
Bayesian Approach to Point-Process Generalized
Linear Models

M. Rule

January 14, 2012

1 Background
In neuroscience, we are interested in the problem of how neurons encode, process, and commu-
nicate information. Neurons communicate over long distances using brief all-or-nothing events
called spikes. We are often interested in how the spiking rate of a neuron depends on other
variables, such as stimuli, motor output, or other ongoing signals in the brain.

To model this, we consider spikes as events that occur at a point in time with an underlying
variable rate, or conditional intensity, _. There are many approaches to estimating _. These
notes cover point-process generalized linear models, and Bayesian approaches. These are closely
related, and in some cases the same thing.

1.0.1 Point-process generalized linear models

In point-process Generalized Linear Models (GLM) we estimate ln(_) (or logit(_)), which can
take on any real value. The GLM estimates ln(_) directly as a linear combination ln(_) = ∑

8 08G8
of some variables G8 . The coe�cients 0 are optimized using likelihood.

For computational tractability we work with a discretized version of the point process. A point
process can be converted into a series of non-negative integers by counting the number of events
~ that occur in a �xed time interval Δ. If Δ is small, such that _ is approximately constant within
the interval, then the distribution of this new count process can be written as:

Pr(~=:) = (_Δ): (1 − _Δ)1−: , : ∈ Z

If we choose Δ su�ciently small such that Pr(~>1) ≈ 0, we can restrict analysis to the approxi-
mation

Pr(~=1) = _Δ, Pr(~=0) = 1 − _Δ
For an alternative derivation, consider the Poisson distribution, which de�nes the probability of
observing : events in time Δ where the expected number of events is _Δ:

Pr(~=:) = (_Δ)
:4−_Δ

:!
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In the limit of Δ su�ciently small, Pr(~ > 1) becomes negligible, and we consider only

Pr(~=1) = (_Δ)4−_Δ

Since Δ is small, 4−_Δ ≈ 1, and we have

Pr(~=1) ≈ _Δ

Since Pr(~=0) can be computed from Pr(~=1) in this case, we focus on estimating Pr(~=1), which
we will denote, for convenience, as Pr(1) or simply % . Note that the log-linear model also works
in the discrete case, since multiplication of _ by Δ can be absorbed into a constant term in the
model.

Pr(1) ≈ ln(_Δ) =
∑
8

08G8

For now, restrict analysis to a single covariate G . In the event that the relationship between ln(_Δ)
and G is not entirely captured by a log-linear model, we may want to add nonlinear functions of
G to the model. In this way, we can capture a wider range of possible relationships between G and
ln(_Δ). However, it is sometimes challenging to select nonlinear terms, and adding irrelevant
terms can increase the time required to �t the model, and increase over-�tting. The general form
of this case is given by

Pr(1) ≈ ln(_Δ) =
∑
8

08 58 (G)

1.0.2 Connection between GLM and Bayesian approach

We can also derive a model for conditional intensity using Bayes rule. We are interested in learn-
ing how Pr(1) might depend on another variable G . That is, we would like to know how the
conditional intensity _GΔ ≈ Pr(1|G) di�ers from baseline Pr(G). We can apply Bayes rule to
directly solve for this conditional distribution in terms of more easily observed Pr(G |1):

_GΔ ≈ Pr(1|G) = Pr(G |1) Pr(1)Pr(G)

For computational e�ciency we work with the natural logarithm of probability. This yields an
expression that allows us to directly estimate conditional intensity in terms of the log probability
density functions (PDF) of G and G |1.

ln(_GΔ) ≈ ln(Pr(1|G)) = ln(Pr(G |1)) − ln(Pr(G)) + ln(%) (1)

The performance of this approach depends on accurate modeling of Pr(G |1) and Pr(G). If these
quantities follow distributions whose parameters can be estimated quickly from available data,
this approach can be faster than likelihood maximization of the more general log-linear model. If
the expression for the log-likelihood can be factored into a linear combination of �xed nonlinear
functions of G , then we can directly relate the Bayesian approach to the log-linear model :
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ln(Pr(1|G)) = ln(Pr(G |1)) − ln(Pr(G)) + ln(%)=
∑
8

08 58 (G) (2)

While we can always approximate the above using a series expansion of ln(Pr(1|G)), a closed
form solution of this relationship exists if the log PDFs of Pr(G |1) and Pr(G) can each be factored
as

∑
8 08 58 (G), even if Pr(G |1) and Pr(G) follow di�erent distributions.

We show in the next section that distributions from the exponential family meet these conditions,
allowing direct solution of the parameters to a log-linear model from data statistics. Choosing
a parametric distribution for Pr(G |1) and Pr(G) also determines the set of nonlinear terms re-
quired for a log-linear model to capture the relationship between G and ln(_), as well as their
weights.

