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In neuroscience, we often want to understand how neuronal spiking relates to other variables.
For this, tools like linear regression and correlation often work well enough. However, linear ap-
proaches presume that the underlying relationships are linear and the noise is Gaussian, neither of
which are true for neural datasets. The Generalized Linear Model (GLM) extends linear methods
to better account for nonlinearity and non-Gaussian noise.

0.0.1 GLMs for spike train analysis

We’re interested in understanding how a neural spike train y(t) relates to some other covariates
x(t). In continuous time, a spike train is modeled as a train of impulses at each spike time ti,
y(t) = ∑i δ(t− ti). In practice, we always work in discrete time. It is common to choose a time
step ∆t small enough so that at most one spike occurs in each time bin.

Two types of GLM that are common in spike train analysis:

1. The Poisson GLM assumes that spikes arise from an inhomogeneous Poisson process with
time-varying rate λ(t) that depends log-linearly on the covariates x(t). In practice, it is
common to treat the Poisson GLM in discrete time by assuming that the rate λ(t) is constant
within each time-bin:

yt ∼ Poisson(λt · ∆t)

λt = exp
(

w>xt

)
2. The Bernoulli GLM models each time-bin of a binary, discrete-time spike train yt ∈ {0, 1} as

a Bernoulli “coin flip” with Pr(y=1) = p.

yt ∼ Bernoulli(pt)

pt =
1

1 + exp[−w>x(t)]

0.0.2 Maximum likelihood

GLMs are typically estimated using maximum likelihood when testing how covariates x(t) influ-
ence spiking. (Other fitting procedures may be more appropriate when GLMs are used to model
spiking dynamical systems.) The maximum likelihood procedure finds the weights w that maxi-
mize the likelihood of observing spike train y = {y1, .., yT}, given covariates X = {x1, .., xT}, over
all T recorded time-bins.
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w = argmax
w

Pr(y|w, X)

In practice, likelihood maximization is typically phrased in terms of minimizing the negative log-
likelihood. Working with log-likelihood is more numerically stable, and the problem is phrased
as minimization so that it is more straightforward to plug-in to off-the-shelf minimization code.

w = argmin
w

− ln Pr(y|w, X)

Assuming observations are independent, the negative log-likelihood factors into a sum over
time-points. Equivalently, one can minimize the average negative log-likelihood, over samples,
− 〈ln Pr(yt|w, xt)〉. The maximum likelihood parameters are typically solved for via gradient de-
scent or the Newton-Raphson method. This requires computing the gradient and hessian of the
negative log-likelihood.

0.0.3 Gradient and Hessian for the Poisson GLM

We can calculate the gradient and Hessian for the Poisson GLM by substituting the Poisson prob-
ability density function, Pr(y) = λye−λ/y!, in to our expression for the negative log-likelihood:

− 〈ln Pr(yt|w, xt)〉 = 〈λt − yt ln(λt)− ln(y!)〉

Because the term ln(y!) does not depend on w, we can ignore it without affecting the location of
our optimum. Substituting in λ = exp(w>x), we get:

` =
〈

exp(w>x)− ytw>xt

〉
Finding weight w that minimize ` is equivalent to solving for the maximum-likelihood weights.
The gradient and Hessian of of ` in w are:

∂`

∂wi
=
〈
[exp(w>xt)− yt]xi

〉
= 〈(λt − yt)xi〉

∂`

∂wi∂wj
=
〈
[exp(w>xt)]xixj

〉
=
〈
λtxixj

〉
In matrix notation, these derivatives can then be written as:

∇` = 〈x(λ− y)〉
H` = 〈λxx>〉
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0.0.4 Gradient and Hessian for the Bernoulli GLM

The Bernoulli GLM is similar, with the observation probability given by the Bernoulli distribution
Pr(y) = py(1− p)1−y

〈− ln Pr(yt|w, xt)〉 = − 〈yt ln(pt) + (1− yt) ln(1− pt)〉

= −
〈

yt ln
(

pt
1−pt

)
+ ln(1− pt)

〉
Then, using p = [1 + exp(−w>x)]−1, i.e. w>x = ln[p/(1− p)], we get:

` =
〈

ln[1 + exp(w>xt)]− ytw>xt

〉
The gradient and Hessian of of ` in w are:

∂`

∂wi
=

〈[
exp(w>xt)

1 + exp(w>xt)
− yt

]
xi

〉
= 〈(pt − yt)xi〉

∂`

∂wi∂wj
=
〈

pt(1− pt)xixj
〉

In matrix notation:

∇` = 〈x(p− y)〉
H` = 〈p(1− p) · xx>〉

0.0.5 Iteratively reweighted least squares

PPGLMs can also be fit to spike train data using Iteratively Reweighted Least Squares (IRLS).
Recall that for a linear model y = w>x, the Ordinary Least Squares (OLS) solution is:

w = 〈xx>〉−1〈xy>〉.

The IRLS approach phrases optimizing the parameters of the GLM in terms of repeated iterations
of a reweighted least-squares problem. To derive this, first recall the definition of the Newton-
Raphson update:

wn+1 = wn −H`(wn)
−1∇`(wn)

For the Poisson GLM, this is

wn+1 = wn + 〈λxx>〉−1〈x(y− λ)〉
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For e.g. the Poisson GLM, IRLS rewrites this as a least squares problem by defining weights λ and
pseudo-variables z = w>x + 1

λ (y− λ). We can confirm that the IRLS update is equivalent to the
Newton-Raphson update:

wn+1 = 〈λxx>〉−1〈λxz>〉

= 〈λxx>〉−1
[
〈λx[x>wn +

1
λ (y− λ)]〉

]
= 〈λxx>〉−1

[
〈λxx>〉wn + 〈x(y− λ)〉

]
= wn + 〈λxx>〉−1〈x(y− λ)〉

0.0.6 Expected log-likelihoods

It’s also possible to approximately fit w knowing only the mean and covariance of x. This re-
duces computational complexity, since it avoids having to process the whole data matrix when
optimizing w. Previously, we calculated negative log-likelihood as an expectation over the data
time-points. Here, we instead calculate these expectations based on a Gaussian model of the co-
variates x ∼ N (µx, Σx). For example in the Poisson case, the gradient of the log-likelihood is
:

∇` = 〈x(λ− y)〉 = 〈x exp(w>x)〉 − 〈xy〉

The term 〈xy〉 does not depend on w, and can be computed in advance. The term 〈x exp(w>x)〉
has a closed-form solutions based on the log-normal distribution:

〈xλ〉 = [〈x〉+ w>Σx]〈λ〉
〈λ〉 = 〈exp(w>x)〉

= exp(w>µx +
1
2 w>Σxw)

The Hessian also has a closed form. This avoids having to recompute the re-weighted
mean/covariances on every iteration. However, one still must calculate a mean and covariance
initially. This approximation will only remain valid in the case that x is truly Gaussian. However,
it can be used to pick an initial w0 before continuing with Newton-Raphson.
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