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In Rule and Sanguinetti (2008) “Autoregressive Point Processes as Latent State-Space Models”
we developed moment-closure approximations for the time-evolution of the moments of Autore-
gressive Point-Process Generalized Linear Models (AR-PPGLMs) of neural activity. These notes
generalize these approximations for AR-PPGLM models of neural ensembles. For networks of
linear-nonlinear “neurons”, the derivations are very similar to the single-neuron case presented in
the paper.

0.1 Motivation

Noise and correlations are important for modeling finite sized stochastic systems, such as neural
networks. We usually model the noise in spiking neural models as conditionally Poisson. Some-
times, this noise is as important for capturing the dynamics as the mean firing rates.

Capturing noise and correlations is important in nonlinear systems, since noise can interact with
nonlinearities to change the mean dynamics. Corrections for finite-size fluctuations and correla-
tions have been explored theoretical in neural field models. The role of noise and correlations in
the neural dynamics observed in large-scale neural population recordings has been less explored.

Here, we extend Rule and Sanguinetti (2018) to the case of populations. We outline an approx-
imate second-order model based on a locally-quadratic Gaussian moment closure (i.e. cumulant
expansion out to second order).

0.2 Autoregressive point-process models

Consider a stochastic process that counts the number of spikes that have occurred in neuron i up
until time t:

N(i, t) = spikes of neuron i up to time t (1)

This process increments in discrete jumps. Its time derivative corresponds to a model of popula-
tion spiking y(i, t) where each spike at time tk is modeled as the derivative of the step function,
(i.e. a Dirac delta distribution or impulse):

y(i, t) =
d
dt

N(i, t) = ∑
k

δ(t− tk) (2)
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The ARPPGLM models the probability of increments in N, i.e. the probability of emitting spikes
in y, as a conditionally-Poisson process based on a linear weighting of the process history, passed
through a rectifying point-wise nonlinearity φ(·). This continuous-time conditional rate is called
the conditional intensity, λ(i, t).

In these notes,
∫

t refers to either discrete or continuous time integration, as well as summation
over neuronal indexes. For compactness, we denote functions that vary over time with subscripts,
e.g. λi,t.

To define a population autoregressive GLM, define linear coupling weights ηi,j,τ that capture how
a spike in neuron j at time-lag τ in the past influences neuron i. We also define a constant, mean
input mi, and an external time-varying input Ji,t, for each neuron. Overall, this population AR-
PPGLM model can be defined as:

λi,t = φ

(
mi + Ji,t +

∫∫
τ,j

ηi,j,τ · yj,t−τ

)
yi,t ∼ Poisson(λi,t),

(3)

where
∫∫

dτ,dj . . . denotes the integral over the population history, weighted by a linear history
filter ηi,j,τ.

0.3 Define an auxiliary population history process

As in Rule and Sanguinetti (2018), we convert the history dependence of the autoregressive point
process into an auxiliary history process. This is a notational convenience that allows us to treat
the whole system as Markovian (i.e. memoryless). This is similar to delay-line embedding in
signal processing.

Define this history process as xτ,i,t. This history process contains a memory of spiking at time t− τ
at index τ. The process evolves as a delay-line, moving backwards one time-step τ per unit time
t, and incorporating new spikes at time-lag zero (i.e. δτ=0):

xτ,i,t = yi,t−τ

∂txτ,i,t = −∂τxτ,i,t + δτ=0yi,t
(4)

To simplify notation, denote the linear history operator $
∫∫

If the network is large, and the history filters smooth enough to average over many spikes, the
law of large numbers applies. We can therefore neglect the binary nature of spiking, and instead
consider averages over many spikes, which may be treated as effectively continuous. for a Poisson
point process, this amount to making a diffusive approximation:

y ≈ λ · dt +
√

λ · dW,

where dW is the derivative of the standard Wiener process. The diffusive (Langevin) approxima-
tion of the population AR-PPGLM is therefore:
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λ = φ (Hx + b)

y = λ · dt +
√

λ · dW
∂tx = −∂τx + δτ=0y

(5)

0.4 The mean field case

In the mean-field case, we neglect the effects of noise entirely, and derive deterministic equations
for the evolution of the mean rates µy ≈ λ:

µy = φ (Hx + b)
∂tµx = −∂τµx + δτ=0µy

(6)

This simplifies to

(∂t + ∂τ)µx = δτ=0φ (Hx + b) . (7)

0.5 Moment-closure on the auxiliary history process

We can obtain closed (approximate) ordinary differential equations for the moments (µ, Σ) of this
process by considering a Gaussian moment closure of a quadratic approximation of this system
about its current mean.

The evolution of the mean resembles the mean-field case, with an additional correction: There is
a bias term, proportional to 1

2 σ2 times the curvature of the firing-rate nonlinearity, φ′′(·). (This is
comparable to the effect of curvature in change of variables formula in Itô’s lemma.)

µy = φ(µa) +
1
2 φ′′(µa) ◦ σ2

a ,
µa = Hµx + b

σ2
a = Diag(HΣxH> + Σb)

∂tµx = −∂τµx + δτ=0µy

(8)

Generally, one should consider the full Hessian of the nonlinearity, ∇2
xφ(·). However, since the

nonlinearity is local, and doesn’t entail any nonlinear interactions between neurons that aren’t
already accounted for by the linear terms, we only need to look at the diagonal variances of the
activations a. If, perchance, one encounters a network where φ includes pairwise interactions not
captured in the linear terms, then the correction is:

1
2 tr[Σ>a ∇2

aφ(µai)]

For each neuron i, this is equivalent to taking the sum over the element-wise product of the the
Hessian for φ (for each neuron i) and the covariance of the synaptic activations Σa = HΣxH>+Σb.

The covariance Σx evolves linearly according to the Jacobian J of the mean system (Compare
this to the extended Kalman-Bucy filter), and also experiences new noise from stochastic spiking,
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denoted as Σnoise(µ). This is one instance where the difference between continuous and discrete
time matters. In continuous time

∂tΣx = JΣx + ΣxJ> + Σnoise(µx),
J = −∂τ + δτ=0∇xµy

∇xµy = φ′(µa) ·H

Σnoise
i,j,τ1,τ2

=

{
µyi,t if i = j, τ1 = τ2 = 0
0 elsewise

(9)

Since the noise is conditionally Poisson, the noise source term Σnoise depends only on the mean µ.
As a corollary, every steady-state solution to the mean dynamics µx is associated with exactly one
steady-state solution to the correlations Σx. In this second-order Gaussian model, then, internally-
generated correlations can change steady state values or stability, but don’t lead to radically new
dynamics. They mainly enter as a correction or modulation of the nonlinear, mean-field dynamics.
This model can also capture how extrinsic noise affects the dynamics.

The second-order Gaussian moment closure is only valid as long as the quadratic approximation
is accurate for a given covariance Σ. If the noise becomes large relative to the curvature of the
nonlinearity φ, this approximation fails. It is tempting to incorporate higher-order terms in the
moment expansion in this scenario, but this is dangerous. Firing rate nonlinearities in neural
models typically saturate, and become flat above or below a certain value. Polynomial approxi-
mations based on Taylor series expansions diverge for such functions. Instead, one should use a
moment closure that takes into account how noise interacts with nonlinearity globally, such as the
Hennequin-Lengyel moment closure for rectified quadratic nonlinearities.
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