaptic coupling constants, \ are (neg-
ative) thresholds, and g the response time-constants. We de�ne two inputs to the system: an external
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stimulus ( (C), and Gaussian white noise [†. We set the network parameters as in Rule et al. (2011) so
that this system exhibits a damped oscillatory mode, which is easily excited by an external stimulus at
the same frequency.

Weakly coupled oscillators The potential for such a system to serve as a short-term memory is
highlighted by the two-population model explored in Rule et al. (2011) ( See "Results: Global dynam-
ics for a highly reduced model"). In this result, two neural oscillators are joined together with weak
inhibitory coupling (Figure 2). With weak inhibitory coupling, the system exhibits instability when
receiving symmetric drive ((1 = (2, Figure 2).

E1 I1S1

E2 I2S2

 Oscillator 1

Oscillator 2

Figure 2: Two neural oscillators coupled with weak inhibitory coupling. This corresponds to the "highly-
reduced" two-population model explored in Rule et al. (2011).

As shown in Rule et al. (2011) Figure 7. "Global picture for the simple 4-dimensional model", this
instability can take the form of either a symmetric oscillation (in which the oscillators take turns �r-
ing during the peak of stimulation), or an asymmetric mode in which a single oscillator dominates,
depending on the driving frequency.

The equations for a pair of neural oscillators coupled with weak inhibition are:

g4 ¤�1 = −�1 + 5 (�B4; 544 �1 −�B4; 548
�1 −�>Cℎ4A48 �2 + \4 + (1(C) + [4,1(C))

g4 ¤�2 = −�2 + 5 (�B4; 544 �2 −�B4; 548
�2 −�>Cℎ4A48 �1 + \4 + (2(C) + [4,2(C))

g8 ¤�1 = −�1 + 5 (�B4; 588
�1 −�B4; 584

�1 −�>Cℎ4A84 �2 + \8 + [8,1(C))

g8 ¤�2 = −�2 + 5 (�B4; 588
�2 −�B4; 584

�2 −�>Cℎ4A84 �1 + \8 + [8,2(C)),

where the synaptic coe�cients are now broken down into �B4; 5 and �>Cℎ4A contributions.

2 Simulations

We �rst con�rm that the two-population model (Figure 2) can be coaxed to enter one of two oscillatory
modes, depending on its initial state. This serves as a proof-of-principle for a simple, 1-bit oscillatory
memory. We will then build on this idea to explore memory circuits with higher capacity.

†Adding noise inside the nonlinearity is technically wrong; it should be phrased as an Îto stochastic di�erential equation,
and the noise should be added outside the nonliterary so that it may be scaled correctly with the integration time-step, ΔC .
However, moving the noise inside the �ring-rate nonlinearity ensures that �ring rates remain bounded on (0, 1). You can
approximately map this to the Îto formalism either by accounting for the current slope of 5 (·) when scaling noise by

√
3C ,

or by creating a second set of equations for neural activations, and incorporating the noise term into these. In this work,
making this more formal doesn’t really buy us anything, so we will simply say that the results of integrating these equations
are speci�c to the particular choice of time step ΔC used for numeric integration.
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Weakly coupled oscillators: "experiment" In this simulation, the system begins at steady state,
with both populations identical. We then providing a driving input to one population, increasing the
�ring rate of the excitatory cells therein. This sets up the initial conditions of the system. The input
is then removed, and the network is driven with shared oscillatory drive. We will show that the drive
sustains the memory of the initial input, and allows it to be read-out from the �ring rates of the E
populations at a later time (Figure 3).

Storing information in an ensemble of 30 oscillators This intuition generalizes to # > 2 pop-
ulation models. In this next simulation, we consider # = 30 oscillatory populations, all identically
coupled to each other with weak inhibition. In this case, we have arbitrarily assigned 15 populations
into "group 1" and the remaining into "group 2". A stimulus arriving to group one drives the activity
of all populations in this group, creating an asymmetry in the network. With oscillatory drive in the
"hold" period, this asymmetry can still be observed several cycles later, con�rming that the system
retains the memory trace (Figure 4).

