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I �rst learned this solution from Botond Cseke. I’m not sure where it originates; It is a corollary
of Laplace’s method for approximating integrals using a Gaussian distribution.

If I have a Bayesian statistical model with hyperparameters Θ, with a no closed-form posterior, how can I
optimize Θ?

Consider a Bayesian statistical model with observed data y ∈ Y and hidden (latent) variables z ∈ Z, which
we infer. We have a prior on z, Pr(z;Θ), and a model for the probability of y given z (likelihood), Pr(y|z;Θ).
The prior and likelihood are controlled by “hyperparameters” Θ, which we would like to estimate. Recall
that Bayes theorem states:

Pr(z|y;Θ) = Pr(y|z;Θ) Pr(z;Θ)
Pr(y;Θ) (1)

It is common for the posterior Pr(z|y;Θ) to lack a closed-form solution. In this case, one typically approx-
imates the posterior with a more tractable distribution & (z) ≈ Pr(z|y;Θ). Common ways of estimating
(z) include the Laplace approximation, variational Bayes, expectation propagation, and expectation max-
imization algorithms. The only approximating distribution in common use for high-dimensional z is the
multivariate Gaussian (or some nonlinear transformation thereof), which succinctly captures joint statis-
tics with limited computational overhead. Assume we have an inference procedure which returns the
approximate posterior & (z) = N(-@ , �@).

We optimize the hyperparameters “Θ” of the prior kernel to maximize the marginal likelihood of the ob-
servations y

\ ← argmax
Θ

Pr(y;Θ)

Pr(y;Θ) =
∫
Z
Pr(y, z;Θ) 3z =

∫
Z
Pr(y|z) Pr(z;Θ) 3z

(2)

Except in rare special cases, this integral does not have a closed form. However, we have already obtained
a Gaussian approximation to the posterior distribution, & (z) ≈ Pr(z|y;Θ). If we replace Pr(z|y;Θ) with
our approximation & (z) in this equation, we can solve for (an approximation) of Pr(y;Θ):

& (z) ≈ Pr(y|z) Pr(z;Θ)
Pr(y;Θ) ⇒ Pr(y;Θ) ≈ Pr(y|z)Pr(z;Θ)

& (z) (3)

Working in log-probability, and evaluating the expression at the (approximated) posterior mean z = -@ ,
we get
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ln Pr(z=-@ ;Θ) = − 1
2

{
ln |2c�I | + (-@ − -I)>�−1I (-@ − -I)

}
ln& (z=-@) = − 1

2

{
ln |2c�@ | + (-@ − -@)>�−1@ (-@ − -@)

}
= − 1

2 ln |2c�@ |

ln Pr(y;Θ) ≈ ln Pr(y|z=-@ ;Θ) + ln Pr(z=-@ ;Θ) − ln& (z=-@)

= ln Pr(y|z=-@ ;Θ) − 1
2

{
ln |�−1@ �I | + (-@ − -I)>�−1I (-@ − -I)

}
(4)

.

This is quite tractable to compute.
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