2 Selectingnonlinear features for aGLMpoint processmodel
In the previous section we discussed a direct solution for the conditional intensity using Bayes
rule, and how this solution might relate to log-linear models. Speci�c examples are given in this
section. The general steps are as follows :

• Look at the marginal distribution of the covariate Pr(G), and the distribution conditioned
on the presence of a spike Pr(G |1).

• Pick a parametric probability distribution family that �ts the observed distributions well.

• Look up the log probability-density function.

• Write down the log-likelihood ratio in terms of the log PDF as in (??).

• Expand this function until it is of the form
∑
8 08 58 (G) where 08 is a real valued parameter

and 58 is a function of the covariate.

• The functions 58 (G) are the nonlinear features of G that you should include in a log-linear
model, and the coe�cients 08 provide an approximate �t of that model.

2.1 Exponential data imply a log-linear model
If a covariate follows an exponential distribution, the Bayesian method provides parameters for
a log-linear point process model. The probability density for an exponential distribution has
one scale parameter _, Pr(G ; _G ) = _G4

−_GG , which gives the log probability as ln(Pr(G ; _G )) =
ln(_G ) − _GG . Substituting this into equation (??) yields

ln(_Δ) ≈
(
ln(_G |1) − _G |1G

)
− (ln(_G ) − _GG) + ln(%)

Collecting terms yields the the linear and constant terms in a log linear inhomogenous poisson
process model:

ln(_Δ) ≈
(
_G − _G |1

)
G +

(
ln(_G |1) − ln(_G ) + ln(%)

)
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2.2 Normally distributed data imply a log-quadratic model
If a covariate follows a Gaussian distribution, the Bayesian classi�er provides parameters for a
log-quadratic point process model ln(_) = 0G2 + 1G + 2 . The probability density for a Gaussian
variable is

N(`, f) (G) = exp[−(G − `)2/(2f2)]/(f
√
2c),

which gives the log-density

ln(N (`, f) (G)) = −(G − `)2/(2f2) − ln(f) − ln(2c)/2.

Substituting this into equation (??) and ignoring the ln(2c)/2 terms, which immediately cancel,
gives :

ln(_Δ) = 1
2f2G
(G − `G )2 + ln(fG )

−
(

1
2f2

G |1
(G − `G |1)2 + ln(fG |1)

)
+ ln(%)

Expanding the quadratic expressions and collecting terms yields the constant, linear, and quadratic
terms for a log-quadratic inhomogeneous Poisson model:

ln(_Δ) =
(
1/(2f2G ) − 1/(2f2G |1)

)
G2

+
(
`G |1/f2G |1 − `G/f

2
G

)
G

+ `2G/(2f2G ) − `2G |1/(2f
2
G |1) + ln(fG ) − ln(fG |1) + ln(%)

If the covariate G has been z-scored such that fG = 1 and `G = 0, the expression simpli�es to:

ln(_Δ) =
(
1/2 − 1/(2f2

G |1)
)
G2

+
(
`G |1/f2G |1

)
G

+ ln(%) − `2
G |1/(2f

2
G |1) − ln(fG |1)

2.3 Gamma distributed data imply ln(G) nonlinear features
The Gamma PDF in terms of a shape U and inverse scale V parameter is

Pr(G ;U, V) = VUGU−1 exp(−GV)/Γ(U),

which gives the log PDF

ln(Pr(G ;U, V)) = U ln(V) + (U − 1) ln(G) − VG − ln(Γ(U)).

Substituting this into equation (??) yields

ln(_Δ) =
(
UG |1 ln(VG |1) + (UG |1 − 1) ln(G) − VG |1G − ln(Γ(UG |1)

)
− (UG ln(VG ) + (UG − 1) ln(G) − VGG − ln(Γ(UG )))
+ ln(%)
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Collecting terms yields a �t for a model that, in addition to linear and constant terms, includes a
;>6(G) term

ln(_Δ) =
(
VG − VG |1

)
G

+
(
UG |1 − UG

)
ln(G)

+ ln(Γ(UG )) − ln(Γ(UG |1)) + UG |1 ln(VG |1) − UG ln(VG )
+ ln(%)

2.4 Von Mises imply sine and cosine nonlinear terms
There is also a GLM formulation for von Mises distributed data. This is left left as an exercize to
reader. To derive it, move the preferred phase parameter out of the cosine using trigonometric
identities. The nonlinearities implied for the GLM are sin(\ ) and cos(\ ).

