Note: Differentiating expectations of a function of a random
variable with respect to location and scale parameters
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Consider a real-valued random variable with a known probability distribution Pr(z) = ¢(z). From
¢(z), one can generate a scale/location family of probability densities by scaling and shifting ¢(z):
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The most familiar example of such a family is the univariate Gaussian distribution, when ¢(z) =
[271] 712 exp (—32%). Now, consider the expectation of a function of (f(x)) with respect to Pr (x).
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What are the derivatives of (f(x)) with respect to u and ¢>? The answers are:
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This question often appears in the special case that x is normally distributed; You'll find deriva-
tions elsewhere online given in terms of the cumulative distirbution function of the standard nor-
mal distribution.

This note outlines a derivation for any scale/location family using elementary calculus. These
derivatives can be obtained by considering how perturbing u or ¢ shifts and/or scales the proba-
bility density.

For the mean, consider the definition of the derivative:
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Let y = x — €. Then perform a change of variables (dy = dx and x = y + €):
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For the variance, consider the derivative in ¢
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Lety = ;%2 (x — u) + p. This gives the change of variables
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Substituting, and simplifying:
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