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We are interested in approximations to the measurement update for a spatially-extended
latent-variable point-process, where the latent variables are also spatial �elds that un-
dergo dynamics similar to chemical reaction-di�usion systems.

�e latent variables or �elds are concentrations, activations, or some similar physical
quantity. �ey are therefore constrained to be non-negative, and also typically must obey
conservation laws. Additionally, the observed point-process intensity �eld must also be
constrained to be non-negative.

Such systems arise in chemical reaction di�usion systems, epidemiological models, and
neural �eld models, where the measurement is a point-process that is coupled indirectly
to the latent spatiotemporal system.

1 Problem statement
We will use a multivariate Gaussian approximation to model the joint distribution of la-
tent variables. In the continuous �led case, this is a Gaussian process. In the numerical
implementation, we project this process onto a �nite basis to give a �nite-dimensional
multivariate Gaussian distribution. �e �ltering update therefore requires �nding a mul-
tivariate Gaussian approximation to the non-conjugate update of a Poisson observation
and a multivariate Gaussian prior.

Estimating this posterior involves an integral that becomes intractable in high-dimensions.
�ere are numerous approximation methods to handle this, including moment-matching,
variational Bayes, expected log-likelihoods, and the Laplace approximation. O�en, the
choice of link function furthers constrain which methods are applicable, as e�cient al-
gorithms may only be available in some classes. �e update must be also constrained to
prevent negative activity in the estimated latent states.

1



1.0.1 Multivariate Gaussian model

Let A(x) denote a latent vector of activity, de�ned over a spatial domain with coordinates
x ∈ Ω on some (likely bounded) domain Ω. We approximate the prior distribution over
the latent activity vector A(x) in terms of its �rst two moments. We interpret these mo-
ments to re�ect the mean and variance of a multivariate Gaussian distribution, for the
purposes of both moment closure and the measurement update. �is assumption is an
approximation, as in general the tails of the Gaussian that extent to negative activation
values are unphysical.

Pr(A(x)) ∼ Gaussian (`� (x), Σ� (x)) (1)

A(G) is a �eld de�ned over a continuous spatial region, and so Eq. 1 denotes a Gaussian
process. In practice, we project this continuous process onto a �nite basis and work with#
discrete activation variables corresponding to spatial regions, i.e. A = {�1, .., �# }. In this
numerical implementation, Eq. 1 represents a �nite-dimensional multivariate Gaussian
distribution.

1.0.2 Latent �eld de�nition and discretization

�is activation �eld is mapped to point-process intensities via a link function _0 = 5 (A).
Furthermore, our observation model may include heterogeneity in terms of the density
of agents or background level of activity, and we therefore incorporate a spatially inho-
mogeneous gain W (x) and bias V (x) that adjust the observe point-process intensity. �e
intensity as a function of spatial coordinates x is then:

_(x) = 5 [A(x)] · W (x) + V (x). (2)

In practice, we project this continuous, in�nite-dimensional process onto a �nite set of
discrete basis elements B = {11, .., 1# }, where the expected �ring rate for the =Cℎ basis
element is:

_= =

∫
x∈Ω

1= (x) · _(x), (3)

where
∫
x∈Ω denotes integration over the spatial domain Ω parameterized by x. If the

variations in the activity, gain, and bias, are small relative to the scale of the basis elements,
we may approximate this integral as:

_= ≈ _
(
〈x〉1=

)
· E=

E= =

∫
x∈Ω

1= (x),
(4)

where 〈x〉1= is the centre of mass of the basis element 1= , and E= is the volume of said basis
element. We consider an especially simple case where basis functions all have identical
volume E , so we may write the regional intensity as

_= ≈ E · [W= 5 (�=) + V=] , (5)
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where E is the (uniform) volume of the basis elements, e.g. E = Δ2
GΔC for a process with

two spatial dimensions and one time dimensions, with a �xed region size. �e spatially-
varying intensity is then represented as a vector of per-region intensities, _ = {_1, .., _# }.
Since the volume parameter E is redundant to the gain parameter W , in the derivations
that follow we assume that the bias and gain parameters have been premultiplied by the
volume.

We introduce the gain and bias parameters to decouple inhomogeneity in the measure-
ments from the underlying, latent spatiotemporal process. For example, in the case of
retinal waves, di�erent regions have di�ering densities of retinal ganglion cells, which
amounts to a spatially inhomogeneous gain. Additionally, the amount of spontaneously-
active background activity varies. In order to build up mathematical solutions that are
immediately useful for numerical implementation, we carry-through these bias and gain
parameters in the derivations that follow.

