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The neural-field Cox-process model currently assumes a Poisson observation model. However,
tiring may be periodic (under-dispersed) or bursty (over-dispersed) and deviate from the Poisson
model.

One way to handle this is to add a multiplicative parameter to the spiking observations to capture
over/under dispersion. The resulting log-likelihood resembles that for Poisson observations, but
doesn’t correspond to a proper distribution over discrete spike-counts. It is sometimes called the
quasi-likelihood approach.

0.1 Quasi-likelihood for Poisson count data

In the non-spatial system, the Poisson observation model for counts y given intensity A is
L,y A

One way to handle over/under dispersion is to pretend that the Poisson distribution is a contin-
uous distribution over the positive real numbers (as opposed to positive integers), and to add a
scale parameter to this distribution.

The quasi-likelihood approach introduces a parameter &, that scales both the spike counts and the
rates.
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The log-probability of y given A is then

InPr(y|A) = (ay) In(aA) —aA — InT(ay + 1) + constant

Typically, we're given (fixed) observations y, and are only interested in optimizing the log-
likelihood up to a constant, so one might write:

InPr(y|A) = (ay) In(aA) — A + constant


https://en.wikipedia.org/wiki/Quasi-likelihood

The quasi-likelihood can be optimized using the same code as one would use for the GLM. In this
case, « can be folded in to a gain adjustment on the rates A, and the count data is pre-multiplied
by « before passing them on to the GLM inference routine.

0.2 In aspatially extended system with a linear observation model

In the spatially extended case, A(x) depends on spatial coordinates $ x$. Spikes occur as a spatial
Poisson process

y(x) = Lo(x - x)

consisting of a sum of delta distributions at various locations. For the Poisson process, the log
probability is

InPr(y(x)) = /xy(x) InA(x) —/x/\(x) + constant

In our model, we have a latent variable A(x) that drives retinal ganglion cell spiking at rate A =
’)/0A(x ) + :BO'

We can extend this model to account for over and under-dispersion is to add a scalar multiplier «
to the observed counts y, so that the measurements enter as ay(x). We implicitly fold a into the
gain 7y < a7y and bias B < afy parameters.

The spatially-extended log-probability in terms of latent field A(x), with added parameters re-
flecting a gain, bias, and dispersion, is

InPr(y|A) = /xtxy(x) In[yA(x)+ B] — ./x[’)/A(x) + B] + constant

For inference, we are interested in optimizing latent states A(x) given a fixed observation y(x), so
terms not affecting A(x) can be dropped:

L =1InPr(y|A) = (x/xy(x)ln[A(x) +B/v] — 'y/xA(x) + constant

The measurement update is performed using a Gaussian prior, and computed using the Laplace
approximation for which one needs the first and second derivatives of the likelihood (quasi-
likelihood) in A(x).
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These gradients are identical to those of the linear A(x) = yA(x) +  observation model. The
parameter a can be incorporated without modifying the measurement update code by pre-
multiplying the counts y(x) by a. These gradients are combined with a Gaussian process prior
to infer and update unobserved neural field states given spatiotemporal spiking observations.
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