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For a jointly Gaussian pair of random variables, correlation, root mean squared error, correlation,
and signal to noise ratio, are all equivalent and can be computed from each-other.

Some identities

Consider two time series x and y that are jointly Gaussian. To simplify things, let x and y have
zero mean and unit variance (the math still works out without this assumption, but its also easy to
ensure by z-scoring the data). Also, let n be a zero-mean unit-variance Gaussian random variable
that captures noise, i.e. fluctuation in y that cannot be explained by x.

Let’s say we’re interested in a linear relationship between x and y:

y = ax+ bn.

The linear dependence of y on x is summarized by a single param-
eter

Since the signal and noise are independent, their variances combine linearly:

σ2y = a2σ2x + b2σ2n.

The sum a2 + b2 is constrained by the variances in x, y, and n. In this example we’ve assumed
these are all 1, so

a2 + b2 = 1.

Incorporate this constraint by defining α = a2 and writing

σ2y = ασ2x + (1− α)σ2n

and

y = x
√
α+ n

√
1− α.
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(We’ll show later that α is the squared Pearson correlation coefficient, i.e. it is the coefficient of
determination.)

From this the signal-to-noise ratio and mutual information can be
calculated

The Signal-to-Noise Ratio (SNR) is the ratio of the signal and noise contributions to x, and simplifies
as

SNR =
σ2ax
σ2bn

=
ασ2x

(1− α)σ2n
=

α

1− α
.

On jointly Gaussian channels mutual information I (in bits, is using log2) is a monotonic function
of SNR, and simplifies as:

I =
1

2
log2(1 + SNR) =

1

2
log2

σ2y
σ2bn

=
1

2
log2

σ2y
(1− α)σ2n

=
1

2
log2

1

1− α
.

Relationship between a, b, alpha, and Pearson correlation ρ Since x and n are independent, the
samples of x and n can be viewed as an orthonormal basis for the samples of y, with weights a and
b, respectively. This relates the gain parameters to correlation: the tangent of the angle between y
and x is just ratio of the noise gain b to the signal gain a:

tan(θ) =
b

a
=

√
1− α√
α

Then, tan(θ) can be expressed in terms of the correlation coefficient ρ:

tan(θ) =
sin(θ)

cos(θ)
=

√
1− cos(θ)2

cos(θ)
=

√
1− ρ2
ρ

This implies that

√
1− α√
α

=

√
1− ρ2
ρ

,

which implies that that α = ρ2, i.e. a = ρ.

A few more identities

This can be used to relate correlation ρ to SNR and mutual information:

SNR =
ρ2

1− ρ2
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I =
1

2
log2

1

1− ρ2
= −1

2
log2(1− ρ2)

If φ =
√

1− ρ2 is the correlation of y and the noise n (i.e. φ is the amplitude of the noise
contribution to y), then information is simply I = − log2(φ).

Mean squared error (MSE) is also related :

MSE = (1− ρ)2 + (1− ρ2) = 1− 2ρ+ 1 = 2(1− ρ),

which implies that

ρ = 1− 1

2
MSE,

and gives a relationship between mutual information and mean squared error:

I = −1

2
lg(1− ρ2) = −1

2
log2(1− (1−MSE/2)2)

These relationships between correlation ρ, mean squared error, mutual information, and signal
to noise ratio, all increase monotonically. They all summarize the relatedness of x and y. For
purposes, e.g. of ranking a collection of x in terms of how much they tell us about y, they are
equivalent.
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