1.0.3 Count observations and the measurement posterior

Given the Gaussian prior, the Posterior estimate of the latent activations A is given by
Bayes’ rule:

Pr (A|Y) = Pr (A)
Pr (Y) · Pr (Y|A) (6)

We observe event counts over a �nite number of spatial regions, and these observed counts
are independent conditioned on the per-region intensity, so we can write:

Pr (A|Y) = Pr (A)
Pr (Y)

∏
=∈1..#

Pr (~= |A) (7)

�e dependence of the counts on the latent activation can be expanded to include the
regional intensity _= as:

Pr (~= |�=) = Pr (~= |_=) · Pr (_= | A) (8)

Since the dependence of _= onA is deterministic (and vice-versa), we can thereforewrite

Pr (~= |�=) =
Pr (A)
Pr (Y)

∏
=∈1..#

Pr (~= |_=) (9)

We observe regional counts Y = {~1, .., ~# }, which are Poisson distributed, with the ob-
servation likelihood

Pr (~= | _=) =
_
~=
=

~=!
4−_= . (10)
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1.0.4 �e log-posterior

Consider the logarithmic form of the measurement update:

log Pr (A|Y) = log Pr (A) − log Pr (Y) +
∑
=∈1..#

log Pr (~= |_=) (11)

�e prior A is approximated by a Gaussian distribution N(`�, Σ�), and so the log-prior
on A is:

log Pr(A) = −1
2
[
log |2cΣ� | + (A − `�)>Σ−1� (A − `�)

]
. (12)

�e conditional log-likelihood is given by the Poisson observation model with regional
intensity _= = W= 5 (�=) + V=:

log Pr(Y | A) =
∑
=∈1..#

log Pr (~= |_=)

=
∑
=∈1..#

[~= log(_=) − _=] .

=
∑
=∈1..#

[~= log(W= 5 (�=) + V=) − (W= 5 (�=) + V=)] .

(13)

�e marginal log-likelihood of the count observations log Pr(Y) cannot be computed, ex-
cept via an intractable integral. Approximating this integral will be a major challenge for
computing the model likelihood, which we will address later. However, for �xed count
observations Y, the PrY term is constant, and so:

log Pr (A|Y) = − 1
2
[
log |2cΣ� | + (A − `0)>Σ−1� (A − `0)

]
+

∑
=∈1..#

[~= log(_=) − _=] + constant (14)

2 Approximation methods
In this section, we explore various approaches to obtaining a Gaussian approximation to
the posterior Pr(A|Y) ≈ & (A) ∼ N ( ˆ̀�, Σ̂�). We examine three approaches: the Laplace
approximation, the variational Bayes approach, and moment-matching.

2.1 Laplace approximation
For the Laplace approximation, we �nd the mode of the posterior and interpret the cur-
vature at this mode as the inverse of the covariance matrix. Since we are dealing with
spatiotemporal processes driven by physical agents (e.g. molecules, neurons, humans),
we constrain the posterior mode to be non-negative. �is departs slightly from the tradi-
tional Laplace approximation, in which the posterior mode is a non-extremal local maxi-
mum with zero slope. For this reason, the interpretation of the curvature at the mode as
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the inverse of the covariance must be treated with caution.

ˆ̀� = argmax
A
[log Pr(A | Y)] (15)

�is can be solved with gradient descent or the Newton-Raphson method, which requires
the gradient and Hessian of the log-posterior with respect to A.

We introduce some abbreviations to simplify the notation in the derivations that fol-
low. Denote log-probabilities “log Pr(·)” as L(·) , and denote the �rst and second deriva-
tives of the log-measurement likelihood with respect to individual activation variables
�∈{�1, .., �# } as L′~ |� and L′′

~ |�, respectively. Note that _= is synonymous with the lo-
cally adjusted rate W= 5 (�=)+V= , such that _′==W= 5 ′(�=). We also omit indexing by the
basis function number = when unambiguous. With these abbreviations, the gradient and
Hessian of the log-posterior in � are:

∇ALA|Y = (`0 − A)>Σ−1� + ∇ALY|A

∇2ALA|Y = Σ−1� + ∇
2
ALY|A,

(16)

where
L′
~ |� =

W

_
5 ′(�) (~ − _)

L′′
~ |� =

W

_

[
(~ − _) 5 ′′(�) − ~W

_
5 ′(�)2

] (17)

2.1.1 �e identity link function

In the case that 5 (�=) = �= , these gradients simplify to:

L′
~ |� = (~ − _)W

_

L′′
~ |� = −~

(W
_

)2 (18)

2.1.2 �e exponential link function

In the case that 5 (�) = exp(�):

L′
~ |� = (~ − _)

(
W4�

_

)
L′′
~ |� =

(
W4�

_

) [
~

(
1 − W4

�

_

)
− _

] (19)
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For more �exibility, one might add another gain parameter inside the exponentiation, i.e.
5 (�=)= exp(X�=), which gives:

L′
~ |� = (~ − _)

(
WX

_
4X�

)
L′′
~ |� = WX2

[
−~W
_2
42X� +

(~
_
− 1

)
4X�

]
= X (~ − _)

(
WX

_
4X�

)
− ~

(
WX

_
4X�

)2 (20)

2.1.3 �e quadratic link function

Let _ = �2W + V . �at is, 5 (�) = �2, 5 ′(�) = 2�, and 5 ′′(�) = 2.