Two islands of encoded assembly stability All simulations presented so far were with weak noise
(f2 < 0.032), and primarily re�ect the stability of the mean-�eld model to small perturbations. We
next evaluated how this system behaves in the presence of larger noise levels. Figure 5 illustrates the
stability of the encoded memory for a range of noise values. It also evaluates di�erent frequencies
and amplitudes of the synchronous oscillatory drive used to stabilize the memory. As in Rule et al.
(2011), we �nd two islands of stability, which correspond to the symmetric and asymmetric modes of
population oscillation.
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Figure 3: Memory retention in the two-population model of Rule et al. (2011). Starting from rest, a stimulus is
delivered to the �rst oscillator (green) for C ∈ [300, 500) ms. We test the stability of this stimulus-driven network
response during a hold period C ∈ [500, 1500) ms. Without oscillatory drive (top), the memory fades in a few
cycles. Periodic stimulation (bottom) preserves the memory. Rightmost plots show the phase-plane dynamics
during the readout period C ∈ [1000, 1500). The top system, without drive, has returned to rest. The driven
system shows a stable limit cycle, with higher �ring rates in the population that initially received the stimulus.
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Figure 4: Many-population generalization of the two-population simulated memory experiment of Figure 3. Mem-
ory retention is similar to the two-population case. However, the dynamics of this larger population of neural
oscillators is less stable: rates �uctuation for di�erent oscillators within each group.
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Figure 5: A survey of memory robustness reveals two islands of stability. We repeated the 30-population experi-
ment of Figure 4, varying the noise level, as well as the amplitude and period of the synchronous oscillation used
to stabilize the memory. Two islands of stability are apparent, at periods of 40 and 80 ms. These correspond to
the symmetric and asymmetric regimes of Rule et al. (2011), respectively.
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3 Switched linear system analogy

We would like to better understand the basic principles underlying oscillatory memory stabilization in
the experiments. However, it is di�cult to analyze higher-dimensional nonlinear stochastic systems.
To provide at least some qualitative intuition, we now move to a model that replaces the nonlinear
system with a switched linear system. This system is linear at almost all time-points, but we will
model the driving oscillation as a switching of its parameters between one of two regimes.

Canweview this as a damped, driven linear system? We begin by returning to the two-population
scenario. To build a linear system similar to the two-population model, start with a 4D linear system.
Ensure that its largest eigenvalue pair re�ects an oscillation with the target frequency, and is stable
<(_) < 0. Ensure, then, that the eivenvector for this state re�ect an asynchronous mode.

Figure 6 shows a simulation of a damped linear resonator. In these simulations, we provide external
drive in the form of a train of impulses, delivered every 100 ms to both populations. The transient
response of the switched linear system qualitatively resembles that of the nonlinear model (Figure 3).
However, its response to a shared driving oscillation is very di�erent: instead of exciting instability,
we see a continued decay of any initial di�erences in �ring rate, superimposed on a synchronous
oscillation.
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Figure 6: Analogy of the two-population model as a damped, driven linear system. We model the nonlinear neural
oscillator as a damped linear oscillator. In the absence of external periodic drive (top), this system qualitatively
captures the decay of network activity to a transient input. However, this system does not resemble the nonliear
model in the presence of oscillatory drive: synchronous drive cannot excite an asymmetric mode, and both
populations converge to identical activity.
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The �ring rate nonlinearity is important We have con�rmed that a linear system cannot capture
the e�ects that we see: there is no way for synchronous drive to excite an asynchronous mode. The
key to this phenomenon must therefore lie in the �ring-rate nonlinarity (Figure 7).

