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In neuroscience, we often model the number of spikes observed from a neuron as a Poisson distribution
with rate _:

~ ∼ Poisson(_) (1)

Pr(~ |_) = 1
Γ (~+1) _

~4−_ (2)

In a typical log-linear Poisson Generalized-Linear Point-Process (PP-GLM) regression, we estimate the
logarithm of _ as a function of other, measured covariances “x”, that is ln _ = w>x. However, for these
notes we will simply assume that _ is already available, and we’d like to model Pr(~ |_).

Over- and Under-dispersion One limitation of the Poisson distribution is that it has only one param-
eter, _, which controls both the mean ` = _ and the variance f2 = _. However, spike-count data are
often over- or under-dispersed in practice, meaning that the variance might be larger or smaller than _,
respectively.

There are many way to model over-dispersed data. For example, using the Negative Binomial distribion is
common. It is also possible to use the “zero in�ated Poisson distribution”. In this case, the probability of
observing any spikes at all is controlled by another Bernoulli (B = Bernoulli(?)) variable, and the distribu-
tion of spike-counts given B = 1 is then Poisson distributed. Both of these approaches can only increase
the variance, so they can only handle over-dispersion.

Quasi-Poisson observation model Another approach to handling over/under dispersion is the so-
called “quasipoisson” regression. This uses a function for Pr(~ |_) which is not a probability density func-
tion. Nevetheless, it provides a quick and useful hack to control the dispersion without changing much in
the Poisson regression.

To adjust the dispersion in quasipoisson regression, one can multiply both the observed spike counts ~
and the �ring rate _ by a dispersion-control parameter “^”.

& (~ |_) ≈ ^
Γ (^~+1) (^_)

^~4−^_ (3)

On the surface, this corresponds to a new Poisson distribution with rate _′ = ^_, so its mean and variance
are ` ′ = f ′2 = ^_. However, we evaluate it at ~̃ = ^~ rather than ~. This makes this an improper
distribution for discrete, integer-value count data.
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Adding a scale parameter to an existing distribution Recall: If G ∼ % (G) is a continuous, one-
dimensional random variable with known distribution “& (G)”, then the distribution of G̃ = 2G is narrower.
In particular

G̃ ∼ 2 · % (G̃ = 2G) (4)

The multiplication by 2 adjusts the normalization factor to account for the fact that a function that is half
as wide also has half as much area, so we need to multiply by 2 to ensure that the density still integrates
to 1. If G has known mean ` and standard deviation f , then the rescaled G̃ will have mean `/2 and f/2,
respectively.

Scaling of observation error variance in the quasi-Poisson model So, when we multiply our rate
_ by ^, we move the mean and variance to ` ′ = f ′2 = ^_. But, by evaluating this density at ~̃ = ^~, we
then divide the mean and standard deviation by ^. The net transformation leads to

˜̀ = (^_)/^ = ` = _ (5)

f̃2 = (^_)/^2 = _/^ (6)

We see then that ^ controlls the over/under dispersion. ^ = 1 is the original Poisson distribution. ^ > 1
reduces the variance. ^ < 1 increases it.

Log-likelihoods The log-likelihood for the quasi-Pisson model is

ln& (~ |_) = ln(^) − ln Γ(^~ + 1) + (^~) ln(^_) − ^_ (7)

If : is known and ~ is �xed, we can instead optimize

ln& (~ |_) = ^ [~ ln(_) − _] + constant (8)

In this case quasi-Poisson regression can be thought of as Poisson regression, but with an extra “fudge”
factor ^ that re-ewights the importance of our evidence.

Take care Care must be taken when mixing the quasi-Poisson observation model with Bayesian meth-
ods. For the most part, things will work. However, since the quasi-Poisson model is not a distribution,
it is unclear how it should be normalized. In particular, estimating : rigorously is not well-posed. I sup-
pose one might attempt to e.g. ajust : to maximize and evidence lower-bound, retaining then the terms
ln(^) − ln Γ(^~ + 1) + ~^ ln(^) from the quasi-Poisson likelihood that depend on : . I have not tried this,
but perhaps it usually works out ok.
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