L′
~ |� =

W

2
� (~ − _)

L′′
~ |� =

W

_

[
(~ − _) 2 − ~W

_
4�2

] (21)

A more �exible parameterization is _ = W (� + 1)2 + V gives:

L′
~ |� =

W

_
(2� + 1) (~ − _)

L′′
~ |� =

W

_

[
(~ − _) 2 − ~W

_
(2� + 1)2

] (22)

2.1.4 Logistic link 1

We might want to consider the logistic link function, which maps the range (−∞,∞) in
activation� to (0, 1), which then may be further adjusted to span a given range using the
gain/bias parameters:

5 =
1

1 + 4−X�

5 ′ = X
4−X�

(1 + 4−X�)2
= X [1 − 5 (�)] 5 (�)

5 ′′ = X [1 − 25 ] 5 ′.

(23)
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2.1.5 Logistic link 2

If the activation is bounded on [0,∞), it might make more sense to apply the logistic
function to the log-activation, yielding the following link function:

5 =
�

n +�
5 ′ =

n

(n +�)2

5 ′′ = −2 n

(n +�)3 .

(24)

where n= is an additional free parameter that acts a like an inverse gain.

2.2 Variational approximation
In the variational approximation, we �nd a Gaussian distribution& (A) ∼ N ( ˆ̀�, Σ̂�) that
approximates the true posterior by minimizing the KL divergence of the true posterior
from the approximating distribution & . �is is conceptually equivalent to jointly maxi-
mizing the entropy of & while also maximizing the expected log-probability of the true
posterior under & .

argmin
`& ,Σ&

�KL(& ‖%) = argmin
`& ,Σ&

∫
A
& (A) log & (A)

Pr(A | Y) = argmax
`& ,Σ&

[
H(&) + 〈log Pr (A | Y)〉&

]
(25)

To obtain a speci�c, analytically tractable form of the above, �rst expand log Pr (A | Y)
using the logarithmic form of Bayes’ rule:

log Pr (A | Y) = log Pr (Y | A) + log Pr (A) − log Pr (Y) (26)

�is gives convenient simpli�cations, as the prior log Pr (A) is o�en Gaussian and has
closed-form solutions, and the marginal data likelihood log Pr (Y) is constant and can be
dropped from the optimization. Expanding 〈log Pr (A | Y)〉& in Eq. 25 gives:

argmax
`& ,Σ&

[
H(&) + 〈log Pr (Y | A)〉& + 〈log Pr (A)〉& − 〈log Pr (Y)〉&

]
(27)

Dropping the constant 〈log Pr (Y)〉& term and recognizing that the remaining terms re�ect
the KL divergence of the approximating posterior from the prior, i.e. �KL(& ‖ Pr(A)), we
get the following optimization problem:

argmax
`& ,Σ&

[
〈log Pr (Y | A)〉& − �KL(& ‖ Pr(A))

]
. (28)

�e objective function for variational Bayes amounts to maximizing the data likelihood
〈log Pr (Y | A)〉& under the approximation& , while also minimizing the KL divergence of
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the prior from the approximating posterior. It can therefore be interpreted as a regularized
maximum-likelihood approach. �is form also connects to the objective functions o�en
seen in variational autoencoders and in variational free energy.

In this application both the prior and approximating posterior are Gaussian, and the KL
divergence term �KL(& ‖ Pr(A)) has a closed-form solution re�ecting the KL divergence
between two multivariate Gaussian distributions:

�KL(& ‖ Pr(A)) =
1
2

[
log
|Σ� |
|Σ̂� |
− � + tr[Σ−1� Σ̂�] + (`� − ˆ̀�))Σ−1� (`� − ˆ̀�)

]
, (29)

where � is the dimensionality of the multivariate Gaussian. It remains then to calcu-
late the expected log-likelihood, 〈log Pr (Y | A)〉& . As discussed in the next section, this
integral is not always tractable.

