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I first learned this solution from Botond Cseke. I'm not sure where it originates; It is a corollary
of Laplace’s method for approximating integrals using a Gaussian distribution.

If I have a Bayesian statistical model with hyperparameters ©, with a no closed-form posterior, how can I
optimize O7?

Consider a Bayesian statistical model with observed data y € Y and hidden (latent) variables z € Z, which
we infer. We have a prior on z, Pr(z; ©), and a model for the probability of y given z (likelihood), Pr(y|z; ©).
The prior and likelihood are controlled by “hyperparameters” ©, which we would like to estimate. Recall
that Bayes theorem states:

Pr(z; ©)

Pr(zly; ©) = Pr(y|z; ©) Pr(y; 0)

(1)

It is common for the posterior Pr(z|y; ®) to lack a closed-form solution. In this case, one typically approx-
imates the posterior with a more tractable distribution Q(z) ~ Pr(z|y; ®). Common ways of estimating
(z) include the Laplace approximation, variational Bayes, expectation propagation, and expectation max-
imization algorithms. The only approximating distribution in common use for high-dimensional z is the
multivariate Gaussian (or some nonlinear transformation thereof), which succinctly captures joint statis-
tics with limited computational overhead. Assume we have an inference procedure which returns the
approximate posterior Q(z) = N'(pg, Zq).

We optimize the hyperparameters “©” of the prior kernel to maximize the marginal likelihood of the ob-
servations y

0 «— argmaxPr(y; ©)
3

(2)
Pr(y; @) = '/ZPr(y, z;0)dz = ‘/Z Pr(y|z) Pr(z; ©) dz

Except in rare special cases, this integral does not have a closed form. However, we have already obtained
a Gaussian approximation to the posterior distribution, Q(z) = Pr(z|y; ©). If we replace Pr(z|y; ©) with
our approximation Q(z) in this equation, we can solve for (an approximation) of Pr(y; ©):

Pr(z; ©)
Pr(y; ©)

Pr(z; ©)
Q(2)

Working in log-probability, and evaluating the expression at the (approximated) posterior mean z = p,,
we get

Q(z) ~ Pr(ylz)

= Pr(y;©) ~ Pr(ylz) 3)
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lnPr(z:pq;@)) = —% {ln 27X, | + (yq - yz)TZj(yq - pz)}

InQ(z=p,) = -3 {ln 127%q] + (p, — pq)TZ(;l(yq - llq)} =—1ln|27%y|

InPr(y; ©) ~ lnPr(y|z=yq;®) +lnPr(z=pq;®) —In Q(z=[1q)

= InPr(yla=p,; ©) - § {In [=5 "%+ (g = 1) 7% (1, — 1) |

This is quite tractable to compute.