6 0 6

Synaptic activation

0.5
R

a
te

Firing rate nonlinearity

Exponential
∆Gain ~ ∆Activation

Saturating
∆Gain ~ -∆Activation

Linear
∆Gain ~ 0

1

0

Figure 7: Sigmoidal �ring rate nonlinearity. This transfer function is linear in the vicinity of 0, but resembles
the exponential for large negative inputs, and saturates for large positive inputs. The nonlinear system occupies
the exponential portion of the �ring rate nonlinearity, in which an increase in drive leads to an increase in gain.

Importantly, the logistic nonlinearity has positive curvature for low amounts of activation. For the
nonlinarity chosen here, in fact, it resembles the exponential function. Any increase in amplitude,
therefore, causes a corresponding increase in gain. This periodically-driven gain increase is responsible
for destabilizing the synchronous state, and thereby preserving the asynchronous mode corresponding
to the initial memory.

Linear analogy to two coupled oscillator model Figure 8 illustrates a working linear analogy to
the nonlinear model. Here, rather than provide a periodic impulse, we instead periodically increase the
gain. This makes the asynchronous modes unstable. Left unchecked, this would lead to diverging be-
havior. We therefore capture the saturating aspects of the nonlinearity by limiting the maximum �ring
rates. This provides a piecewise linear model of the nonlinear system that exhibits similar dynamics
and stability.
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Figure 8: Periodic modulation of E-E coupling and periodic forcing, with a limit on the maximum rate, qualita-
tively resembles nonlinear system
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4 Summary:

Selective, short-term maintenance of attractor states is important for working memory in neural sys-
tems. Neural networks, however, are typically stabilized by feedback inhibition. The delays in this
inhibition inherently lead to unavoidable oscillations. Here we have explored a scenario where the at-
tractor dynamics associated with a working memory are not �xed points, but instead �xed limit cycles
embedded within a population oscillation.

We have shown that the presence of an external oscillatory drive, perhaps e.g. an attention signal, can
switch such a network from a "read-in" mode, in which the system responds to external input, and a
"hold" model, in which the system retains a memory of its past states. These concepts may underlie
�exible working memory solutions that can coexist with population oscillations.

To better understand the mechanisms underlying this, we explored a switched piecewise linear model
that captured the qualitative dynamics of the original system. We found that �ring-rate nonlinearities
with positive curvature are important for allowing a synchronous (non-selective) external signal to
excite the asymmetric network states associated with a memory trace.

Acknowledgements Thanks to the project advisers, Mark Goldman and John Rubin.
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5 Appendix 1: Analysis of linear system

Linear system Can we think of this as a damped, driven linear system?

- = (�1, �2, �1, �2)
¤- = �-

• Synchronous oscillatory drive cannot create asynchronous winner-take-all dynamics in a linear
system

Linear system: reduced parameters In the nonlinear system, the e�ect doesn’t require E-E cou-
pling or I-I coupling between di�erent oscillators. Only a mutually inhibitory term 3 is needed.

� =

©«
0 0 2 3

0 0 3 2

4 0 6 0
0 4 0 6

ª®®®¬
This system has the following eigenvalues:

� =

©«
0 0 2 3

0 0 3 2

4 0 6 0
0 4 0 6

ª®®®¬
F1 =

√
(0 − 6)2 + 44 (2 − 3) _1 = (0 + 6 −F1)/2

_2 = (0 + 6 +F1)/2

F2 =
√
(0 − 6)2 + 44 (2 + 3) _3 = (0 + 6 −F2)/2

_4 = (0 + 6 +F2)/2

Re-parameterize the linear system to maping these coe�cients onto the synaptic coupling coe�cients
�:

� =

©«
0 0 2 3

0 0 3 2

4 0 6 0
0 4 0 6

ª®®®¬ =
©«
�44 0 −f�48 −(1 − f)�48
0 �44 −(1 − f)�48 −f�48
�84 0 −�88 0
0 �84 0 −�88

ª®®®¬
F1 =

√
(�44 +�88)2 + 4�84�48 (1 − 2f)