2.2.1 Challenges for the variational approximation in this application

�e variational approximation integrates over the domain for �, which is truncated to
[0,∞) since negative values for A are unphysical. Typically, this means that e�cient
algorithms are challenging to derive, as closed-form solutions for the relevant integrals
do not exist, or at best involve the multivariate Gaussian cumulative distribution function,
its inverses, and derivatives, which are numerically expensive to compute.

One may relax the constraint that A be non-negative, extending the domain of integra-
tion to (−∞,∞), but then one must constrain optimization to return only positive means
for the variational posterior. However, unless a rectifying (e.g. exponential, quadratic)
link function is used, the inclusion of negative rates in the domain will make the Pois-
son observation likelihood unde�ned. For this reason, the variational update has been
explored only for the exponential link function [[PARK]]. Because small changes in acti-
vation can lead to large �uctuations in rate owing to the ampli�cation of the exponential
link function, we have found that the exponential link is numerically unstable.

An implementation of variational optimization using the rectifying quadratic link function
may be more numerically stable, and remains to be explored.

2.3 Moment-matching
Moment matching calculates or approximates the mean and covariance of the true pos-
terior, and uses these moments to form a multivariate Gaussian approximation. When
applied as a message-passing algorithm in a graphical model, moment matching is an
important step of the expectation-propagation algorithm. Moment-matching can be per-
formed explicitly by integrating the posterior moments, but in high dimensions there is
no computationally tractable way to evaluate such integrals. Since spatial correlations
are essential in spatiotemporal phenomena, we cannot discard this higher dimensional
structure.
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Another approach to moment-matching to note is that the the Gaussian distribution &
that minimizes KL divergence from & to the true posterior will also match the moments
of the posterior. We can therefore perform moment matching by minimizing this KL
divergence:

argmin
`& ,Σ&

∫
A
Pr (A | Y) log Pr (A | Y)

& (A) = argmax
`& ,Σ&

H [Pr (A | Y)] + 〈log&〉Pr(A|Y) (30)

Note that the �rst term is the entropy of the (true) posterior distribution. It is constant
for a given update, and therefore does not a�ect our optimization. We can focus on the
second term, and optimize:

argmax
`& ,Σ&

〈log&〉Pr(A|Y) (31)

�e log-probability of a Gaussian approximation& is with mean ˆ̀� and covariance matrix
Σ̂� is:

log& (�) = −1
2
[
log |2cΣ� | + (A − ˆ̀�)>Σ̂−1� (A − ˆ̀�)

]
(32)

We cannot calculate the true posterior Pr (A | Y), and so the integral 〈log&〉Pr(A|Y) cannot
be computed directly. However, the normalization constant, although unknown, is con-
stant with respect to this optimization, and is su�ces to take the weighted expectation
with respect to an un-normalized form of Pr (A | Y).

Pr (A|Y) = |2cΣ� |−
1
2 4−

1
2 (A−`0)

>Σ−1
�
(A−`0) ·

∏
=∈1..#

[
(W= 5 (�=) + V=)~=
exp (W= 5 (�=) + V=)

]
(33)

�is integral, however, remains essentially intractable, due to the product of Gaussian and
Poisson-like terms. In high dimension there is no (to our knowledge) computationally
e�cient way to estimate this integral or its derivatives.

3 Expected log-likelihoods and variational Bayes
So far, we have explored three approaches to �nding aGaussian approximation to themea-
surement posterior: the Laplace approximation, variational Bayes, andmoment matching.
Moment matching is unsuitable because, to the best of our knowledge, there is no com-
putationally tractable way to estimate the relevant moments in high-dimensions. �e
Laplace approximation and variational Bayes remain computationally tractable, with lim-
itations. �e Laplace approximation su�ers from errors arising from the non-negativity
constraint on activity levels, and the high skewness of the distributions causes themode to
be far from the mean. Errors in estimating the covariance are especially severe, as the co-
variance controls the trade-o� between propagating past information, and incorporating
new measurements, during the �ltering procedure.

Variational Bayes also has a number of challenges. First, an e�cient way of evaluating
the relevant integrals and their derivatives is needed. In practice, this is simplest when we
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can tolerate the approximation of integrating over the full domain of the prior, including
the unphysical negative activations. We must also use a rectifying link function, because
if the predicted point-process intensity is negative, then the Poisson likelihood for our
observations is not de�ned. To our knowledge, the only rectifying link function that has
been explored to-date is the exponential link function, which su�ers from unacceptable
numerical instability in our application. �ere are a few other link functions that we
might explore, but we will address another approximate solution in this section based on
Laplace-approximated expected log-likelihoods.

