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The neural-field Cox-process model currently assumes a Poisson observation model. However,
firing may be periodic (under-dispersed) or bursty (over-dispersed) and deviate from the Poisson
model.

One way to handle this is to add a multiplicative parameter to the spiking observations to capture
over/under dispersion. The resulting log-likelihood resembles that for Poisson observations, but
doesn’t correspond to a proper distribution over discrete spike-counts. It is sometimes called the
quasi-likelihood approach.

0.1 Quasi-likelihood for Poisson count data

In the non-spatial system, the Poisson observation model for counts y given intensity λ is

Pr(y|λ) = 1
y!

λye−λ

One way to handle over/under dispersion is to pretend that the Poisson distribution is a contin-
uous distribution over the positive real numbers (as opposed to positive integers), and to add a
scale parameter to this distribution.

The quasi-likelihood approach introduces a parameter α, that scales both the spike counts and the
rates.

Pr(y|λ) ∝
(αλ)αye−αλ

Γ(αy + 1)

The log-probability of y given λ is then

ln Pr(y|λ) = (αy) ln(αλ)− αλ− ln Γ(αy + 1) + constant

Typically, we’re given (fixed) observations y, and are only interested in optimizing the log-
likelihood up to a constant, so one might write:

ln Pr(y|λ) = (αy) ln(αλ)− αλ + constant
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https://en.wikipedia.org/wiki/Quasi-likelihood


The quasi-likelihood can be optimized using the same code as one would use for the GLM. In this
case, α can be folded in to a gain adjustment on the rates λ, and the count data is pre-multiplied
by α before passing them on to the GLM inference routine.

0.2 In a spatially extended system with a linear observation model

In the spatially extended case, λ(x) depends on spatial coordinates $ x$. Spikes occur as a spatial
Poisson process

y(x) = ∑
i

δ(x− xi)

consisting of a sum of delta distributions at various locations. For the Poisson process, the log
probability is

ln Pr(y(x)) =
∫

x
y(x) ln λ(x)−

∫
x

λ(x) + constant

In our model, we have a latent variable A(x) that drives retinal ganglion cell spiking at rate λ =
γ0 A(x) + β0.

We can extend this model to account for over and under-dispersion is to add a scalar multiplier α
to the observed counts y, so that the measurements enter as αy(x). We implicitly fold α into the
gain γ← αγ0 and bias β← αβ0 parameters.

The spatially-extended log-probability in terms of latent field A(x), with added parameters re-
flecting a gain, bias, and dispersion, is

ln Pr(y|λ) =
∫

x
αy(x) ln[γA(x) + β]−

∫
x
[γA(x) + β] + constant

For inference, we are interested in optimizing latent states A(x) given a fixed observation y(x), so
terms not affecting A(x) can be dropped:

L = ln Pr(y|λ) = α
∫

x
y(x) ln[A(x) + β/γ]− γ

∫
x

A(x) + constant

The measurement update is performed using a Gaussian prior, and computed using the Laplace
approximation for which one needs the first and second derivatives of the likelihood (quasi-
likelihood) in A(x).

∂L
∂x1

= −γ +
αy(x1)

A(x1) + β/γ

∂2L
∂x1∂x2

= −δ(x1−x2)
αy(x1)

[A(x1) + β/γ]2
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These gradients are identical to those of the linear λ(x) = γA(x) + β observation model. The
parameter α can be incorporated without modifying the measurement update code by pre-
multiplying the counts y(x) by α. These gradients are combined with a Gaussian process prior
to infer and update unobserved neural field states given spatiotemporal spiking observations.
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