_1 = (�44 −�88 −F1)/2
_2 = (�44 −�88 +F1)/2

F2 =
√
(�44 +�88)2 − 4�84�48

_3 = (�44 −�88 −F2)/2
_4 = (�44 −�88 +F2)/2

Add in a weak coupling parameter U :

� =

©«
0 0 2 3

0 0 3 2

4 0 6 0
0 4 0 6

ª®®®¬ =
©«
�44 − 1 0 −f�48 −(1 − f)�48

0 �44 − 1 −(1 − f)�48 −f�48
�84 0 −�88 − U8 0
0 �84 0 −�88 − U8

ª®®®¬
F1 =

√
(�44 +�88 + U8 − 1)2 + 4�84�48 (1 − 2f)

_1 = (�44 −�88 −F1 − U8 − 1)/2
_2 = (�44 −�88 +F1 − U8 − 1)/2

F2 =
√
(�44 +�88 + U8 − 1)2 − 4�84�48

_3 = (�44 −�88 −F2 − U8 − 1)/2
_4 = (�44 −�88 +F2 − U8 − 1)/2
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Note: all � are non-negative

Note: In the linear system, dynamics depend on product �84�48 , not these weights individually. One
could write merge these into a single lumped positive feedback parameter �5 1 = �84�48 .

F1 =
√
(�44 +�88)2 + 4�5 1 (1 − 2f)

_1 = (�44 −�88 −F1)/2
_2 = (�44 −�88 +F1)/2

F2 =
√
(�44 +�88)2 − 4�5 1

_3 = (�44 −�88 −F2)/2
_4 = (�44 −�88 +F2)/2

We impose the following constraints on the linear system:

• The system should be stable without input (<(_) ≤ 0)

• Weights �44 and �84 are not negative

• Weights �88 and �48 are not positive

• Coupling 1 − f < 1
2

This implies:

• TermF2 becomes imaginary when (�44 +�88)2 < 4�5 1
– In this case the conjugate pair _3, _4 is stable when 1

2 (�44 − �88) < 1. Larger �44 + �88
supresses relative to the feedback term supresses oscillations. Larger �88 relative to �44 is
stabilizing.

• TermF1 becomes imaginary when (�44 +�88)2 < 4�5 1 (1−2f). When f > 1
2 , the RHS is negative

andF1 is never imaginary.

• When F1 is real, _1 < _2 can give rise to exponential modes. Both will be transient if _2 < 0.
This requires that �44 −�88 +

√
(�44 +�88)2 − 4�5 1 < 0
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6 Appendix 2: Weakly coupled oscillators: e�ective coupling is stronger
than individual coupling

For the # > 2 case, we have many oscillators to consider. Empirically we �nd that the dynamics are
attractive: forces within each group pull trajectories together, and forces between each group maintain
the distinct memory. Nothing about the connectivity assumptions ensures this: the coupling between
each pair of neural oscillators is identical, and the groups are arbitrary. The memory stability therefore
hinges on emergent dynamics.
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Figure 9: Empirically, we �nd that arbitrary stimulus-driven groupings within the population of neural oscilltors
are stable. Starting from an initial condition that contains a small perturbation, the trajectories converge to a
stable, �xed limit cycle (black traces).

Decompose e�ective excito-excitatory interation into the contribution from within and outside each
neural oscillator:

(4 = f4 〈�>Cℎ4A 〉 + (1 − f4)�B4; 5
In limit of large N, for the bistable mode, some fraction W of �8 will be part of the same ensemble as � 9 ,
call �B4; 5 , and the rest will occupy an �>Cℎ4A

(4 = f4 (W�B4; 5 + (1 − W)�>Cℎ4A ) + (1 − f4)�B4; 5

(4 = f4 (1 − W)�>Cℎ4A + (1 − f4 (1 − W))�B4; 5
There is a new e�ective coupling constant f ′4 = f4 (1 − W).

(un�nished)
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