In order to minimize �KL in the variational Bayes approach, we must maximize the data
log-likelihood under the approximating distribution& , while simultaneously minimizing
the KL divergence of the prior from this posterior approximation. Provided we interpret
themultivariate Gaussian prior forA as having support over (−∞,∞)� , the KL divergence
term has a closed-form solution and well-de�ned derivatives. �e challenge, then, is to
calculate expected log-likelihood term:

〈log Pr (Y | A)〉& (34)

We now derive a general second-order approximation for the expected log-likelihood for
a Gaussian latent-variable process with Poisson observations, where the latent variable
may be linked to the Poisson intensity via an arbitrary link function. (See Zhou and
Park, plus the expected log-likehood papers, for more detail). In the case of intractable
〈log Pr (Y | A)〉& , we approximate this integral via Laplace approximation. �is yields and
approximate variational inference method that is similar, but not identical, to the Laplace
approximation.

3.1 Second-order approximations to the expected log-likelihood
To brie�y review the notation, let A = {�1, .., �# } be a multivariate Gaussian latent vari-
able re�ecting our prior estimate for the distribution of latent activation, with mean `�
and covariance Σ�. Let _0= = 5 (�=) be an link function mapping the latent activity to
a baseline intensity _0= , which then might be further scaled and shi�ed due to spatially
inhomogeneous gain W= or background activity V= . We need to compute expected log-
likelihoods under the approximating posterior distribution & , that is:

〈L(~)= |�=)〉 = ~= 〈log(_=)〉 − 〈_=〉 (35)

Where 〈·〉 denotes averaging over the posterior distribution & (A) with mean ˆ̀A and co-
variance Σ̂A. In certain cases, the expectations 〈log(_=)〉 and 〈_=〉 may have closed-form
solutions, for example in the log-Gaussian instance (cite Rule, Zhou). Here, however, we
explore a general approach based on second-order Taylor expansions, which is accurate
for small variances. If �= is normally distributed with mean `�= and variance f�=2, then
out to second order:

〈L (~= |�=)〉 ≈ L
(
~= | ˆ̀�=

)
+
f̂2
�=

2
L′′

(
~= | ˆ̀�=

) (36)
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Gradient-based methods for optimizing the expected log-likelihood require derivatives
of these approximated expectations. In general, derivatives with respect to the mean
are:

3=

3`<
�=

〈
L(~�= |�=)

〉
≈ L (<)

(
~= | ˆ̀�=

)
+
f̂2
�=

2
L (<+2)

(
~= | ˆ̀�=

)
(37)

A Newton-Raphson solver for optimizing the mean ˆ̀A requires the Hessian of the objec-
tive function. Since the approximated expectations include second derivatives, the Hes-
sian involves derivatives out to fourth order. �e chain rule for higher-order derivatives
of the logarithm is too cumbersome to state for the general case. Instead, we derive the
equations for three versions of 5 (�): �, �2, and 4�. Optimizing the likelihood may also
involve optimizing the variance f2 or in general, the covariance. We will address this in
later sections.

3.1.1 For the case that 5 (�) = �

Interpreting the distribution of latent activationsA as amultivariate Gaussian over (−∞,∞)�
allows closed-form estimation of the �KL contribution to the variational Bayes objective
function. However, unless point-process intensities are arti�cially constrained to the do-
main [0,∞), the expected log-likelihood is unde�ned for the identity link function. �is is
because the Poisson measurement likelihood is not de�ned for negative intensities.

In this second-order approximation, we circumvent this issue by considering a locally-
quadratic approximation of the likelihood function that continues the Poisson likelihood
to negative intensities. Provided variance is small, and the posterior mean is constrained
to be positive, this approximation may provide an accurate estimate of the expected log-
likelihood. If 5 (�) = � and so _ = E · W · (G + V/W). Computing out to the 4th deriva-
tive.

L (~ |�) = ~ log[_] − _
= ~ [log(E · W) + log(_/W)] − E · W (G + V/W)
= ~ log(_/W) − E · W� + constant

L′ (~ |�) = ~ (_/W)−1 − E · W
L′′ (~ |�) = −~ (_/W)−2

L (3) (~ |�) = 2~ (_/W)−3

L (4) (~ |�) = −6~ (_/W)−4

(38)

As 〈_〉 → 0, the fourth derivative of the likelihood tends rapidly to in�nity, which may
create issues for numerical stability and accuracy. �is behavior near 〈_〉 → 0 is similar
to the issues that plague the Laplace approximation. In particular, the distribution may
become highly skewed, whichmeans that third or highermomentsmay be needed, and the
second-order approximation may not be accurate. However, I have reason to suspect that
the issues might be less severe for the expected log-likelihood compared to the Laplace
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approximation. In this case, we are using a quadratic expansion about an estimate of the
posterior mean, whereas the Laplace approximation seeks the posterior mode. I expect
that this will have a stabilizing e�ect, encouraging 〈_〉 toward more positive values.