3 Generalization to the exponential family
The exponential family of distributions inclues all the distributions discussed so far in this section,
and follows the canonical form

Pr(G |\ ) = ℎ(G)6(\ )4\) (G)

Where G ∈ R=, = ∈ N is an = dimensional real valued vector space, \ ∈ R<, < ∈ N is an <
dimensional real valued parameter, ℎ : R= → R maps from G to a real number, 6 : R< → R
maps from \ to a real number, and) : R= → R< maps from G to \ . This impies the canonical log
PDF

ln(Pr(G |\ )) = ln(ℎ(G)) + ln(6(\ )) + \) (G)
This form is already suitable for mapping onto a log linear point process model. The term ln(6(\ ))
is a constant o�set implied by the parameters, and present only for normalization. The term\) (G)
a weighted sum of functions of G , and the term ln(ℎ(G)) is also a function of G with weight 1. If
\ = [\1, ..., \<], G = [G1, ..., G=], and ) = [51(G), ..., 5< (G)], the log PDF can be written as:

ln(Pr(G)) =
∑
8

08 58 (G) = ln(6(\ )) + ln(ℎ(G)) +
<∑
9=1

\ 9 5 9 (G)

From this, the coditional intensity in the general case where G and G |1 may have di�erent distri-
butions from the exponential family is:

ln(_Δ) =
∑
8

08 58 (G)

=

(
ln(6G |1(\G |1)) + ln(ℎG |1(G)) +

<G |1∑
9=1

\G |1, 9 5G |1, 9 (G)
)

−
(
ln(6G (\G )) + ln(ℎG (G)) +

<G∑
9=1

\G,9 5G,9 (G)
)
+ ln(%)
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If G and G |1 are both in the exponential family, it is always possible to pick a more general dis-
tribtuion from the exponential family that includes both G and G |1, and so we may consider

ln(_Δ) =
∑
8

08 58 (G)

=

(
ln(6(\G |1)) + ln(ℎ(G)) +

<∑
9=1

\G |1, 9 5 9 (G)
)

−
(
ln(6(\G )) + ln(ℎ(G)) +

<∑
9=1

\G,9 5 9 (G)
)
+ ln(%)

The ln(ℎ(G)) terms cancel, although logarithmic terms may still be introduced via 5 9

ln(_Δ) =
∑
8

08 58 (G)

=

(
ln(6(\G |1)) +

<∑
9=1

\G |1, 9 5 9 (G)
)

−
(
ln(6(\G )) +

<∑
9=1

\G,9 5 9 (G)
)
+ ln(%)

Collecting terms
ln(_Δ) =

∑
8

08 58 (G)

=

(
ln
6(\G |1)
6(\G )

+ ln(%)
)
+

<∑
9=1
(\G |1, 9 − \G,9 ) 5 9 (G)

If G and G |1 can be modeled by any distribution in the exponential family, we can write a log
linear model directly from Bayes’ rule. If the canonical form of the distribution has a closed form,
we can also solve for the model weights.

4 Relationships determined by �tting aGLM can be simpler
than those implied by a Bayesian approach

Although solving directly for conditional intensity using Bayes rule can imply a log-linear model
and its coe�cients, the converse is not in general true. For example, the quadratic terms from a
Gaussian model vanish when fG = fG |1, reducing it to a simple log-linear model.

In general, a purely log-linear GLM will be able to �t the data if the distributions Pr(G) and Pr(G |1)
di�er only by a location parameter. For a particular choice of features 5 (G), the GLM can be more
accurate than a parametric Bayesian approach, because it can �exibly model data from a broader
class of distributions.

Additionally, the GLM directly optimizes parameters that summarize the di�erence between
Pr(G) and Pr(G |1), rather than �nding parameters for each distribution separately. This makes
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the GLM more statistically e�cient, as less data is required to constrain a smaller number of
parameters.

Nevertheless, inspecting the distributions Pr(G) and Pr(G |1) provides important clues for which
nonlinear features 5 (G) to include in a GLM regression.

5 Relationship to Likelihood Ratio Classi�cation
Consider a continuous valued covariate G , and a discrete valued variable~ that takes on : possible
values. Variable ~ induces : classes on the values of G . Because of this, reconstructing ~ from G

can be phrased a classi�cation problem. For an observation of G′, choosing the class for which G′ is
most likely gives us the maximum a posteriori estimate. In the special case of binary classi�cation
where: = 2, we can summarize this comparison with the likelihood ratio. Say we have two values
or classes 0 and 1, a covariate G , and want to know the respective probabilites Pr(1|G) and Pr(0|G).
The likelihood ratio is de�ned as Pr(1|G)/Pr(0|G), and summarizes the relative likelihoods of the
two possible classes. The likelihood ratio can be converted to a classi�cation by thresholding. We
can adjust the threshold to change the proportion of false positives and false negatives, or use
the likelihood ratio directly in ROC analyis. We can use Bayes’ rule to write down the likelihood
ratio in terms of experimentally observable conditional distributions Pr(G |1) and Pr(G |0):

