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1 The online Fourier transform

The online Fourier transform tracks a sliding window of the recent history of the time series.
This window is updated by advancing one time step, and the FFT is used to get the power
spectrum.

One can speed up computation by making updates recursive: on each time step, first subtract
the contribution of the oldest timepoint, then add the contribution from the current timepoint.
We can generalize this recursive approach by interpreting the online FT as a bank of band-pass
filters.

2 A filter bank of damped, driven resonators

For each frequency bin, one constructs a pair of band-pass filters covering this bin, with their
phases separated by 90°. The activation of each filter pair defines a vector, and the length of
that vector is the amplitude for that frequency bin.

In this example, we consider a filter bank composed of first-order filters. This corresponds
to a system of damped, driven oscillators with resonant frequencies equal to each frequency
component. This is equivalent to estimating an online Fourier transform, where the signal
is multiplied by an exponential window. Other window functions can be approximated by
constructing higher-order filters with the desired impulse-response envelope.

This is fast, and easy to compute on e.g. microcontrollers with limited processing capability.
Incrementally updating K filters costs O(K) time on each time-step. Contrast this with a
windowed FFT, which would require O(K log(K)) computations per time step.

Let X(t) be a real valued discrete time series with time step ∆t. The component zω = reiφ,
with magnitude r and phase φ at frequency ω = 2πf , can be extracted by updating z on each
timestep as

zω,t = eiω∆t(1− α)zω,t−1 + αX(t)

The parameter α ∈ [0, 1], α = ∆t/τ determines the decay constant for the exponential envelope,
and can be adjusted independently for each channel. Larger α allow the filter to respond faster,
but give a worse estimate of the power. Smaller α integrate information over more time, but
react more slowly to changes (Fig. 1, left).
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3 State-space model interpretation

Inspired by the Kalman filter, we can view the components zω as a state space model for an
underlying oscillatory process. We can use this model to predict future time points, and then
compare our prediction to the observed value. It is then possible to update our state using
the prediction error, rather than simply averaging in new state. This gives a more accurate
estimate of the power spectrum (Fig 2, right).

The current state is predicted by advancing the phase of all frequency coefficients, and summing
their real parts:

x̂t =
∑
ω

<(zω,t−1e
iω∆t)

Our error is a simple difference, and we attribute that error equally across all K coeffi-
cients

zω,t = zω,t−1e
iω∆t + (x− x̂)/K

This approach is best suited for stationary signals. The infinite memory means that it converges
toward the true power spectrum, but also makes it respond slower to changes in the signal
statistics.
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Figure 1: Figure 1: Frequency spectrum (magnitude) plots first-order filter bank
and state-space online FT methods Each plot show the estimated frequency spectrum
from a signal composed of a sum of sine waves at 5, 10, 20, 40, 50, 100, 150, 200, 250, 300,
and 350 Hz after two seconds of estimation. Left: estimated using the resonator model, with
time constants equal to twenty times the wavelength for each frequency component. Right:
estimated using the state space model. The state space model has converged to a much sharper
estimate of the underlying frequency composition of the signal.
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