3.1.2 For the case that 5 (�) = 4�

A closed-form solution for the expected log-likelihood exists under this link function, and
closed-form expressions for the moments of log-Gaussian random variables are known
(see Zhou and Park for application to log-Gaussian point processes). However, in this
application the ampli�cation of positive tails of the distribution by the exponential link
function is numerically unstable and unphysical, indicating that the log-Gaussian model
is inappropriate. In Rule et al. 2018, we noted that a second-order approximation to the
expected likelihood was more stable and more accurate.

L (~ |�) = ~ log[_] − _
= ~ log[E · W (4� + V/W)] − E · W (4� + V/W)
= ~ log[4� + V/W] − E · W4� + constant

L (=) (~ |�) = ~� (=−1) − E · W4�,

� =
4�

4� + V/W
=

1
1 + V/W4−�

�′ = � (1 −�)
�′′ = �′(1 − 2�)
� (3) = �′ − 6�′2

(39)

3.1.3 For the case that 5 (�) = �2

A quadratic link function is rectifying, so the Poisson likelihood remains well-de�ned
even if the domain of A is extended to (−∞,∞)� . However, to my knowledge there is
no tractable closed-form for the expectation of logarithm of a generalized noncentral j2
distributed variable, and so the second-order approximation remains useful:

L (~ |�) = ~ log[_] − _
= ~ log[E · W (�2 + V/W)] − E · W (�2 + V/W)
= ~ log[�2 + V/W] − EW�2 + constant

L′ (~ |�) = ~� − 2EW�, � =
2�

�2 + V/W
L′′ (~ |�) = ~�′ − 2EW, �′ = � (�−1 −�)
L (3) (~ |�) = ~�′′, �′′ = �′(�−1 − 2�) −��−2

L (4) (~ |�) = ~� (3), � (3) = 3(�/�)2 − 6�′2

(40)
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3.2 Incorporating the prior
So far we have focused on the expected log-likelihood contribution to the variational
posterior objective function. We also need to derive the gradients of the KL-divergence
term. For the most part, this is identical to the derivation in Zhou and Park, so I present
only some quick notes here. We are interested in the gradients (and hessians) for the KL
divergence between two : dimensional multivariate Gaussians, which is:

� ! (N0‖N1) =
1
2

[
tr(Π1Σ0) + (`1 − `0)>Π1(`1 − `0) − ln |Π1 | − ln |Σ0 | − :

]
(41)

Note that I have chosen to denote this in terms of the precision matrix Π1 = Σ−11 , as it
makes some of the derivations below more straightforward. �e derivative with respect
to `0 is the same as the derivative with respect to `1 and is:

∇`1� ! (N0‖N1) = ∇`0� ! (N0‖N1) =
1
2

[
(`1 − `0)>Π1

]
(42)

�e derivative with respect to Σ0 is:

∇Σ0� ! (N0‖N1) = 1
2 [Π1 − Π0] (43)

�e derivative with respect to Π1 is:

∇Π1� ! (N0‖N1) = 1
2
[
Σ0 − Σ1 + (`1 − `0) (`1 − `0)>

]
(44)

For the variational interpretation we approximate the posterior % with approximation &
andminimize� ! (& ‖%). �is involves taking the derivativewith respect to Σ0 above.

3.3 Optimizing the (approximate) variational approximation
We have derived approximations for the expected log-likelihood contribution to the vari-
ational Bayesian objective function, which must be optimized jointly over the posterior
mean ˆ̀� and the posterior covariance Σ̂�. �e above derivations provide gradients and
Hessians for optimizing ˆ̀� for a �xed Σ̂�. In Zhou and Park, they explore the joint opti-
mization for the (exact) objective function for a log-Gaussian variational approximation.
�ey prove that Σ̂� can be optimized using a �xed-point iteration.

In numerical experiments, I extended this approach by interleaving one-step of the Newton-
Raphson optimization for ˆ̀� with one step of the �xed-point update for Σ̂�. In my experience
this accelerated convergence. Does the �xed-point iteration for Σ̂� convergs for the second-
oder approximated expected log-likelihood? Could a similar approach be found for the other
(non-exponential) link functions explored here.
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3.3.1 �e covariance update

To complete the variational approximation, we also need to optimize the posterior co-
variance. �is involves the derivative of the expected log-likelihood with respect to Σ0. In
the second-order (Laplace-approximation-like) expected log-likelihood, the dependence
on the covariance enters through the second-order terms, which are:

1
2
diag (Σ0) L′′ (~ |`0) (45)