Pr(1|G) = Pr(G |1) Pr(1)Pr(G) , Pr(0|G) = Pr(G |0) Pr(0)Pr(G)

The likelihood ratio can be written using the above expressions as:

L =
Pr(1|G)
Pr(0|G) =

Pr(G |1) Pr(1)
Pr(G |0) Pr(0)

A point process may be approximated as a discrete Bernoulli process: rather than a list of event
times, we consider a series of bins length Δ, where the probability that a bin contains an event
is approximately _Δ. This creates a time series with two possible values : a bin contains at least
one event or it does not. Let 0 denote bins that do not contain events, and 1 denote bins that
contain at least one event. We can then apply a likelihood ratio classi�er as a model of the point
process.

How is the likelihood ratio related to the conditional intensity? For Δ su�ciently small to treat
a point process as a Bernoulli process, events are extremely rare, and Pr(0) → 1 and Pr(G |0) →
Pr(G) in the limit Δ → 0. Under these conditions the likelhood ratio is nearly the same as the
conditional probability Pr(1|G). Therefore, we can say that L ∼ _ΔC . In the limit ΔC → 0,
L = _ΔC .

lim
Δ→0
L = lim

Δ→0

(
Pr(G |1) Pr(1)
Pr(G |0) Pr(0)

)
= Pr(G |1) Pr(1)Pr(G) = Pr(1|G) = _Δ

Likelihood ratio classi�cation of a binned point process is approaches estimating the conditional
intensity in the small Δ limit.

7



6 Kullback-Leibler divergence� ! (G |1 ‖ G) is an easily com-
puted predictor model performance

Mutual information is a statistic used to summarize how related two variables are. Consider the
problem of measuring the mutual information between a variable G and point process ~.

Estimating the mutual information between a point process and a continuous covariate reduces
to estimating the Kullback-Leibler divergence of the conditional Pr(G |1) from background Pr(G),
both of which we have already computed in a Bayesian �t of the point process model. entropy,
as:

� (G,~) = E~� ! (G |~ ‖ G)
Spikes are rare in a point process, so Pr(G |0) ≈ Pr(G). Since � ! is zero if both distributions are
identical, mutual information is (in the sparse limit) reduces to

� (G,~) = Pr(~=1)� ! (G |1 ‖ G)
The mutual information between G and ~ is the KL divergence of Pr(G |1) and Pr(G), multiplied
by Pr(~ = 1). Since Pr(~ = 1) is a background term that depends on the choice of Δ, it is
not especially relevant, except when comparing two point processes with di�erent underlying
rates.

Let’s explore this in the case that Pr(G |1) and Pr(G) are normally distributed. Substituting Pr(G |1)
and Pr(G) into the formula for the GL divergence between two Gaussian variables yields

� ! (G |1 ‖ G) =
(`G |1 − `G )2

2f2G
+ 1
2

(
f2
G |1

f2G
− 1 − ln

f2
G |1

f2G

)
If G has been z scored and has unit variance zero mean,

� ! (G |1 ‖ G) =
1
2

(
`2
G |1 + f

2
G |1 − 1 − lnf

2
G |1

)
If we assume fG |1 ≈ fG = 1 (which is the implicit assumption if we were to �t a GLM with only
the linear feature G ), this simpli�es further;

� ! (G |1 ‖ G) =
1
2`

2
G |1

From this we see that the fraction of information about ~ captured by G depends mainly on the
squared deviation of the spike-triggered average `G |1 from the baseline `G = 0.

Incidentally, this also suggests that fancy Bayesian and GLM models might not tell you that much
more than the Spike Triggered Average (STA), in some cases.

Another curious observation which holds empirically, at least for low information variables ex-
amined so far, is the relationship

2 ln(2AUC − 1) + 1
2 = ln(� ! (G |1 ‖ G))

Where AUC is the area under the receiver operating characteristic ( ROC ) curve, and is used to
summarize the accuracy of a point-process decoder. (I’m not sure whether this approximation is
really valid or under what conditions it might hold)

8



7 Overall,
Models that �t the log-intensity of an inhomogeneous Poisson point process are related to likelihood-
ratio based Bayesian classi�ers. Solving for the conditional intensity using Bayes’ rule, and dis-
tributions from the exponential family, is one way to �nd parameters for a point process model.
The distribution family of G also provides clues as to which nonlinear features to incorporate
into a point process GLM. The parametric Bayesian approaches also suggest simple closed-form
formulae for measuring mutual information between a spike train and an external variable.
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