# Notes: Correlation \& Mutual Information in Gaussian Channels 

M. Rule

May 13, 2011

For a jointly Gaussian pair of random variables, correlation, root mean squared error, correlation, and signal to noise ratio, are all equivalent and can be computed from each-other.

## Some identities

Consider two time series $x$ and $y$ that are jointly Gaussian. To simplify things, let $x$ and $y$ have zero mean and unit variance (the math still works out without this assumption, but its also easy to ensure by z-scoring the data). Also, let $n$ be a zero-mean unit-variance Gaussian random variable that captures noise, i.e. fluctuation in $y$ that cannot be explained by $x$.

Let's say we're interested in a linear relationship between $x$ and $y$ :

$$
y=a x+b n .
$$

## The linear dependence of $y$ on $x$ is summarized by a single parameter

Since the signal and noise are independent, their variances combine linearly:

$$
\sigma_{y}^{2}=a^{2} \sigma_{x}^{2}+b^{2} \sigma_{n}^{2} .
$$

The sum $a^{2}+b^{2}$ is constrained by the variances in $x, y$, and $n$. In this example we've assumed these are all 1 , so

$$
a^{2}+b^{2}=1
$$

Incorporate this constraint by defining $\alpha=a^{2}$ and writing

$$
\sigma_{y}^{2}=\alpha \sigma_{x}^{2}+(1-\alpha) \sigma_{n}^{2}
$$

and

$$
y=x \sqrt{\alpha}+n \sqrt{1-\alpha} .
$$

(We'll show later that $\alpha$ is the squared Pearson correlation coefficient, i.e. it is the coefficient of determination.)

## From this the signal-to-noise ratio and mutual information can be calculated

The Signal-to-Noise Ratio (SNR) is the ratio of the signal and noise contributions to $x$, and simplifies as

$$
\mathrm{SNR}=\frac{\sigma_{a x}^{2}}{\sigma_{b n}^{2}}=\frac{\alpha \sigma_{x}^{2}}{(1-\alpha) \sigma_{n}^{2}}=\frac{\alpha}{1-\alpha} .
$$

On jointly Gaussian channels mutual information $I$ (in bits, is using $\log _{2}$ ) is a monotonic function of SNR, and simplifies as:

$$
I=\frac{1}{2} \log _{2}(1+\mathrm{SNR})=\frac{1}{2} \log _{2} \frac{\sigma_{y}^{2}}{\sigma_{b n}^{2}}=\frac{1}{2} \log _{2} \frac{\sigma_{y}^{2}}{(1-\alpha) \sigma_{n}^{2}}=\frac{1}{2} \log _{2} \frac{1}{1-\alpha} .
$$

Relationship between $a, b$, alpha, and Pearson correlation $\rho$ Since $x$ and $n$ are independent, the samples of $x$ and $n$ can be viewed as an orthonormal basis for the samples of $y$, with weights $a$ and $b$, respectively. This relates the gain parameters to correlation: the tangent of the angle between $y$ and $x$ is just ratio of the noise gain $b$ to the signal gain $a$ :

$$
\tan (\theta)=\frac{b}{a}=\frac{\sqrt{1-\alpha}}{\sqrt{\alpha}}
$$

Then, $\tan (\theta)$ can be expressed in terms of the correlation coefficient $\rho$ :

$$
\tan (\theta)=\frac{\sin (\theta)}{\cos (\theta)}=\frac{\sqrt{1-\cos (\theta)^{2}}}{\cos (\theta)}=\frac{\sqrt{1-\rho^{2}}}{\rho}
$$

This implies that

$$
\frac{\sqrt{1-\alpha}}{\sqrt{\alpha}}=\frac{\sqrt{1-\rho^{2}}}{\rho}
$$

which implies that that $\alpha=\rho^{2}$, i.e. $a=\rho$.

## A few more identities

This can be used to relate correlation $\rho$ to SNR and mutual information:

$$
\mathrm{SNR}=\frac{\rho^{2}}{1-\rho^{2}}
$$

$$
I=\frac{1}{2} \log _{2} \frac{1}{1-\rho^{2}}=-\frac{1}{2} \log _{2}\left(1-\rho^{2}\right)
$$

If $\phi=\sqrt{1-\rho^{2}}$ is the correlation of $y$ and the noise $n$ (i.e. $\phi$ is the amplitude of the noise contribution to $y$ ), then information is simply $I=-\log _{2}(\phi)$.

Mean squared error (MSE) is also related :

$$
\operatorname{MSE}=(1-\rho)^{2}+\left(1-\rho^{2}\right)=1-2 \rho+1=2(1-\rho),
$$

which implies that

$$
\rho=1-\frac{1}{2} \mathrm{MSE},
$$

and gives a relationship between mutual information and mean squared error:

$$
I=-\frac{1}{2} \lg \left(1-\rho^{2}\right)=-\frac{1}{2} \log _{2}\left(1-(1-\mathrm{MSE} / 2)^{2}\right)
$$

These relationships between correlation $\rho$, mean squared error, mutual information, and signal to noise ratio, all increase monotonically. They all summarize the relatedness of $x$ and $y$. For purposes, e.g. of ranking a collection of $x$ in terms of how much they tell us about $y$, they are equivalent.