�e derivative of the above with respect to Σ0 is:

1
2
L′′ (~ |`0) (46)

along the diagonal, and 0 elsewhere. �e total gradient for Σ0, incorporating both the �KL
and expected log-likelihood contributions, is:

∇Σ0L(A|Y) =
1
2
[Π1 − Π0 + L′′ (~ |`0)] (47)

Se�ing this gradient to zero and solving for Σ0 gives:

Π0 = Π1 + L′′ (~ |`) (48)

Which amounts to adding the curvature of the log likelihood L′′ (~ |`) (approximated as
the curvature at the current posterior mean), to the prior precision matrix Π1. �is is
similar to the Hessian observed for the Laplace update, with the exception that we use
the curvature at the estimated posterior mean, rather than posterior mode.

4 Computing the model likelihood
Once the Gaussian approximation is computed, how should we estimate the likelihood of
the data given the model parameters \ , Pr(Y|\ ) (or just Pr(Y) for short)? �ere are numer-
ous approximation methods available, and it remains unclear to me which is best.

4.1 Integration via Laplace approximation
�is likelihood is the integral of the prior Pr(A) times themeasurement likelihood Pr(Y|A),
and is also the normalization constant for the posterior distribution:

Pr(Y) =
∫
A
Pr(Y|A) Pr(A) = 〈Pr(Y|A)〉Pr(A) (49)

Given a Gaussian approximation & for the posterior Pr(A|Y), we can approximate this
integral using the posterior mean ˆ̀� and covariance Σ̂�. �is Gaussian approximation
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can be obtained from any of the previously mentioned approximation methods, Laplace
approximation, or exact or approximated variational inference.

Under this approximation, we evaluate Pr(Y|A) Pr(A) at ˆ̀�, and also compute the curva-
ture at this point (which should match Σ̂� if everything has gone as planned!).

log Pr(A|Y) ≈ −1
2
[
log |2c Σ̂� | + (A − ˆ̀0)>Σ̂−1� (A − ˆ̀0)

]
(50)

We use the following logarithmic relationship derived from Bayes’ rule

log Pr(Y) = log [Pr(A) Pr(Y|A)] − log Pr(A|Y) (51)

Substituting the forms for the above

log Pr(Y) ≈ −1
2
[
log |2cΣ� | + (A − `�)>Σ−1� (A − `�)

]
+

∑
=∈1..#

[~= log(W= 5 (�=) + V=) − (W= 5 (�=) + V=)]

+ 1
2
[
log |2c Σ̂� | + (A − ˆ̀�)>Σ̂−1� (A − ˆ̀�)

] (52)

Evaluating the above at the posterior mean ˆ̀� amounts to a Laplace approximation of the
integral for the likelihood.

log Pr(Y) ≈ log [Pr( ˆ̀�) Pr(Y| ˆ̀�)] − log Pr( ˆ̀� |Y)
= −1

2
[
log |2cΣ� | + ( ˆ̀� − `�)>Σ−1� ( ˆ̀� − `�)

]
+

∑
=∈1..#

[
~= log(W= 5 ( ˆ̀�= ) + V=) − (W= 5 ( ˆ̀�= ) + V=)

]
+ 1

2
[
log |2c Σ̂� | + ( ˆ̀� − ˆ̀�)>Σ̂−1� ( ˆ̀� − ˆ̀�)

] (53)

Cleaning things up, and denoting _̂= = W= 5 ( ˆ̀�= ) + V= , we get:

log Pr(Y) ≈ −1
2

[
log
|Σ� |
|Σ̂� |
+ ( ˆ̀� − `�)>Σ−1� ( ˆ̀� − `�)

]
+

∑
=∈1..#

[
~= log(_̂=) − _̂=

] (54)

4.1.1 On the similarity between the Laplace-approximated likelihood and�KL

Note the similarity to KL divergence

�KL(& ‖ Pr(A)) =
1
2

[
log
|Σ� |
|Σ̂� |
− � + tr

[
Σ−1� Σ̂�

]
+ (`� − ˆ̀�))Σ−1� (`� − ˆ̀�)

]
(55)

Which gives the relation

− 1
2

[
log
|Σ� |
|Σ̂� |
+ (`� − ˆ̀�))Σ−1� (`� − ˆ̀�)

]
=
1
2

[
tr

[
Σ−1� Σ̂�

]
− �

]
− �KL(& ‖ Pr(A)) (56)
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Which allows the likelihood to be wri�en as

log Pr(Y) ≈ 1
2

[
tr

[
Σ−1� Σ̂�

]
− �

]
− �KL(& ‖ Pr(A))

+
∑
=∈1..#

[
~= log(_̂=) − _̂=

] (57)

We can play with this further, bringing in the second-order expected log-likelihood:

L
(
~= | ˆ̀�=

)
=

∑
=∈1..#

[
~= log(_̂=) − _̂=

]
(58)

Which, from the second-order approximation, is:

L
(
~= | ˆ̀�=

)
≈

〈
L

(
~= | ˆ̀�=

)〉
−
f̂2
�=

2
L′′

(
~= | ˆ̀�=

) (59)

So…
log Pr(Y) ≈ 1

2
[
tr

[
Σ−1� Σ̂�

]
− �

]
− �KL(& ‖ Pr(A))

+ 〈L (~ | ˆ̀�)〉 −
∑
=∈1..#

f̂2
�=

2
L′′

(
~= | ˆ̀�=

)
= −�KL(& ‖ Pr(A|Y)) +

1
2
tr

(
Σ−1� Σ̂�

)
−

∑
=∈1..#

f̂2
�=

2
L′′

(
~= | ˆ̀�=

)
+ constant

(60)

Which is to say that a point estimate of the log-likelihood is very similar to the (negative)
KL-divergence penalty, di�ering only by the trace term and the curvature correction (and
the dimensionality constant �).

Empirically, these terms are small and do not dominate the likelihood. As we shall see
in the following sections, this similarity is not a coincidence: the Laplace approxima-
tion is connected to the Evidence Lower Bound (ELBO) in the variational Bayesian ap-
proach, especially when a second-order approximation is used to evaluate the expected
log-likelihood.

4.2 �e expected log-likelihood
One can consider the expected value of the log-likelihood relative to the prior distribution
Pr(A). Starting from the logarithmic form of Bayes’ rule, we have:

log Pr(Y) = log Pr(A) + log Pr(Y|A) − log Pr(A|Y) (61)

For the true posterior Pr(A|Y), this equality holds for all A, as we could recover the log-
likelihood by evaluating this expression at any point. In the Laplace approximation, we
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evaluated this quantity at the posterior mean. For the expected log-likelihood approach
here, we take the expectation with respect to the prior distribution Pr(A):

〈log %. 〉%� = 〈log %�〉%� +
〈
log %. |�

〉
%�
−

〈
log %�|.

〉
%�

=
〈
log %. |�

〉
%�
+ �KL(%�‖%�|. )

(62)

We cannot compute the above exactly, because we do not have access to the true posterior
%�|. , but we do have access to an approximating posterior &≈%�|. , which we can use to
approximate the expected log-likelihood. Note that the additional �LK term increases the
expected log likelihood, opposite of its role in the variational approach.

〈log %. 〉%� ≈
〈
log %. |�

〉
%�
+ �KL(%�‖&) (63)

To estimate the expected log-likelihood term
〈
log %. |�

〉
%�
, we may either use the second-

order approach that we derived for variational Bayes’, or simply evaluate log %. |� at the
prior mean for a faster approximation.

4.3 ELBO and variational Bayes
When deriving the variational update, we omi�ed the (constant) data likelihood term. �e
full form for �KL(& ‖%) is:

�KL(& ‖%) =
∫
�

&� log
&�

%�|.
= 〈log&〉& −

〈
log %�|.

〉
&

= −�& −
〈
log %.,�

〉
&
+ log %.

= −
〈
log %. |�

〉
&
+ �KL(& ‖%�) + log %. ,

(64)

which implies the following identity for the log-likelihood:

log %. = �KL(& ‖%) +
〈
log %. |�

〉
&
− �KL(& ‖%�)

= �KL(& ‖%) + �& +
〈
log %.,�

〉
&
.

(65)

�at is: the data likelihood is the expected log-likelihood under the variational posterior,
minus the KL divergence of the posterior form the prior, plus the KL divergence of the
variational posterior from the true posterior. Since this last term is always positive, the
following bound holds:

log %. ≥
〈
log %. |�

〉
&
− �KL(& ‖%�)

= �& +
〈
log %.,�

〉
&

(66)

�is inequality is sometimes called the Evidence Lower Bound (ELBO). �e more accu-
rately we can approximate the posterior as a Gaussian, the smaller �KL(& ‖%) becomes
and the tight this bound becomes.

(67)

17



5 Going forward
In practice, we use the Laplace approximation for obtaining the approximate posterior
& . �is avoids needing to jointly optimize the posterior covariance, trading accuracy for
speed. We have explore the Laplace, ELBO, and expected log-likelihood approaches to
estimating the likelihood, and found them to be broadly similar. Note, however, that the
accuracy of expressions involving second-order expansions is expected to break down if
the variance of the latent state becomes large.
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